Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3

Bihar Board Class 10 Maths द्विघात समीकरण Ex 4.3

Bihar Board Class 10 Math Book Solution In Hindi Pdf Download प्रश्न 1.
यदि निम्नलिखित द्विघात समीकरणों के मूलों का अस्तित्व हो, तो इन्हें पूर्ण वर्ग बनाने की विधि द्वारा ज्ञात कीजिए।
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 4√3x + 3 = 0
(iv) 2x2 + x + 4 = 0
हल
(i) दिया गया द्विघात समीकरण :
2x2 – 7x + 3 = 0
⇒ \(x^{2}-\frac{7}{2} x+\frac{3}{2}=0\) [प्रत्येक पद में x2 के गुणांक 2 से भाग देने पर]
Bihar Board Class 10 Math Book Solution In Hindi
Bihar Board Class 10th Math Solution In Hindi
Bihar Board Class 10 Math Solution
Bihar Board 10th Math Solution In Hindi
Bihar Board Class 10 Maths Solution
Class 10th Math Solution In Hindi Bihar Board Pdf
Bihar Board Solution Class 10 Math
Bihar Board 10th Math Solution

Bihar Board Class 10 Math Book Solution In Hindi प्रश्न 2.
उपर्युक्त प्रश्न (1) में दिए गए द्विघात समीकरणों के मूल, द्विघाती सूत्र का उपयोग करके ज्ञात कीजिए।
हल
(i) दिया गया द्विघात समीकरण :
2x2 – 7x + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = -7 तथा c = 3
Bihar Board Class 10 Math Solution In Hindi
अत: समीकरण के मूल = 3, \(\frac{1}{2}\)

(ii) दिया गया द्विघात समीकरण :
2x2 + x – 4 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = 1 तथा c = -4
Math Class 10 Bihar Board

(iii) दिया गया द्विघात समीकरण :
4x2 + 4√3x + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
Bihar Board Math Solution
द्विघात समीकरण के दो मूल होते हैं और यहाँ b2 – 4ac = 0 है।
अत: दोनों मूल समान होंगे। तब समीकरण के मूल = \(-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\)

(iv) दिया गया समीकरण :
2x2 + x + 4 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = 1 तथा c = 4
Bihar Board 10th Math Book Solution
√-31 एक अधिकल्पित संख्या है।
x के मान अधिकल्पित होंगे।
अत: दिए गए समीकरण के मूलों का अस्तित्व नहीं है।

Bihar Board Class 10th Math Solution In Hindi प्रश्न 3.
निम्न समीकरणों के मूल ज्ञात कीजिए :
(i) x – \(\frac{1}{x}\) = 3, x ≠ 0
(ii) \(\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}\), x ≠ -4, 7
हल
Bihar Board 10th Math
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q3
Bihar Board Class 10th Math Book Solution In Hindi Pdf
Bihar Board Class 10th Math Solution

Bihar Board Class 10 Math Solution प्रश्न 4.
3 वर्ष पूर्व रहमान की आयु (वर्षों में) का व्युत्क्रम और अब से 5 वर्ष पश्चात् आयु के व्युत्क्रम का योग \(\frac{1}{3}\) है। उसकी वर्तमान आयुज्ञात कीजिए।
हल
माना रहमान की वर्तमान आयु x वर्ष है।
3 वर्ष पूर्व उसकी आयु = (x – 3) वर्ष
3 वर्ष पूर्व उसकी आयु का व्युत्क्रम = \(\frac{1}{x-3}\)
5 वर्ष पश्चात् उसकी आयु = (x + 5) वर्ष
5 वर्ष पश्चात् उसकी आयु का व्युत्क्रम = \(\frac{1}{x+5}\)
प्रश्नानुसार, दोनों व्युत्क्रमों का योग = \(\frac{1}{3}\)
\(\frac{1}{x-3}+\frac{1}{x+5}=\frac{1}{3}\)
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q4
धनात्मक (+) चिह्न लेने पर, x = 2 + 5 = 7
ऋणात्मक (-) चिह्न लेने पर, x = 2 – 5 = -3
परन्तु आयु ऋणात्मक नहीं होती; अत: x का मान -3 स्वीकार्य नहीं है
∴ x = 7
अत: रहमान की वर्तमान आयु 7 वर्ष है।

Bihar Board 10th Math Solution In Hindi प्रश्न 5.
एक क्लास टेस्ट में शेफाली के गणित और अंग्रेजी में प्राप्त किए गए अंकों का योग 30 है। यदि उसको गणित में 2 अंक अधिक और अंग्रेजी में 3 अंक कम मिले होते, तो उनके अंकों का गुणनफल 210 होता। उसके द्वारा दोनों विषयों में प्राप्त किए अंक ज्ञात कीजिए।
हल
माना शेफाली ने गणित में x अंक प्राप्त किए।
अंग्रेजी और गणित दोनों के प्राप्तांकों का योग = 30
अंग्रेजी में प्राप्तांक = (30 – x)
यदि उसको गणित में 2 अंक अधिक मिलते अर्थात् गणित में (x + 2) अंक मिलते और अंग्रेजी में 3 अंक कम मिलते अर्थात् अंग्रेजी में (30 – x – 3) या (27 – x) अंक मिलते, तो अंकों का गुणनफल (x + 2) (27 – x) होता अर्थात्
गुणनफल = (x + 2) (27 – x)
= 27x – x2 + 54 – 2x
= 25x – x2 + 54
प्रश्नानुसार, गुणनफल = 210
⇒ 25x – x2 + 54 = 210
⇒ x2 – 25x – 54 + 210 = 0 [पक्षान्तरण करने पर]
⇒ x2 – 25x + 156 = 0 [सरल करने पर]
उपर्युक्त समीकरण की तुलना मानक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 1, b = -25 तथा c = 156
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q5
तब, शेफाली ने गणित में या तो 12 अंक प्राप्त किए या फिर 13 अंक प्राप्त किए।
यदि शेफाली ने गणित में 12 अंक प्राप्त किए, तो अंग्रेजी में (30 – 12) = 18 अंक प्राप्त किए
और यदि शेफाली ने गणित में 13 अंक प्राप्त किए, तो अंग्रेजी में (30 – 13) = 17 अंक प्राप्त किए।
अतः शेफाली ने गणित व अंग्रेजी में क्रमश: 12 व 18 अंक अथवा 13 व 17 अंक प्राप्त किए।

Bihar Board Class 10 Maths Solution प्रश्न 6.
एक आयताकार खेत का विकर्ण उसकी छोटी भुजा से 60 मी अधिक लम्बा है। यदि बड़ी भुजा छोटी भुजा से 30 मी अधिक हो, तो खेत की भुजाएँ ज्ञात कीजिए।
हल
माना आयताकार खेत की छोटी भुजा x मी है।
बड़ी भुजा छोटी भुजा से 30 मी अधिक है।
बड़ी भुजा = (x + 30) मी
तब खेत की लम्बाई = (x + 30) मी तथा चौड़ाई = x मी
प्रश्नानुसार, आयताकार खेत का विकर्ण, छोटी भुजा (चौड़ाई) से 60 मी अधिक है।
आयताकार खेत का विकर्ण = (x + 60) मी
परन्तु आयत के लिए,
लम्बाई2 + चौड़ाई2 = विकर्ण2
⇒ (x + 30)2 + x2 = (x + 60)2
⇒ x2 = (x + 60)2 – (x + 30)2
⇒ x2 = (x + 60 + x + 30) (x + 60 – x – 30) [∵ a2 – b2 = (a + b) (a – b)]
⇒ x2 = (2x + 90) (30)
⇒ x2 = 60x + 2700
⇒ x2 – 60x – 2700 = 0 [पक्षान्तरण करने पर]
⇒ x2 – (90 – 30)x – 2700 = 0 [मध्यपद का विखण्डन करने पर]
⇒ x2 – 90x + 30x – 2700 = 0
⇒ x(x – 90) + 30(x – 90) = 0
⇒ (x – 90)(x + 30) = 0
⇒ (x – 90)(x + 30) = 0
यदि x – 90 = 0 हो, तो x = 90
और यदि x + 30 = 0 हो, तो x = -30
परन्तु भुजा की लम्बाई ऋणात्मक नहीं हो सकती; अत: x का मान -30 स्वीकार्य नहीं है।
∴ x = 90
दूसरी भुजा = (x + 30) मी = (90 + 30) = 120 मी
अत: आयताकार खेत की भुजाएँ 90 मी व 120 मी हैं।

Class 10th Math Solution In Hindi Bihar Board Pdf प्रश्न 7.
दो संख्याओं के वर्गों का अन्तर 180 है। छोटी संख्या का वर्ग बड़ी संख्या का आठ गुना है। दोनों संख्याएँ ज्ञात कीजिए।
हल
माना छोटी संख्या x है।
छोटी संख्या का वर्ग बड़ी संख्या का 8 गुना है।
बड़ी संख्या × 8 = छोटी संख्या का वर्ग
बड़ी संख्या × 8 = x2
बड़ी संख्या = \(\frac{x^{2}}{8}\)
प्रश्नानुसार, वर्गों का अन्तर = 180
(बड़ी संख्या)2 – (छोटी संख्या)2 = 180
⇒ \(\left(\frac{x^{2}}{8}\right)^{2}-(x)^{2}=180\)
⇒ \(\frac{x^{4}}{64}\) – (x)2 = 180
⇒ x4 – 64x2 = 11520
⇒ x4 – 64x2 – 11520 = 0
माना x2 = X, तब उक्त समीकरण :
X2 – 64X – 11520 = 0
उपर्युक्त समीकरण की तुलना मानक द्विघात समीकरण AX2 + BX + C = 0 से करने पर,
A = 1, B = -64 तथा C = -11520
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q7
धनात्मक (+) चिह्न लेने पर, x = 32 + 112 = 144
ऋणात्मक (-) चिह्न लेने पर, x = 32 + 112 = -80
X = x2
⇒ x2 = 144 या -80
⇒ x = ±12 या √-80 जो कि अधिकल्पित संख्या है।
तब, छोटी संख्या = 12 या -12
तब, बड़ी संख्या = \(\frac{x^{2}}{8}=\frac{144}{8}=18\)
अतः संख्याएँ = 12, 18 अथवा -12, 18

Bihar Board Solution Class 10 Math प्रश्न 8.
एक रेलगाड़ी एकसमान चाल से 360 km की दूरी तय करती है। यदि यह चाल 5 km/h अधिक होती, तो वह उसी यात्रा में 1 घंटा कम समय लेती। रेलगाड़ी की चाल ज्ञात कीजिए।
हल
माना रेलगाड़ी की चाल x km/h है।
सूत्र; समय = \(\frac{\text { दूरी }}{\text { चाल }}\) से
360 किमी दूरी तय करने में लगा समय = \(\frac{360}{x}\) घंटा
यदि रेलगाड़ी की चाल 5 km/h अधिक होती अर्थात् चाल (x + 5) km/h होती, तो
360 km दूरी तय करने में लगा समय = \(\frac{360}{x+5}\) घंटा
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q8
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q8.1
रेलगाड़ी की चाल ऋणात्मक नहीं हो सकती जिससे x का मान -45 स्वीकार्य नहीं है, तब x = 40
अत: रेलगाड़ी की चाल = 40 km/h

Bihar Board 10th Math Solution प्रश्न 9.
दो पानी के नल एक-साथ एक हौज को 9\(\frac{3}{8}\) घंटों में भर सकते हैं। बड़े व्यास वाला नल हौज को भरने में, कम व्यास वाले नल से 10 घंटे कम समय लेता है। प्रत्येक द्वारा अलग से हौज को भरने के समय ज्ञात कीजिए।
हल
माना कम व्यास वाला नल पानी के हौज को x घंटे में भरता है।
बड़े व्यास वाला नल हौज को भरने में 10 घंटे कम समय लेता है।
बड़े व्यास वाला नल हौज को (x – 10) घंटे में भरेगा।
पहले नल द्वारा हौज को भरने की प्रति घंटा दर = \(\frac{1}{x}\) भाग
इसी प्रकार, दूसरे नल द्वारा हौज को भरने की प्रति घंटा दर = \(\frac{1}{x-10}\) भाग
यदि दोनों नल एक-साथ खुले हों, तो 1 घंटे में हौज का \(\left(\frac{1}{x}+\frac{1}{x-10}\right)\) भाग भर जाएगा। परन्तु दिया है कि 9\(\frac{3}{8}\) घंटे या \(\frac{75}{8}\) घंटे में पूरा हौज भर जाएगा
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q9
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q9.1
अत: छोटा नल हौज को 25 घंटे या 3\(\frac{3}{4}\) घंटे में भर सकता है।
जब दोनों नल हौज को भरते हैं, तब 9 घंटे से अधिक समय लगता है तब केवल एक नल उसे 3\(\frac{3}{4}\) घंटे में भर दे यह असम्भव एवं असंगत है।
अत: छोटा नल उसे 25 घंटे में भरता है, तब बड़ा नल उसे 25 – 10 = 15 घंटे में भर सकता है।
अत: कम व्यास वाला नल हौज को 25 घंटे में और अधिक व्यास वाला नल उसे 15 घंटे में भर सकता है।

Bihar Board Class 10 Math Solution In Hindi प्रश्न 10.
मैसूर और बैंगलौर के बीच के 132 km यात्रा करने में एक एक्सप्रेस रेलगाड़ी, सवारी गाड़ी से 1 घंटा समय कम लेती है (मध्य के स्टेशनों पर ठहरने का समय ध्यान में न लिया जाए)। यदि एक्सप्रेस रेलगाड़ी की औसत चाल, सवारी गाड़ी की औसत चाल से 11 km/h अधिक हो, तो दोनों रेलगाड़ियों की औसत चाल ज्ञात कीजिए।
हल
माना सवारी गाड़ी की औसत चाल x km/h है।
एक्सप्रेस रेलगाड़ी की औसत चाल सवारीगाड़ी की अपेक्षा 11 km/h अधिक है।
एक्सप्रेस रेलगाड़ी की औसत चाल = (x + 11) km/h.
तब, 132 km यात्रा में सवारी गाड़ी द्वारा लिया समय = \(\frac{\text { दूरी }}{\text { चाल }}=\frac{132}{x}\) घंटा
और उसी यात्रा में एक्सप्रेस रेलगाड़ी द्वारा लिया समय = \(\frac{132}{x+11}\) घंटा
प्रश्नानुसार, एक्सप्रेस रेलगाड़ी 1 घंटा कम समय लेती है।
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q10
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q10.1
रेलगाड़ी की चाल ऋणात्मक नहीं हो सकती जिससे x का मान -44 स्वीकार्य नहीं है।
∴ x = 33
अत: सवारी गाड़ी की चाल 33 km/h तथा एक्सप्रेस गाड़ी की चाल (33 + 11) = 44 km/h है।

Bihar Board Class 10 Math Book Solution In Hindi Pdf Download प्रश्न 11.
दो वर्गों के क्षेत्रफलों का योग 468 m2 है। यदि उनके परिमापों का अन्तर 24 m हो, तो दोनों वर्गों की भुजाएँ ज्ञात कीजिए।
हल
माना एक वर्ग की भुजा x m है।
तब, उस वर्ग का परिमाप = 4x m
दोनों वर्गों के परिमापों में 24m का अन्तर है।
दूसरे वर्ग का परिमाप = (4x + 24) m
तब, दूसरे वर्ग की भुजा = (\(\frac{4 x+24}{4}\)) m = \(\frac{4(x+6)}{4}\) m = (x + 6) m
पहले वर्ग का क्षेत्रफल = x2 m2
तथा दूसरे वर्ग का क्षेत्रफल = (x + 6)2 m2 = (x2 + 12x + 36) m2
प्रश्नानुसार, दोनों वर्गों के क्षेत्रफलों का योग = 468 m2
⇒ x2 + (x2 + 12x + 36) = 468
⇒ 2x2 + 12x + 36 – 468 = 0
⇒ 2x2 + 12x – 432 = 0
⇒ 2(x2 + 6x – 216) = 0
⇒ x2 + 6x – 216 = 0
⇒ x2 + 2 × x × 3 + (3)2 – 216 – (3)2 = 0 [32 जोड़ने व घटाने पर]
⇒ (x + 3)2 – 225 = 0
⇒ (x + 3)2 – (15)2 = 0 [पूर्ण वर्ग बनाने पर]
⇒ (x + 3 + 15) (x + 3 – 15) = 0 [∵ a2 – b2 = (a + b) (a – b)]
⇒ (x + 18) (x – 12) = 0
⇒ (x + 18) (x – 12) = 0
यदि x + 18 = 0 हो तो x = -18
या x – 12 = 0 हो, तो x = 12
वर्ग की भुजा x = -18 ऋणात्मक नहीं हो सकती; अत: x का मान -18 स्वीकार्य नहीं है।
छोटे वर्ग की भुजा = 12 m
तब, बड़े वर्ग की भुजा = x + 6 = 12 + 6 = 18 m
अत: वर्गों की भुजाएँ क्रमश: 12 m व 18 m हैं।