Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

Bihar Board Class 10 Maths दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 1.
दो मित्रों अनी और बीजू की आयु में 3 वर्ष का अन्तर है। अनी के पिता धरम की आयु अनी की आयु की दुगुनी और बीजू की आयु अपनी बहन कैथी की आयु की दुगुनी है। कैथी और धरम की आयु का अन्तर 30 वर्ष है। अनी और बीजू की आयु ज्ञात कीजिए।
हल
माना अनी की आयु x वर्ष तथा बीजू की आयु y वर्ष है।
उनकी आयु में 3 वर्ष का अन्तर है।
अनी की आयु – बीजू की आयु = 3 वर्ष
x – y = 3 ……… (1)
अनी के पिता धरम की आयु = अनी की आयु का दुगुना = 2x वर्ष
बीजू की आयु = कैथी की आयु का दो गुना
y = कैथी की आयु का दो गुना
कैथी की आयु = \(\frac{y}{2}\) वर्ष
धरम और कैथी की आयु का अन्तर 30 वर्ष है
धरम की आयु – कैथी की आयु = 30 वर्ष
2x – \(\frac{y}{2}\) = 30
⇒ \(\frac{4 x-y}{2}\) = 30
⇒ 4x – y = 60 …… (2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
(4 x – y) – (x – y) = 60 – 3
⇒ 3x = 57
⇒ x = 19
समीकरण (1) में x का मान रखने पर,
y = 19 – 3 = 16
अत: अनी की आयु 19 वर्ष तथा बीजू की आयु 16 वर्ष है।
परन्तु यदि बीजू बड़ा है तो आयु का अन्तर y – x = 3 …….. (3)
तब, समीकरण (2) व (3) को जोड़ने पर, 3x = 63 ⇒ x = 21
और समीकरण (3) में x = 21 रखने पर, y – 21 = 3 ⇒ y = 24
तब, अनी की आयु 21 वर्ष तथा बीजू की आयु 24 वर्ष होगी।

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 2.
एक मित्र दूसरे से कहता है कि ‘यदि मुझे एक सौ दे दो, तो मैं आपसे दो गुना धनी बन जाऊँगा।’ दूसरा उत्तर देता है ‘यदि आप मुझे दस दे दें, तो मैं आपसे छ: गुना धनी बन जाऊँगा।’ बताइए कि उनकी क्रमशः क्या सम्पत्तियाँ हैं?
हल
माना एक मित्र A की सम्पत्ति ₹ x है और दूसरे मित्र B की सम्पत्ति ₹ y है।
मित्र A मित्र B से कहता है कि यदि B, A को ₹ 100 दे दे तो A, B से दो गुना धनी हो जाएगा।
जब B, A को ₹ 100 दे देगा तो A के पास ₹(x + 100) हो जाएँगे और B के पास ₹(y – 100) रह जाएँगे।
तब, प्रश्नानुसार,
A का धन = 2 × (B का धन)
⇒ x + 100 = 2 × (y – 100)
⇒ x + 100 = 2y – 200
⇒ x – 2y = -100 – 200
⇒ x – 2y = -300 ……(1)
अब B, A से कहता है कि यदि A, B को ₹ 10 दे दे तो वह B, A से 6 गुना धनी होगा।
जब A, B को ₹10 दे देगा तो A के पास ₹(x – 10) रह जाएंगे और B के पास ₹(y + 10) हो जाएंगे।
तब, प्रश्नानुसार,
B का धन = 6 × (A का धन)
⇒ (y + 10) = 6 × (x – 10)
⇒ 6x – 60 = y + 10
⇒ 6x – y = 60 + 10
⇒ 6x – y = 70
समीकरण (1) से, x = 2y – 300 ……(3)
x का यह मान समीकरण (2) में रखने पर,
⇒ 6(2y – 300) – y = 70
⇒ 12y – 1800 – y = 70
⇒ 11y = 70 + 1800 = 1870
⇒ y = 170
तब, y = 170 समीकरण (3) में रखने पर,
x = (2 × 170) – 300 = 40
अत: एक मित्र के पास ₹ 40 तथा दूसरे मित्र के पास ₹ 170 हैं।

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 3.
एक रेलगाड़ी कुछ दूरी समान चाल से तय करती है। यदि रेलगाड़ी 10 km/h अधिक तेज चलती होती, तो उसे नियत समय से 2 घंटे कम लगते और यदि रेलगाड़ी 10 km/h धीमी चलती होती, तो उसे नियत समय से 3 घंटे अधिक लगते। रेलगाड़ी द्वारा तय की गई दूरी ज्ञात कीजिए।
हल
माना रेलगाड़ी द्वारा तय की जाने वाली दूरी x km तथा रेलगाड़ी की एकसमान चाल y km/h है।
उक्त दूरी तय करने का निर्धारित समय = \(\frac{x}{y}\) घंटे
यदि रेलगाड़ी 10 km/h अधिक तेज चलती अर्थात् उसकी चाल (y + 10) km/h होती तो नियत समय में घंटे से \(\frac{x}{y}\) घंटे कम लगते अर्थात् (\(\frac{x}{y}\) – 2) घंटे लगते।
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q3
इसी प्रकार, यदि रेलगाड़ी 10 km/h धीमी चलती अर्थात् (y – 10) km/h की चाल से चलती तो निर्धारित समय में घंटे से \(\frac{x}{y}\) घंटे अधिक लगते अर्थात् (\(\frac{x}{y}\) + 3) घंटे लगते।
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q3.1
समीकरण (2) में से समीकरण (1) को घटाने पर,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q3.2
समीकरण (3) व समीकरण (6) से,
4x + 100 = \(\frac{10 x+30 y}{3}\)
⇒ 12x + 300 = 10x + 30y
⇒ 2x – 30y = -300
⇒ x – 15y = -150 ……. (7)
समीकरण (5) में से समीकरण (7) को घटाने पर,
(x – 10 y) – (x – 15 y) = 100 – (-150)
⇒ x – 10y – x + 15y = 100 + 150
⇒ 5y = 250
⇒ y = 50
अब, y का मान समीकरण (5) में रखने पर,
x – 10 × 50 = 100
⇒ x – 500 = 100
⇒ x = 600
अत: रेलगाड़ी द्वारा तय की जाने वाली दूरी = 600 km

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 4.
एक कक्षा के विद्यार्थियों को पंक्तियों में खड़ा होना है। यदि पंक्ति में 3 विद्यार्थी अधिक होते, तो 1 पंक्ति कम होती। यदि पंक्ति में 3 विद्यार्थी कम होते, तो 2 पंक्तियाँ अधिक बनतीं। कक्षा में विद्यार्थियों की संख्या ज्ञात कीजिए।
हल
मान कक्षा में x पंक्तियाँ हैं और प्रत्येक पंक्ति में y विद्यार्थी हैं।
विद्यार्थियों की संख्या = xy ……(1)
जब प्रत्येक पंक्ति में 3 विद्यार्थी अधिक होते अर्थात् (y + 3) विद्यार्थी होते और पंक्तियों की संख्या 1 कम होती अर्थात् (x – 1) होती।
तब, विद्यार्थियों की संख्या = (x – 1) (y + 3) = xy + 3x – y – 3 ……. (2)
समीकरण (1) व (2) से, xy + 3x – y – 3 = xy ⇒ 3x – y = 3 …….. (3)
जब प्रत्येक पंक्ति में 3 विद्यार्थी कम होते अर्थात् (y – 3) होते।
और पंक्तियों की संख्या 2 अधिक होती अर्थात् (x + 2) होती
तब, विद्यार्थियों की संख्या = (x + 2) (y – 3) = xy – 3x + 2y – 6 ……… (4)
समीकरण (1) व (4) से, xy – 3x + 2y – 6 = x y ⇒ 3x – 2y = -6 ……(5)
समीकरण (3) में से समीकरण (5) को घटाने पर,
(3x – y) – (3x – 2y) = 3 -(-6)
⇒ 3x – y – 3x + 2y = 9
⇒ y = 9
समीकरण (3) में y का मान रखने पर,
3x – 9 = 3
⇒ 3x = 12
⇒ x = 4
तब, विद्यार्थियों की संख्या = xy = 4 × 9 = 36
अत: कक्षा के विद्यार्थियों की संख्या = 36

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 5.
एक ∆ABC में, ∠C = 3∠B = 2(∠A + ∠B) है। त्रिभुज के तीनों कोण ज्ञात कीजिए।
हल
माना त्रिभुज के कोण A, B तथा C हैं।
तब, ∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠B = 180° – ∠C
दिया है, ∠C = 3∠B = 2 (∠A + ∠B)
∠C = 2 (∠A + ∠B)
⇒ ∠C = 2 (180° – ∠C) [∵ ∠A + ∠B = 180° – ∠C]
⇒ ∠C = 360° – 2∠C
⇒ ∠C + 2∠C = 360°
⇒ 3∠C = 360°
⇒ ∠C = 120°
3∠B = ∠C
⇒ 3∠B = 120° [∵ ∠C = 120°]
⇒ ∠B = 40°
परन्तु ∠A + ∠B + ∠C = 180°
⇒ ∠A + 40° + 120° = 180°
⇒ ∠A = 180° – 120° – 40° = 20°
अतः त्रिभुज के कोण ∠A = 20°, ∠B = 40°, ∠C = 120°

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 6.
समीकरणों 5x – y = 5 और 3x – y = 3 के ग्राफ खींचिए। इन रेखाओं और Y-अक्ष से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए। इस प्रकार बने त्रिभुज के क्षेत्रफल का परिकलन कीजिए।
हल
1. दिए हुए समीकरण युग्म का पहला समीकरण 5x – y = 5
2. माना x = 0, तब x का मान समीकरण 5x – y = 5 में रखने पर,
5 × 0 – y = 5
⇒ 0 – y = 5
⇒ y = -5
3. तब समीकरण 5x – y = 5 के आलेख पर एक बिन्दु A = (0, -5) है।
4. पुन: माना x = 2, तब x का मान समीकरण 5x – y = 5 में रखने पर,
5 × 2 – y = 5
⇒ 10 – y = 5
⇒ y = 10 – 5
⇒ y = 5
5. तब समीकरण 5x – y = 5 के आलेख पर एक बिन्दु B = (2, 5) है।
6. ग्राफ पेपर पर बिन्दुओं A(0, 5) तथा B(2, 5) को आलेखित (plotting) कीजिए और दिए गए समीकरण का आलेख AB खींचिए।
7. दिए हुए दूसरे समीकरण युग्म के समीकरण 3x – y = 3
8. माना x = 0, तब x का मान समीकरण 3x – y = 3 में रखने पर,
3 × 0 – y = 3
⇒ 0 – y = 3
⇒ y = -3
9. तब समीकरण 3x – y = 3 के आलेख पर एक बिन्दु C = (0, -3) है।
10. पुन: माना x = 1, तब x का मान समीकरण 3x – y = 3 में रखने पर,
3 × 1 – y = 3
⇒ 3 – y = 3
⇒ -y = 3 – 3 = 0
⇒ y = 0
11. तब समीकरण 3x – y = 3 के आलेख पर एक बिन्दु D = (1, 0) है।
12. ग्राफ पेपर पर बिन्दु C = (0, -3) तथा D = (1, 0) को आलेखित कर दिए हुए समीकरण का आलेख CD खींचिए।
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q6
13. ऋजु रेखाओं AB तथा CD का प्रतिच्छेद बिन्दु P (h, k) ज्ञात कीजिए। बिन्दु P के निर्देशांक P = (1, 0) आलेख से ज्ञात कीजिए।
तब, त्रिभुज के शीर्षों के निर्देशांक A(0, -5), C (0, – 3) तथा P या D (1, 0)
रेखाओं तथा Y-अक्ष के बीच ∆ACD बनता है।
माना x1 = 0, y1 = -5, x2 = 0, y2 = -3 तथा x3 = 1, y3 = 0
त्रिभुज का क्षेत्रफल = \(\frac{1}{2}\) [x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]
= \(\frac{1}{2}\) [0 (-3 – 0) + 0 {0 – (-5)} + 1{-5 – (-3}] वर्ग मात्रक
= \(\frac{1}{2}\) [{-5 + 3}]
= \(\frac{1}{2}\) (-2)
= -1 वर्ग मात्रक
क्षेत्रफल ऋणात्मक नहीं हो सकता, अत: त्रिभुज का क्षेत्रफल 1 वर्ग मात्रक होगा।

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

प्रश्न 7.
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए-
(i) px + qy = p – q
qx – py = p + q
(ii) ax + by = c
bx + ay = 1 + c
(iii) \(\frac{x}{a}-\frac{y}{b}=0\)
ax + by = a2 + b2
(iv) (a – b) x + (a + b) y = a2 – 2ab – b2
(a + b)(x + y) = a2 + b2
(v) 152x – 378y = -74
-378x + 152y = -604
हल
(i) दिए गए रैखिक समीकरणों का युग्म px + qy = p – q
px + qy – p + q = 0 ……. (1)
qx – py = p + q
qx – py – p – q = 0 ……. (2)
वज्रगुणन से समीकरण-युग्म का हल
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q7
⇒ -x = y = -1
-x = -1 ⇒ x = 1 और y = -1
अत: समीकरणों के युग्म का हल x = 1 तथा y = -1

(ii) दिए गए रैखिक समीकरणों का युग्म
ax + by = c ⇒ ax + by – c = 0 ……… (1)
bx + ay = 1 + c ⇒ bx + a y – (1 + c) = 0 ……… (2)
वज्रगुणन से समीकरण-युग्म का हल होगा :
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q7.1

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

(iii) दिए गए रैखिक समीकरणों का युग्म
\(\frac{x}{a}-\frac{y}{b}=0\)
⇒ \(\frac{x}{a}=\frac{y}{b}\)
⇒ \(x=\frac{a}{b} y\) ………. (1)
ax + by = a2 + b2 …… (2)
समीकरण (1) से x का मान समीकरण (2) में रखने पर,
a(\(\frac{a}{b}\) y) + by = a2 + b2
⇒ a2y + b2y = b(a2 + b2)
⇒ (a2 + b2)y = b(a2 + b2)
⇒ y = b (दोनों पक्षों में a2 + b2 से भाग करने पर)
y का मान समीकरण (1) में रखने पर,
x = \(\frac{a}{b}\) × b ⇒ x = a
अत: समीकरणों के युग्म का हल x = a तथा y = b

(iv) दिए गए रैखिक समीकरणों का युग्म (a – b) x + (a + b) y = a2 – 2ab – b2
(a + b)(x + y) = a2 + b2
⇒ (a – b) x + (a + b) y = a2 – 2ab – b2 …….(1)
(a + b) (x + y) = a2 + b2
⇒ (a + b)x + (a + b)y = a2 + b2 …….. (2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
(a + b) x + (a + b) y – (a – b) x – (a + b) y = a2 + b2 – a2 + 2ab + b2
⇒ (a + b – a + b) x = 2ab + 2b2
⇒ 2bx = 2ab + 2b2
⇒ 2bx = 2b (a + b)
⇒ x = (a + b) [दोनों पक्षों में (2b) का भाग देने पर]
x का मान समीकरण (1) में रखने पर,
(a – b) (a + b) + (a + b) y = a2 – 2ab – b2
⇒ (a2 – b2) + (a + b) y = a2 – 2ab – b2
⇒ (a + b) y = a2 – 2ab – b2 – a2 + b2
⇒ (a + b) y = -2ab
⇒ y = \(-\frac{2 a b}{a+b}\)
अत: समीकरणों के युग्म का हल x = (a + b) तथा y = \(-\frac{2 a b}{a+b}\)

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

(v) दिए गए रैखिक समकरणों का युग्म
152x – 378y = -74 …… (1)
-378x + 152y = -604 …….. (2)
समीकरण (1) व समीकरण (2) को जोड़ने पर,
-226x – 226y = -678
⇒ -226(x + y) = – 678
⇒ x + y = 3 ……. (3)
समीकरण (1) में से समीकरण (2) को घटाने पर,
(152x – 378y) – (-378x + 152y) = -74 – (-604)
⇒ 152x – 378y + 378x – 152y = -74 + 604
⇒ 530x – 530y = 530
⇒ x – y = 1
पुनः समीकरण (3) व समीकरण (4) को जोड़ने पर, 2x = 4 ⇒ x = 2
समीकरण (3) व समीकरण (4) को घटाने पर, 2y = 2 ⇒ y = 1
अत: समीकरणों के युग्म का हल x = 2 तथा y = 1

प्रश्न 8.
ABCD एक चक्रीय चतुर्भुज है। इस चक्रीय चतुर्भुज के कोण ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7 Q8
हल
ABCD एक चक्रीय चतुर्भुज है।
∠A + ∠C = 180° तथा ∠B + ∠D = 180°
∠A + ∠C = 180° तो 4y + 20 + (-4x) = 180
⇒ -4x + 4y = 180 – 20 = 160
⇒ x – y = -40 ……..(1)
∠B + ∠D = 180° तो 3y – 5 + (-7x) + 5 = 180
⇒ -7x + 3y = 180
⇒ 7x – 3y = -180 …….. (2)
समीकरण (1) से, y = x + 40; अत: समीकरण (2) में y = x + 40 रखने पर,
7x – 3(x + 40) = -180
⇒ 7x – 3x – 120 = -180
⇒ 4x = -180 + 120 = -60
⇒ x = -15
तब, समीकरण (1) में x = -15 रखने पर, y = -15 + 40 = 25
तब,
∠A = 4y + 20 = (4 × 25) + 20 = 120°
∠B = 3y – 5 = (3 × 25) – 5 = 70°
∠C = -4x = – 4 × -15 = 60°
∠D = -7x + 5 = (-7 × – 15) + 5 = 110°

Leave a Reply

Your email address will not be published. Required fields are marked *