Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

Bihar Board Class 10 Maths सांख्यिकी Ex 14.1

प्रश्न 1.
विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अन्तर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मौहल्ले के 20 घरों में लगे हुए पौधों से सम्बन्धित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q1
माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?
हल
हम आँकड़ों का माध्य प्रत्यक्ष (सरल)विधि से ज्ञात करेंगे क्योंकि अंक छोटे (कम) हैं।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q1.1
अतः प्रति घर में पौधों की औसत संख्या = 8.1 पौधे। यहाँ xi व fi के मान अत्यधिक कम होने के कारण प्रत्यक्ष विधि का प्रयोग किया गया है।

प्रश्न 2.
किसी फैक्टरी के 50 श्रमिकों की दैनिक मजदूरी के निम्नलिखित बंटन पर विचार कीजिए:
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q2
एक उपयुक्त विधि का प्रयोग करते हुए, इस फैक्टरी के श्रमिकों की माध्य दैनिक मजदूरी ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q2.1
अतः श्रमिकों की माध्य दैनिक मजदूरी = ₹ 145.20

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

प्रश्न 3.
निम्नलिखित बंटन एक मौहल्ले के बच्चों के दैनिक जेब खर्च दर्शाता है। माध्य जेब खर्च ₹ 18 है। लुप्त बारम्बारता f ज्ञात कीजिए:
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q3
हल
पहले दिए गए बंटन से औसत जेब खर्च निकाला जाएगा, तब गणना किए गए जेब खर्च और प्रश्न में दिए गए जेब खर्च में समानता स्थापित कर f का मान ज्ञात किया जा सकता है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q3.1
⇒ 792 + 18f = 752 + 20f
⇒ 2f = (792 – 752)
⇒ 2f = 40
⇒ f = 20
अतः लुप्त बारम्बारता f = 20

प्रश्न 4.
किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पन्दन (beat) की प्रति मिनट संख्या नोट करके नीचे दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पन्दन की प्रति मिनट माध्य संख्या ज्ञात कीजिए :
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q4
हल
यहाँ दिए गए वर्गों (65 – 68), (68 – 71),…….. के मध्य बिन्दु क्रमश: 66.5, 69.5, …… इत्यादि हैं; अतः विचलन विधि का प्रयोग उपयुक्त हैं।
प्रति मिनट हृदय स्पन्दन के माध्य हेतु गणना सारणी
माना स्पन्दन का कल्पित माध्य, A = 75.5 है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q4.1
अत: महिलाओं के प्रति मिनट माध्य हृदय स्पन्दन की संख्या = 75.9

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

प्रश्न 5.
किसी फुटकर बाजार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थीं। पेटियों की संख्या के अनुसार, आमों का बंटन
निम्नलिखित था:
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q5
एक पेटी में रखे आमों की माध्य संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने की किस विधि का प्रयोग किया है?
हल
माध्य के लिए गणना सारणी
माना प्रत्येक पेटी में आमों की कल्पित माध्य, A = 57 और वर्ग माप h = 3 है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q5.1
अत: आमों की माध्य संख्या = 57.1875 या 57.19
हमने माध्य ज्ञात करने के लिए कल्पित माध्य विधि का प्रयोग किया है।
वैकल्पिक विधि
चूँकि दिए गए आँकड़े सतत् नहीं है। अतः हम प्रत्येक वर्ग की उच्च सीमा में 0.5 जोड़ते हैं तथा निम्न सीमा में से 0.5 घटाते हैं।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q5.2
यहाँ, A = 57, h = 3, N = 400 तथा Σfiui = 25
मानक विचलन विधि से,
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q5.3
अत: आमों की माध्य संख्या = 57.19

प्रश्न 6.
निम्नलिखित सारणी किसी मौहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है :
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q6
एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।
हल
दैनिक भोजन व्यय की गणना हेतु सारणी
माना कल्पित माध्य, A = ₹ 225 और वर्ग माप, h = 50 है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q6.1
अतः प्रति परिवार भोजन पर होने वाले दैनिक व्यय का माध्य = ₹ 211

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

प्रश्न 7.
वायु में सल्फर डाइ-ऑक्साइड (SO2) की सान्द्रता (भाग प्रति मिलियन में) को ज्ञात करने के लिए, एक नगर के 30 मौहल्लों से आँकड़े एकत्रित किए गए, जिन्हें नीचे प्रस्तुत किया गया है :
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q7
वायु में SO2 की सान्द्रता का माध्य ज्ञात कीजिए।
हल
वायु में सल्फर डाइऑक्साइड (SO2) की सान्द्रता ज्ञात करने के लिए गणना सारणी
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q7.1
अत: वायु में SO2 की सान्द्रता का माध्य = 0.999 भाग प्रति मिलियन।

प्रश्न 8.
किसी कक्षा अध्यापिका ने पूरे सत्र के लिए अपनी कक्षा के 40 विद्यार्थियों की अनुपस्थिति निम्नलिखित रूप में रिकार्ड (record) की। एक विद्यार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए :
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q8
हल
विद्यार्थियों की माध्य अनुपस्थिति के लिए गणना सारणी
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q8.1
अतः विद्यार्थियों की अनुपस्थिति का माध्य = 12.75 ~ 12.48 दिन

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1

प्रश्न 9.
निम्नलिखित सारणी 35 नगरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q9
हल
माध्य साक्षरता दर के लिए गणना सारणी
माना औसत साक्षरता दर का कल्पित माध्य, A = 70%
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Ex 14.1 Q9.1
अत: साक्षरता दर के प्रतिशत का माध्य = 69.43

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

Bihar Board Class 10 Maths सांख्यिकी Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
सूत्र \(\bar{x}=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\) में, वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए a से विचलन
di है, a है
(i) वर्गों की निम्न सीमाएँ
(ii) वर्गों की उच्च सीमाएँ
(iii) वर्गों के मध्य-बिन्दु
(iv) वर्गों की बारम्बारताएँ
हल
(iii) वर्गों के मध्य-बिन्दु

प्रश्न 2.
जब वर्गीकृत आँकड़ों के माध्य की गणना करते हैं, तो हम मानते हैं कि बारम्बारताएँ हैं
(i) सभी वर्गों के लिए समान बंटित
(ii) वर्गों के वर्ग अंक पर केन्द्रित
(iii) वर्गों की उच्च सीमा पर केन्द्रित
(iv) वर्गों की निम्न सीमा पर केन्द्रित
हल
(ii) वर्गों के वर्ग अंक पर केन्द्रित

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 3.
यदि xi वर्गीकृत आँकड़ों के वर्ग अन्तरालों के मध्य बिन्दु तथा fi उनकी संगत बारम्बारताएँ और \(\bar{x}\) माध्य हो, तो \(\Sigma\left(f_{i} x_{i}-\bar{x}\right)\) बराबर है
(i) 0
(ii) -1
(iii) 1
(iv) 2
हल
(i) 0

प्रश्न 4.
सूत्र \(\bar{x}=a+h \frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\) में, वर्गीकृत बारम्बारता बंटन का माध्य ज्ञात करने के लिए ui बराबर है
(i) \(\frac{x_{i}+a}{h}\)
(ii) h(xi – a)
(iii) \(\frac{x_{i}-a}{h}\)
(iv) \(\frac{a-x_{i}}{h}\)
हल
(iii) \(\frac{x_{i}-a}{h}\)

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 5.
वर्गीकृत आँकड़ों का ‘से कम प्रकार का’ और ‘से अधिक प्रकार का’ संचयी बारम्बारता वक्रों के प्रतिच्छेद बिन्दु के भुज (x-अक्ष) पर काटता है, तब इससे प्राप्त होता है
(i) माध्य
(ii) माध्यिका
(iii) बहुलक
(iv) ये सभी
हल
(ii) माध्यिका

प्रश्न 6.
निम्नलिखित बंटन के लिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions MCQ 6
बहुलक वर्ग और माध्यिका वर्ग की निम्न सीमाओं का योग है
(i) 15
(ii) 25
(iii) 30
(iv) 35
हल
(ii) 25

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 7.
निम्नलिखित बारम्बारता बंटन के लिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions MCQ 7
माध्यिका वर्ग की उच्च सीमा है।
(i) 17
(ii) 17.5
(iii) 18
(iv) 18.5
हल
(iii) 18

प्रश्न 8.
निम्नलिखित बंटन के लिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions MCQ 8
बहुलक वर्ग है
(i) 10 – 20
(ii) 20 – 30
(iii) 30 – 40
(iv) 50 – 60
हल
(iii) 30 – 40

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 9.
दिए आँकड़े हैं
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions MCQ 9
माध्यिका वर्ग की उच्च सीमा और बहुलक वर्ग की निम्न सीमा का अन्तर है।
(i) 0
(ii) 19
(iii) 20
(iv) 38
हल
(iii) 20

प्रश्न 10.
110 मी की बाधा दौड़ में 150 एथलीटों द्वारा लिया गया समय (सेकंड में) नीचे सारणीबद्ध किया गया है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions MCQ 10
एथलीटों की संख्या जिन्होंने रेस को 14.6 सेकण्ड से कम समय में पूरा किया है।
(i) 11
(ii) 71
(iii) 82
(iv) 130
हल
(iii) 82

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 11.
निम्नलिखित बंटन में विद्यार्थियों की संख्या
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions MCQ 11
वर्ग 30 – 40 की बारम्बारता है
(i) 3
(ii) 4
(iii) 48
(iv) 51
हल
(i) 3

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
गणित विषय की परीक्षा में 10 छात्रों ने निम्नलिखित अंक प्राप्त किये
38, 17, 20, 8, 19, 35, 45, 15, 34, 14
प्राप्तांकों की माध्यिका ज्ञात कीजिए।
हल
पदों को आरोही क्रम में रखने पर,
8, 14, 15, 17, 19, 20, 34, 35, 38, 45
पदों की संख्या N = 10 है जो कि सम है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions VSAQ 1

प्रश्न 2.
किसी बंटन का माध्य ज्ञात कीजिए यदि इसकी माध्यिका 45 और बहुलक 13 हो।
हल
बहुलक, माध्य तथा माध्यिका के बीच सम्बन्ध :
बहुलक = 3 × माध्यिका – 2 × माध्य
अथवा 2 × माध्य = 3 × माध्यिका – बहुलक
= 3 × 45 – 13
= 135 – 13
= 122
माध्य = \(\frac{122}{2}\) = 61

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 3.
यदि किसी बंटन का माध्य 16 और बहुलक 13 हो तो बंटन माध्यिका ज्ञात कीजिए।
हल
बहुलक = 3 × माध्यिका – 2 × माध्य
⇒ 13 = 3(माध्यिका) – 2 × 16
⇒ 3(माध्यिका) = 13 + 32 = 45
⇒ माध्यिका = \(\frac{45}{3}\) = 15

प्रश्न 4.
यदि प्रेक्षणों x1, x2, x3, ….., xn, की बारम्बारताएँ क्रमशः f1, f2, f3,…..,fn हों तो इनका माध्य ज्ञात करने के लिए सूत्र लिखिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions VSAQ 4

प्रश्न 5.
निम्न आँकड़ों का बहुलक ज्ञात कीजिए :
6, 9, 8, 7, 6, 7, 3, 6, 5, 6, 4
हल
उक्त आँकड़ों के निरीक्षण से हमें ज्ञात होता है कि आँकड़े 6 की आवृत्ति अधिकतम है।
अत: बहुलक = 6

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 6.
बहुलक को परिभाषित कीजिए।
हल
आँकड़ों के किसी संग्रह या संकलन में जिस प्रेक्षण की आवृत्ति (बारम्बारता) अधिकतम होती है। उस प्रेक्षण को संग्रह का ‘बहुलक’ कहते हैं।

लघु उत्तरीय प्रश्न

प्रश्न 1.
निम्नलिखित आँकड़ों से माध्य ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 1
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 1.1

प्रश्न 2.
एक कक्षा के 50 छात्रों के भार नीचे की सारणी में प्रदर्शित हैं
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 2
इन छात्रों के भार का माध्य ज्ञात कीजिए।
हल
माना कल्पित माध्य, A = 47 किग्रा
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 2.1

प्रश्न 3.
निम्नलिखित आँकड़ों का माध्य ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 3
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 3.1

प्रश्न 4.
निम्नलिखित सारणी से माध्य की गणना कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 4
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 4.1

प्रश्न 5.
यदि निम्नांकित आँकड़ों का माध्य 15 है तो p का मान ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 5
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 5.1

प्रश्न 6.
यदि निम्नलिखित बारम्बारता बंटन का माध्य 1.46 है, तो f1 और f2 के मान ज्ञात कीजिए:
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 6
बारंबारताओं का कुल योगफल 200 है।
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 6.1
⇒ 140 + f1 + 2f2 = 1.46 (86 + f1 + f2) …….(1)
पुनः बारंबारताओं का योग 86 + f1 + f2 = 200
⇒ f1 + f2 = 114 …….(2)
समी० (2) से (f1 + f2) का मान समी० (1) में रखने पर,
140 + f1 + 114 = 1.46(86 + 114)
⇒ f1 = 292 – 254 = 38
समी० (2) से f2 + 38 = 114
⇒ f2 = 76
अत: f1 और f2 के मान क्रमशः 76 व 38 हैं।

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 7.
निम्नलिखित बारंबारता बंटन की माध्यिका ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 7
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 7.1
यहाँ, N = 43 अर्थात् पदों की संख्या विषम है।
मध्य पद = \(\left(\frac{N+1}{2}\right)\) वाँ पद
= \(\frac{43+1}{2}\) वाँ पद
= 22 वाँ पद
संचयी बारंबारता सारणी से स्पष्ट है कि 22वाँ पद उस समूह में है जिसकी संचयी बारंबारता 29 है।
माध्यिका = 22वें पद का मान = 11

प्रश्न 8.
निम्नलिखित सारणी में माध्यिका जेब खर्च ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 8
हल
आँकड़ों को आरोही क्रम में रखते हुए संचयी बारंबारता सारणी बनाने पर
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 8.1
यहाँ, N = 61 अर्थात् पदों की संख्या विषम है।
मध्य पद = \(\left(\frac{N+1}{2}\right)\) वाँ पद
= \(\frac{61+1}{2}\) वाँ पद
= 31 वाँ पद
संचयी बारंबारता सारणी से स्पष्ट है कि 31वाँ पद उस समूह में है जिसकी संचयी बारंबारता 33 है।
माध्यिका = 33 वें पद का मान = 15

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 9.
निम्नलिखित सारणी से माध्यिका और बहुलक ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 9
हल
संचयी बारंबारता के लिए सारणी
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 9.1
यहाँ n = 24 अर्थात् पदों की संख्या सम है।
मध्य पद = \(\frac{N}{2}\) वाँ पद + (\(\frac{N}{2}\) + 1) वाँ पद
= \(\frac{24}{2}+\left(\frac{24}{2}+1\right)\) वाँ पद अर्थात् 12वाँ व 13वाँ पद
संचयी बारंबारता सारणी से स्पष्ट है कि 12वाँ व 13वाँ पद उस समूह में है जिसकी संचयी बारंबारता 15 है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 9.2
पुनः चूँकि सर्वाधिक बारंबारता 8 पद 25 की है।
अभीष्ट बहुलक = 25

प्रश्न 10.
निम्नलिखित आँकड़ों का बहुलक ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 10
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 10.1
बहुलक के लिए वर्ग 3 – 5 है।
बहुलक वर्ग की निम्न सीमा (l1) = 3
बहुलक वर्ग की उच्च सीमा (l2) = 5
बहुलक वर्ग का विस्तार (h) = l2 – l1 = 5 – 3 = 2
बहुलक वर्ग की बारम्बारता (f) = 9
बहुलक वर्ग से ठीक पूर्व की बारम्बारता (f1) = 8
बहुलक वर्ग से ठीक बाद की बारम्बारता (f2) = 3
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 10.2

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 11.
निम्नलिखित बारम्बारता बंटन सारणी को ध्यान से पढ़िए तथा b और d के मान लिखिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 11
हल
वर्ग 25 – 30 की संचयी बारम्बारता = 9 + b
प्रश्नानुसार, संचयी बारम्बारता = 15
⇒ 9 + b = 15
⇒ b = 15 – 9 = 6
इसी प्रकार, वर्ग 35 – 40 की संचयी बारम्बारता = 22 + 4 = 26
प्रश्नानुसार, संचयी बारम्बारता = d
⇒ d = 26
अतः b = 6 और d = 26

प्रश्न 12.
कक्षा X के 100 विद्यार्थियों द्वारा गणित में प्राप्त अंक नीचे सारणी में दिए गए हैं। प्राप्त अंकों का माध्यक ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 12
हल
असतत श्रेणी को सतत श्रेणी में बदलने पर,
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 12.1
यहाँ, N = 100
⇒ \(\frac{N}{2}=\frac{100}{2}=50\)
संचयी बारम्बारता से स्पष्ट है कि 50 संचयी बारम्बारता 65 के अन्तर्गत है, इसलिए (69.5 – 79.5) माध्यिका वर्ग हुआ।
माध्यिका वर्ग की निम्न सीमा (l1) = 69.5
माध्यिका वर्ग की उच्च सीमा (l2) = 79.5
माध्यिका वर्ग का वर्ग अन्तराल (h) = l2 – l1 = 79.5 – 69.5 = 10
माध्यिका वर्ग की बारम्बारता (f) = 30
माध्यिका वर्ग के ठीक पहले वर्ग की संचयी बारम्बारता (cf) = 35
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions SAQ 12.2

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
निम्नलिखित बारंबारता बंटन का माध्य लघु विधि (विचलन विधि) से ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 1
हल
माना कल्पित माध्य, A = 35 है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 1.1

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 2.
निम्नलिखित बारंबारता वितरण का माध्य 113\(\frac{23}{29}\) है। इसमें अज्ञात राशि X का मूल्य ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 2
हल
माना कल्पित माध्य, A = 100 है।
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 2.1
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 2.2

प्रश्न 3.
निम्नलिखित बंटनों की माध्यिका ज्ञात कीजिए
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 3
हल
उपर्युक्त बंटन की संचयी बारंबारता सारणी निम्नवत् है
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 3.1
यहाँ N = 37
⇒ \(\frac{N}{2}=\frac{37}{2}=18.5\)
संचयी बारम्बारता सारणी से स्पष्ट है कि 18.5 संचयी बारम्बारता 29 के अन्तर्गत है, इसलिए (20 – 30) माध्यिका वर्ग हुआ।
माध्यिका वर्ग की निम्न सीमा (l1) = 20
माध्यिका वर्ग की उच्च सीमा (l2) = 30
माध्यिका वर्ग का वर्ग अन्तराल (h) = l2 – l1 = 30 – 20 = 10
माध्यिका वर्ग की बारम्बारता (f) = 12
माध्यिका वर्ग के ठीक पहले वर्ग की संचयी बारम्बारता (cf) = 17
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 3.2

Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions

प्रश्न 4.
निम्नलिखित बारम्बारता बंटन के लिए माध्य ज्ञात कीजिए :
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 4
हल
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 4.1
Bihar Board Class 10 Maths Solutions Chapter 14 सांख्यिकी Additional Questions LAQ 4.2

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

Bihar Board Class 10 Maths पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
एक किनारे पर नुकीली बनायी गयी एक बेलनाकार पेंसिल निम्नलिखित का संयोजन है
(i) एक शंकु और एक बेलन
(ii) शंकु का छिन्नक और एक बेलन
(iii) एक अर्धगोला और एक बेलन
(iv) दो बेलन
हल
(i) एक शंकु और एक बेलन

प्रश्न 2.
एक सुराही निम्नलिखित का संयोजन है
(i) एक गोला और एक बेलन
(ii) एक अर्द्धगोला और एक बेलन
(iii) दो अर्द्धगोले
(iv) एक बेलन और एक शंकु
हल
(i) एक गोला और एक बेलन

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 3.
एक साहुल निम्नलिखित का संयोजन है (आकृति देखिए)
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions MCQ 3
(i) एक शंकु और एक बेलन
(ii) एक अर्द्धगोला और एक शंकु
(iii) शंकु का छिन्नक और एक बेलन
(iv) गोला और बेलन
हल
(ii) एक अर्द्धगोला और एक शंकु

प्रश्न 4.
संलग्न चित्र में, एक गिलास का आकार प्रायः निम्न रूप से होता है
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions MCQ 4
(i) एक शंकु
(ii) शंकु का छिन्नक
(iii) एक बेलन
(iv) एक गोला
हल
(ii) शंकु का छिन्नक

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 5.
संलग्न चित्र में, गिल्ली-डंडे के खेल में, गिल्ली का आकार निम्नलिखित का संयोजन है
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions MCQ 5
(i) दो बेलन
(ii) एक शंकु और एक बेलन
(iii) दो शंकु और एक बेलन
(iv) दो बेलन और एक शंकु
हल
(iii) दो शंकु और एक बेलन

प्रश्न 6.
बैडमिंटन खेलने में प्रयोग की जाने की जाने वाली शटलकॉक (चिड़िया) का आकार निम्नलिखित का संयोजन है
(i) एक बेलन और एक गोला
(ii) एक बेलन और एक अर्द्धगोला
(iii) एक गोला और एक शंकु
(iv) शंकु का छिन्नक और अर्द्धगोला
हल
(iv) शंकु का छिन्नक और अर्द्धगोला

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 7.
एक शंकु को उसके आधार के समांतर एक तल की सहायता से काटा जाता है और फिर तल के एक ओर बने शंकु को हटा दिया जाता है। तल के दूसरी ओर बचा हुआ नया भाग कहलाता है एक
(i) शंकु का छिन्नक
(ii) शंकु
(iii) बेलन
(iv) गोला
हल
(i) शंकु का छिन्नक

प्रश्न 8.
विमाओं 49 cm × 33 cm × 24 cm के घनाभ के आकार के लोहे के किसी ठोस टुकड़े को पिघलाकर एक ठोस गोले के रूप में ढाला जाता है। गोले की त्रिज्या है
(i) 21 cm
(ii) 23 cm
(iii) 25 cm
(iv) 19 cm
हल
(i) 21 cm

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 9.
त्रिज्या r सेमी और ऊँचाई h सेमी (h > 2r) वाले एक लम्बवृत्तीय बेलन में ठीक समावेशित होने वाले गोले का व्यास
(i) r cm
(ii) 2r cm
(iii) h cm
(iv) 2h cm
हल
(ii) 2r cm

प्रश्न 10.
लम्बवृत्तीय शंकु में, आधार के समांतर खींचे गए तल द्वारा काटे गए अनुप्रस्थ परिच्छेद को कहते हैं
(i) वृत्त
(ii) शंकु का छिन्नक
(iii) गोला
(iv) अर्धगोला
हल
(i) वृत्त

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 11.
दो गोलों के आयतनों का अनुपात 64 : 27 है। उनके वक्र पृष्ठीय क्षेत्रफलों का अनुपात है
(i) 3 : 4
(ii) 4 : 3
(iii) 9 : 16
(iv) 16 : 9
हल
(iv) 16 : 9

प्रश्न 12.
एक ठोस को एक आकृति से दूसरी आकृति में रूपान्तरित करने पर नई आकृति का आयतन
(i) बढ़ेगा
(ii) घटेगा
(iii) पहले के समान
(iv) दो गुना
हल
(iii) पहले के समान

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 13.
यदि समान त्रिज्या r के दो अर्द्धगोलों को उनके आधारों से जोड़ा जाता है, तब नए ठोस का वक्र पृष्ठीय क्षेत्रफल है
(i) 4πr2
(ii) 6πr2
(iii) 3πr2
(iv) 8πr2
हल
(i) 4πr2

प्रश्न 14.
यदि 10 cm कोर के घनाकार लकड़ी के टुकड़े से काटकर अधिकतम आयतन का एक शंकु बनाया गया तो शंकु का आयतन होगा
(i) 260 cm3
(ii) 260.9 cm3
(iii) 261.9 cm3
(iv) 262.7 cm3
हल
(iii) 261.9 cm3

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
एक 22 cm लम्बे और 18 cm चौड़े दफ्ती के टुकड़े को मोड़कर 18 cm ऊँचा एक बेलन बनाया गया है। इस प्रकार बने हुए बेलन का आयतन ज्ञात कीजिए।
हल
दफ्ती के टुकड़े की माप 22 cm × 18 cm
इसे मोड़कर 18 cm ऊँचा बेलन बनाया गया है।
अतः आधार की परिधि = 22 cm
2πr = 22
⇒ 2 × \(\frac {22}{7}\) × r = 22
⇒ r = \(\frac{22 \times 7}{2 \times 22}=\frac{7}{2}\) cm
अत: बेलन का आयतन = πr2h
= \(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 18\)
= 693 cm3

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 2.
एक धातु के ठोस गोले की त्रिज्या 10 cm है। उसको पिघलाकर 2 cm त्रिज्या की गोलियाँ बनाई गई हैं। इस प्रकार की गोलियों की संख्या ज्ञात कीजिए।
हल
ठोस गोले की त्रिज्या (R) = 10 cm
छोटी गोली की त्रिज्या (r) = 2 cm
गोले को पिघलाकर बनी गोलियों की संख्या
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions VSAQ 2

प्रश्न 3.
6 cm त्रिज्या का एक ठोस गोला पिघलाकर उसी त्रिज्या के वृत्ताकार आधार का एक ठोस लम्ब बेलन तैयार किया जाता है। बेलन की ऊँचाई ज्ञात कीजिए।
हल
माना बेलन की ऊँचाई h है।
प्रश्नानुसार, गोले का आयतन = बेलन का आयतन
\(\frac{4}{3}\) πr3 = πr2h
\(\frac{4}{3}\) π(6)3 = π × (6)2 × h [∵ त्रिज्या = 6 cm]
h = \(\frac{4}{3}\) × 6 = 8 cm
अतः बेलन की ऊँचाई 8 cm है।

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 4.
एक शंकु तथा एक बेलन के आधार तथा ऊँचाइयाँ समान हैं। उनके आयतनों का अनुपात ज्ञात कीजिए।
हल
माना शंकु व बेलन में प्रत्येक के आधार की त्रिज्या r cm तथा प्रत्येक की ऊँचाइयाँ h cm हैं।
तब, शंकु का आयतन = \(\frac{1}{3}\) πr2h तथा बेलन का आयतन = πr2h
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions VSAQ 4
अतः शंकु का आयतन : बेलन का आयतन = 1 : 3

लघु उत्तरीय प्रश्न

प्रश्न 1.
7.0 cm कोर वाले लकड़ी के घन से अधिकतम आयतन का लम्बवृत्तीय बेलन बनाया जाता है। बेलन का आयतन ज्ञात कीजिए।
हल
अधिकतम आयतन वाले बेलन के आधार का व्यास = घन की कोर = 7 cm
बेलन की त्रिज्या (r) = \(\frac{7}{2}\) cm
तथा बेलन की ऊँचाई (h) = घन की कोर = 7 cm
अभीष्ट बेलन का आयतन = πr2h
= \(\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 7\)
= 22 × \(\frac{49}{4}\)
= 269.5 cm3

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 2.
3 cm कोर के एक घन में 1.4 cm व्यास का एक छेद किया गया है। छेद का आयतन ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 2
छेद बेलनाकार होगा जिसकी त्रिज्या
r = \(\frac{\text { व्यास }}{2}=\frac{1.4}{2}\) = 0.7 cm
तथा ऊँचाई (h) = घन की कोर = 3 cm
छेद का आयतन = πr2h = \(\frac{22}{7}\) × (0.7)2 × 3 = 4.62 cm3

प्रश्न 3.
π घन dm3 ताँबे को गलाकर एक km लम्बा (बेलनाकार) तार बनाया गया है। तार की त्रिज्या व व्यास ज्ञात कीजिए।
हल
ताँबे का आयतन = π dm3 = \(\frac{\pi}{1000}\) m3
तार की लम्बाई (l) = 1 km = 1000 m, तार की त्रिज्या r = ?
प्रश्नानुसार, πr2l = \(\frac{\pi}{1000}\)
⇒ r2 × 1000 = \(\frac{1}{1000}\)
⇒ r2 = \(\frac{1}{1000 \times 1000}\)
⇒ r = \(\frac{1}{1000}\) m
तार की त्रिज्या (r) = 0.1 cm
तार का व्यास = 2 × 0.1 = 0.2 cm

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 4.
एक समकोण त्रिभुज का आधार 12 cm तथा लम्ब 5 cm है। इस त्रिभुज को आधार के परितः घुमाया जाता है। इस प्रकार बने परिक्रमण ठोस का आयतन तथा वक्रपृष्ठ ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 4
इस प्रकार बना परिक्रमण ठोस एक शंकु होगा जिसकी त्रिज्या (r) = 5 cm
तथा ऊँचाई (h) = 12 cm
तिर्यक ऊँचाई (l) = \(\sqrt{r^{2}+h^{2}}\)
= \(\sqrt{5^{2}+12^{2}}\)
= \(\sqrt{169}\)
= 13 cm
परिक्रमण ठोस का आयतन = \(\frac{1}{3} \pi r^{2} h\)
= \(\frac{1}{3} \pi \times(5)^{2} \times 12\)
= 100π cm3
तथा वक्रपृष्ठ = πrl = π × 5 × 13 = 65π cm3

प्रश्न 5.
एक लम्बवृत्तीय शंकु और एक लम्बवृत्तीय बेलन के आधार की त्रिज्याएँ समान हैं। यदि उनके आयतनों का अनुपात 2 : 3 है, तो उनकी ऊँचाइयों में अनुपात ज्ञात कीजिए।
हल
माना शंकु और बेलन की त्रिज्या = r तथा उनकी ऊँचाइयाँ क्रमश: h1 व h2 हैं।
तब, उनके आयतनों का अनुपात = \(\frac{\frac{1}{3} \pi r^{2} h_{1}}{\pi r^{2} h_{2}}=\frac{h_{1}}{3 h_{2}}\)
प्रश्नानुसार दिया है, आयतनों का अनुपात = 2 : 3
\(\frac{h_{1}}{3 h_{2}}=\frac{2}{3}\)
⇒ \(\frac{h_{1}}{h_{2}}=\frac{2}{1}\) = 2 : 1

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 6.
3.0 m ऊँचे एक ऐसे शंक्वाकार डेरे के लिए कितने m2 किरमिच की आवश्यकता होगी, जिसमें 1.5 m लम्बा लड़का केन्द्र से 2 m की दूरी तक खड़ा हो सके?
हल
माना केन्द्र O से 2 m की दूरी पर बिन्दु C पर 1.5 m लम्बा लड़का CD सीधा खड़ा है।
इस स्थिति में लड़के का सिर शंकु के वक्रपृष्ठ को छूता है।
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 6
माना, डेरे के आधार की त्रिज्या (OB) = r m
CB = (r – 2) m
∆VOB तथा ∆DCB समरूप हैं,
\(\frac{O V}{D C}=\frac{O B}{C B}\)
⇒ \(\frac{3}{1.5}=\frac{r}{r-2}\)
⇒ 2r – 4 = r
⇒ r = 4 m
डेरे की तिरछी ऊँचाई (l) = \(\sqrt{r^{2}+h^{2}}\)
= \(\sqrt{4^{2}+3^{2}}\)
= \(\sqrt{16+9}\)
= \(\sqrt{25}\)
= 5 m
डेरे का वक्रपृष्ठ = πrl = π × 4 × 5 m2 = 20π m2
अत: डेरे के लिए 20π m2 किरमिच की आवश्यकता होगी।

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 7.
एक लम्बवृत्तीय बेलन और लम्बवृत्तीय शंकु के आधार और ऊँचाइयाँ समान हैं। यदि उनके वक्रपृष्ठ 8 : 5 के अनुपात में हों, तो दिखाइए कि उनके आधार की त्रिज्या और ऊँचाई में 3 : 4 का अनुपात है।
हल
माना त्रिज्याएँ r व ऊँचाई h हैं।
तब बेलन का वक्रपृष्ठ = 2πrh
शंकु की तिर्यक ऊँचाई (l) = \(\sqrt{h^{2}+r^{2}}\)
शंकु का वक्रपृष्ठ = πrl = \(\pi r \sqrt{h^{2}+r^{2}}\)
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 7
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 7.1

प्रश्न 8.
एक ठोस बेलन, जिसकी त्रिज्या 3 cm और ऊँचाई 5 cm है, के एक सिरे पर एक ठोस शंकु जिसके आधार की त्रिज्या 3 cm और ऊँचाई 4 cm है, रखकर एक ठोस बनाया गया है। इस प्रकार बने ठोस का आयतन ज्ञात कीजिए।
हल
बेलनाकार भाग की त्रिज्या (r1) = 3 cm, ऊँचाई (h1) = 5 cm
शंक्वाकार भाग की त्रिज्या (r2) = 3 cm, ऊँचाई (h2) = 4 cm
ठोस का आयतन = बेलनाकार भाग का आयतन + शंक्वाकार भाग का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 8

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 9.
6.0 dm त्रिज्या और 2.0 dm ऊँचाई के एक ठोस बेलन को पिघलाया जाता है और उससे एक लम्बवृत्तीय शंकु, जिसकी ऊँचाई बेलन की ऊँचाई की तीन गुनी है, बनाया जाता है। शंकु का वक्रपृष्ठ ज्ञात कीजिए।
हल
बेलन की त्रिज्या r1 = 6.0 dm तथा ऊँचाई h1 = 2 dm
माना शंकु की त्रिज्या = r2
तथा शंकु की ऊँचाई (h2) = 3h1 = 3 × 2 = 6 dm
बेलन को पिघलाकर शंकु बनाया जाता है।
बेलन का आयतन = शंकु का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 9

प्रश्न 10.
7 cm की भुजा वाले एक घन से एक बड़ा से बड़ा गोला काटकर निकाल लिया गया है। इस गोले का आयतन ज्ञात कीजिए (π = 3.14 लीजिए)।
हल
घन से काटे गये बड़े से बड़े गोले का व्यास घन की भुजा के बराबर होगा।
गोले का व्यास = घन की भुजा = 7 cm
गोले की त्रिज्या = \(\frac{7}{2}\) cm
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 10

प्रश्न 11.
12 cm की त्रिज्या के एक बेलनाकार टब में 20 cm ऊँचाई तक पानी भरा है। लोहे की एक गोलीय गेंद टब में डाली जाती है और इस प्रकार पानी का स्तर 6.75 cm ऊपर उठ जाता है। गेंद की त्रिज्या ज्ञात कीजिए।
हल
बेलन की त्रिज्या (r) = 12 cm
लोहे की गोलीय गेंद को टब में डालने पर,
पानी के तल में वृद्धि (h) = 6.75 cm
ऊपर उठे पानी का आयतन = πr2h = π × 12 × 12 × 6.75 cm3
माना लोहे की गोलीय गेंद की त्रिज्या R cm है, तो
गोलीय गेंद का आयतन = \(\frac{4}{3}\) πR3
गोलीय गेंद का आयतन = ऊपर उठे पानी का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 11
अतः गेंद की त्रिज्या = 9 cm

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 12.
एक बेलनाकार बर्तन का व्यास 21 cm है। इसमें कुछ पानी भरा है। एक ठोस गोला जिसका व्यास 10.5 cm है, उस बर्तन में डाला जाता है। गोला पानी में डूब जाता है। गणना कीजिए कि पानी का तल कितना ऊपर उठता है?
हल
दिया है, धातु के गोले का व्यास = 10.5 cm = \(\frac{21}{2}\) cm
धातु के गोले की त्रिज्या (R) = \(\frac{21}{4}\) cm
धातु के गोले का आयतन = \(\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi\left(\frac{21}{4}\right)^{3}\)
दिया है, बेलनाकार बर्तन की त्रिज्य (r) = \(\frac{21}{2}\) cm
माना गोला डालने पर बर्तन में पानी का तल h cm ऊपर उठेगा।
बेलनाकार बर्तन में ऊपर उठे पानी का आयतन = गोले का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 12
अत: गोले को डुबाने पर \(\frac{7}{4}\) cm पानी की सतह ऊपर उठेगी।

प्रश्न 13.
एक ही वृत्तीय आधार पर समान ऊँचाई के शंकु, अर्द्धगोला और बेलन के आयतन के अनुपात ज्ञात कीजिए।
हल
माना समान वृत्तीय आधार की त्रिज्या = r
अर्द्धगोले की ऊँचाई (h) = r
शंकु की ऊँचाई (h’) = r
बेलन की ऊँचाई (H) = r
शंकु का आयतन : अर्द्धगोले का आयतन : बेलन का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 13

प्रश्न 14.
उस गोले की त्रिज्या ज्ञात कीजिए जो 6 cm, 8 cm और 10 cm की त्रिज्या के 3 गोलों को गलाकर बनाया जाता है।
हल
माना गोले की त्रिज्या = R
दिये गए तीन गोलों की त्रिज्या, r1 = 6 cm, r2 = 8 cm तथा r3 = 10 cm
गोला तीनों गोलों को गलाकर बनाया जाता है।
बड़े गोले का आयतन = तीनों छोटे गोलों का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 14

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 15.
एक खोखला गोला जिसका आन्तरिक और बाह्य व्यास 4.0 cm और 8.0 cm है, को पिघलाकर एक शंकु, जिसके आधार का व्यास 8.0 cm है, बनाया जाता है। शंक की ऊँचाई का वक्रपृष्ठ ज्ञात कीजिए।
हल
माना शंकु की ऊँचाई h है।
दिया है, खोखले गोले की आन्तरिक त्रिज्या (r1) = \(\frac{4}{2}\) = 2 cm
खोखले गोले की बाहरी त्रिज्या (r2) = \(\frac{8}{2}\) = 4 cm
शंकु के आधार की त्रिज्या (r) = \(\frac{8}{2}\) = 4 cm
चूँकि खोखले गोले को पिघलाकर शंकु बनाया जाता है।
खोखले गोले का आयतन = शंकु का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 15
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 15.1

प्रश्न 16.
पानी से भरे एक अर्द्धगोलीय टैंक को एक पाइप द्वारा \(3 \frac{4}{7}\) ली प्रति सेकण्ड की दर से खाली किया जाता है। यह टैंक को आधा खाली करने में कितना समय लेगा? यदि टैंक का व्यास 3 m है। (π = \(\frac {22}{7}\) लीजिए)
हल
अर्द्धगोलीय टैंक का व्यास = 3 m
अर्द्धगोलीय टैंक की त्रिज्या (r) = \(\frac{3}{2}\) m
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 16
टैंक को खाली होने में 16.5 min का समय लगेगा।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
एक ठोस लम्बवृत्तीय बेलन के दोनों सिरों में दो समान शंक्वाकार छेद बनाये गये हैं। बेलन की ऊँचाई 10 cm और आधार का व्यास 8 cm है।यदि छेद का व्यास 6 cm और गहराई 4 cm है तो शेष बचे ठोस का सम्पूर्ण पृष्ठ ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions LAQ 1
चित्र में शेष आकृति को प्रदर्शित किया गया है।
शंक्वाकार छेद का व्यास = 6 cm
शंक्वाकार छेद की त्रिज्या (r) = 3 cm
शंक्वाकार छेद की गहराई (h) = 4 cm
एक शंकु का आयतन = \(\frac{1}{3} \pi r^{2} h\)
= \(\frac{1}{3} \pi\) × 3 × 3 × 4
= 12π cm3
दोनों शंकुओं का आयतन = 2 × 12π = 24π cm3
शंकु की तिर्यक ऊँचाई (l) = \(\sqrt{4^{2}+3^{2}}\)
= \(\sqrt{16+9}\)
= \(\sqrt{25}\)
= 5 cm
एक शंकु का वक्रपृष्ठ = πrl = π × 3 × 5 = 15π cm2
दोनों शंकुओं का वक्रपृष्ठ = 2 × 15π cm2 = 30π cm2
दिया है, बेलन की ऊँचाई (H) = 10 cm
बेलन के आधार का व्यास = 8 cm
बेलन की त्रिज्या (R) = \(\frac{8}{2}\) = 4 cm
बेलन का आयतन = πR2H
= π × 4 × 4 × 10
= 160π cm3
शेष ठोस का आयतन = बेलन का आयतन – दोनों शंकुओं का आयतन
= (160π – 24π) cm3
= 136π cm3
शेष आकृति का सम्पूर्ण पृष्ठ = बेलन का वक्रपृष्ठ + दोनों शंकुओं का वक्रपृष्ठ + सिरों के छल्लों का क्षेत्रफल
= 2πRH + 2πrl + 2π(R2 – r2)
= 2 × π × 4 × 10 + 2 × π × 3 × 5 + 2π(42 – 32)
= 80π + 30π + 2π(16 – 9)
= 124π cm2
अत: शेष आकृति का सम्पूर्ण पृष्ठ 124π cm2 और आयतन 136π cm3 है।

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 2.
एक केनवास के टेंट का शीर्ष ऊपर से शंक्वाकार तथा नीचे से लम्बवत्तीय बेलन के रूप का है। यदि आधार का व्यास 24 m और सम्पूर्ण ऊँचाई 15 m है तो टेंट में कितने m2 केनवास की आवश्यकता होगी, जबकि टेंट के बेलनाकार भाग की ऊँचाई 10 m है।
हल
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions LAQ 2
आधार का व्यास = 24 m
त्रिज्या (r) = \(\frac{24}{2}\) = 12 m
शंक्वाकार भाग की ऊँचाई (h) = सम्पूर्ण ऊँचाई – बेलनाकार भाग की ऊँचाई
= 15 – 10
= 5 m
शंक्वाकार भाग की तिर्यक ऊँचाई
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions LAQ 2.1
आवश्यक केनवास = टेंट का पृष्ठीय क्षेत्रफल = बेलनाकार भाग का पृष्ठीय क्षेत्रफल + शंक्वाकार भाग का पृष्ठीय क्षेत्रफल
= 2πrh’ + πrl
= πr(2h’ + l)
= π × 12(2 × 10 + 13)
= 12π × 33
= 396π m2

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

प्रश्न 3.
एक ठोस, बेलन के आकार का है तथा इसके दोनों सिरे अर्द्धगोलीय हैं। इस ठोस की कुल ऊँचाई 19 cm है तथा बेलन का व्यास 7 cm है। ठोस का आयतन तथा सम्पूर्ण पृष्ठ ज्ञात कीजिए। इस ठोस का भार ज्ञात कीजिए यदि 1 cm3 धातु का भार 4.5 g है। (π = \(\frac {22}{7}\))
हल
चित्रानुसार अर्द्धगोलीय भाग की त्रिज्या (r) = बेलनाकार भाग की त्रिज्या
= \(\frac{\text { व्यास }}{2}=\frac{7}{2}\) cm
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions LAQ 3
बेलनाकार भाग की लम्बाई = (19 – 2 × \(\frac{7}{2}\)) cm = 12 cm
ठोस का आयतन = बेलनाकार भाग का आयतन + 2 × अर्द्धगोलीय भाग का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions LAQ 3.1
ठोस का सम्पूर्ण पृष्ठ = बेलन का वक्रपृष्ठ + 2 × अर्द्धगोले का वक्रपृष्ठ
= 2πrh + 2 × 2πr2
= 2πr(h + 2r)
= \(2 \times \frac{22}{7} \times \frac{7}{2}\left(12+2 \times \frac{7}{2}\right)\)
= 22 × 19
= 418 cm2
ठोस का भार = 4.5 × ठोस का आयतन
= 4.5 × 641.67
= 2887.5 g
अत: ठोस का आयतन 641.67 cm3 तथा सम्पूर्ण पृष्ठ 418 cm3 व भार 2887.5 g है।

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

Bihar Board Class 10 Maths त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
जिस वक्त सूर्य का उन्नयन कोण 45° था, तब एक स्तम्भ की परछाई 10 m मापी गई। उस स्तम्भ की ऊँचाई थी
(i) 5 m
(ii) 10 m
(iii) 15 m
(iv) 20 m
हल
(ii) 10 m

प्रश्न 2.
10 m ऊँचे मकान के आधार से 10 m दूर स्थित बिन्दु से देखने पर उसकी छत का उन्नयन कोण होगा
(i) 60°
(ii) 45°
(iii) 30°
(iv) 75°
हल
(ii) 45°

प्रश्न 3.
यदि एक वृक्ष के आधार से 15 m दूर स्थित बिन्दु पर उसकी चोटी का उन्नयन कोण 30° बनता है, तो वृक्ष की ऊँचाई होगी।
(i) 15 m
(ii) 30 m
(iii) 15√3 m
(iv) 5√3 m
हल
(iv) 5√3 m

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
किसी समय कोई स्तम्भ की छाया की लम्बाई उसकी ऊँचाई की √3 गुनी है। सूर्य का उन्नयन कोण ज्ञात कीजिए।
हल
माना स्तम्भ AB की ऊँचाई h है, तब
छाया BC की लम्बाई = h√3
तथा उन्नयन कोण ∠ACB = θ
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions VSQ 1
समकोण ∆ABC में,
tan θ = \(\frac{A B}{B C}=\frac{h}{h \sqrt{3}}=\frac{1}{\sqrt{3}}\)
⇒ tan θ = tan 30°
⇒ θ = 30°
अत: सूर्य का उन्नयन कोण 30° है।

प्रश्न 2.
एक वृक्ष का ऊपरी भाग टूटकर भूमि से जा लगा तथा भूमि से 45° का कोण बनाता है। यदि वृक्ष की जड़ से उस बिन्दु जहाँ वृक्ष का शिखर भूमि को छूता है, की दूरी 6 m है, तो वृक्ष की ऊँचाई ज्ञात कीजिए।
हल
माना A वृक्ष ABC का पाद है तथा BC वृक्ष का टूटा हुआ भाग है तथा C पेड़ का ऊपरी सिरा है।
तब ∠ACB = 45°
तथा ∠BAC = 90°
प्रश्नानुसार, AC = 6 m
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions VSQ 2समकोण ∆BAC में, tan 45° = \(\frac{A B}{A C}\)
⇒ AB = AC tan 45° = 6 × 1 = 6 m
पुनः समकोण ∆BAC में, cos 45° = \(\frac{A C}{B C}\)
⇒ BC = AC sec 45° = 6√2
∴ पेड़ की कुल माप = AB + BC = 6 + 6√2 = 6(√2 + 1) m

प्रश्न 3.
एक मीनार की चोटी का उन्नयन कोण उस मीनार के आधार से क्षैतिज तल पर 40 m दूरी पर स्थित बिन्दु से देखने पर 45° है। मीनार की ऊँचाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions VSQ 3माना AB मीनार तथा बिन्दु C क्षैतिज तल पर मीनार के आधार से 40 m दूर स्थित बिन्दु है।
तब ∠ACB = 45°
समकोण ∆ABC में, tan 45° = \(\frac{A B}{B C}\)
⇒ 1 = \(\frac{A B}{40}\)
⇒ AB = 40 m
अत: मीनार की ऊँचाई 40 m है।

प्रश्न 4.
एक मीनार क्षैतिज समतल पर ऊर्ध्वाधरतः खड़ी है। यदि सूर्य का उन्नयन कोण 30° और मीनार की छाया की लम्बाई 45 m हो, तो मीनार की ऊँचाई ज्ञात कीजिए।
हल
माना PQ ऊर्ध्वाधर मीनार तथा QR इसकी छाया है।
माना मीनार की ऊँचाई h है।
सूर्य का उन्नयन कोण, ∠PRQ = 30°
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions VSQ 4
तब समकोण ∆PQR में,
tan 30° = \(\frac{P Q}{R Q}\)
⇒ PQ = RQ tan 30°
⇒ h = 45 × \(\frac{1}{\sqrt{3}}\) = 15√3 m

लघु उत्तरीय प्रश्न

प्रश्न 1.
एक मीनार के आधार से एक सरल रेखा में 100 m तथा 150 m की दूरी पर स्थित दो बिन्दुओं से मीनार के शिखर का उन्नयन कोण पूरक कोण है। सिद्ध कीजिए कि मीनार की ऊँचाई 50√6 m है।
हल
AB एक मीनार है जिसकी ऊँचाई h m है। इसके आधार B से 100 m तथा 150 m दूरी पर दो बिन्दु C और D हैं जहाँ पर शिखर के उन्नयन कोण क्रमशः θ तथा (90° – θ) हैं।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 1
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 1.1
अत: मीनार की ऊँचाई = 50√6 m
इति सिद्धम्

प्रश्न 2.
भूमितल पर दो बिन्दु A तथा B किसी मीनार के एक ही ओर स्थित हैं। यदि A तथा B पर मीनार के शिखर के उन्नयन कोण क्रमश: 30° तथा 60° हैं। यदि मीनार की ऊँचाई 150 m है, तो A तथा B के मध्य दूरी ज्ञात कीजिए।
हल
माना PQ एक मीनार है जिसकी ऊँचाई 150 m है। मीनार के पाद Q से जाने वाली क्षैतिज रेखा पर दो बिन्दु A और B हैं, जहाँ से मीनार की चोटी P से उन्नयन कोण क्रमशः 30° तथा 60° हैं।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 2
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 2.1

प्रश्न 3.
भूमि पर किसी बिन्दु से एक हवाई जहाज का उन्नयन कोण 60° है। 15 s की उड़ान के पश्चात् उन्नयन कोण बदलकर 30° हो जाता है। यदि हवाई जहाज 1500√3 m की नियत ऊँचाई पर उड़ रहा है, तो हवाई जहाज की चाल किमी प्रति घण्टा में ज्ञात कीजिए।
हल
माना हवाई जहाज 15 सेकण्ड में C से D तक पहुँच जाता है।
समकोण ∆ABC में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 3
⇒ CD + BC = 1500√3 × √3 = 4500
⇒ CD + 1500 = 4500 [∵ BC = 1500 m]
⇒ CD = 4500 – 1500 = 3000 m
प्रश्नानुसार, हवाई जहाज को 3000 m जाने में 15 s लगते हैं।
अतः चाल = \(\frac{3000}{15}\) = 200 m/s
= \(\frac{200 \times 60 \times 60}{1000}\)
= 720 km/h
अतः हवाई जहाज की चाल = 720 km/h

प्रश्न 4.
एक मीनार के शिखर से 50 m ऊँचे भवन के शिखर तथा पाद के अवनमन कोण क्रमशः 30° तथा 60° हैं। मीनार की ऊँचाई तथा भवन और मीनार के बीच की क्षैतिज दूरी ज्ञात कीजिए।
हल
माना AB भवन तथा CD मीनार है।
भवन तथा मीनार के बीच क्षैतिज दूरी BC = x (माना)
तथा मीनार की ऊँचाई CD = y (माना)
DX क्षैतिज रेखा है तथा AE, CD पर लम्ब है।
प्रश्नानुसार, ∠ADX = 30°
⇒ ∠DAE = 30° तथा ∠BDX = 60°
⇒ ∠DBC = 60°
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 4
समकोण ∆ADE में, cot 30° = \(\frac{A E}{E D}\)
√3 = \(\frac{x}{C D-C E}\) (∵ AE = BC = x)
x = √3 (CD – AB) (∵ EC = AB)
x = √3(y – 50) ……(1)
पुनः समकोण ∆BCD में, cot 60° = \(\frac{B C}{C D}\)
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 4.1अत: मीनार की ऊँचाई 75 m तथा मीनार व भवन के बीच क्षैतिज दूरी 25√3 m

प्रश्न 5.
एक नदी के पुल के एक बिन्दु से नदी के सम्मुख किनारों के अवनमन कोण क्रमशः 30° और 45° हैं। यदि पुल किनारों से 3 m की ऊँचाई पर हो तो नदी की चौड़ाई ज्ञात कीजिए।
हल
माना PQ नदी की चौड़ाई है। माना A नदी के पुल का एक बिन्दु है अर्थात् AB = 3 m
A से नदी के सम्मुख किनारों P और Q अवनमन कोण क्रमश: 30° और 45° हैं।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions SAQ 5
समकोण ∆ABQ में,
tan 45° = \(\frac{A B}{B Q}\)
⇒ 1 = \(\frac{3}{B Q}\)
⇒ BQ = 3 m
पुनः समकोण ∆ABP में,
tan 30° = \(\frac{A B}{B P}\)
⇒ \(\frac{1}{\sqrt{3}}=\frac{3}{B P}\)
⇒ BP = 3√3 m
अतः नदी की चौड़ाई = PQ = BP + BQ
= (3√3 + 3) m
= 3(√3 + 1) m
= 3(1.732 + 1) m
= 3(2.732) m
= 8.196 m
≅ 8.20 m

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
किसी बिन्दु पर एक मीनार के शिखर के उन्नयन कोण की स्पर्शज्या (tangent) \(\frac{7}{4}\) है। मीनार की ओर 25 m चलने पर उन्नयन कोण की स्पर्शज्या हो जाती है। मीनार की ऊँचाई ज्ञात कीजिए।
हल
माना मीनार PQ के धरातल पर बिन्दु A से 25 m दूर (मीनार की ओर) बिन्दु B है।
यदि ∠PAB = α तथा ∠PBQ = β
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 1तब प्रश्नानुसार, tan α = \(\frac{7}{4}\) व tan β = \(\frac{7}{3}\)
माना मीनार की ऊँचाई h है तो
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 1.1
अत: मीनार की ऊँचाई 175 m है।

प्रश्न 2.
एक व्यक्ति नदी के किनारे खड़े होकर देखता है कि नदी के दूसरे किनारे पर एक पेड़ के शीर्ष का उन्नयन कोण 60° है। जब वह किनारे से 21 m पीछे की ओर चलता है, तो वह उन्नयन कोण 30° पाता है। पेड़ की ऊँचाई तथा नदी की चौड़ाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 2
माना AB पेड़ व BC नदी है। माना AB = h m व BC = x m
ज्ञात है ∠ACB = 60°
यदि किनारे C से 20 मीटर पीछे की ओर बिन्दु D है।
तब ∠ADB = 30°
समकोण ∆ABC में,
tan 60° = \(\frac{h}{x}\)
⇒ √3 = \(\frac{h}{x}\)
⇒ h = x√3 …….(1)
पुन: समकोण ∆ABD में,
tan 30° = \(\frac{A B}{B D}=\frac{h}{x+20}\) ……(2)
⇒ \(\frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{x+20}\) [समीकरण (1) से]
⇒ x + 20 = 3x
⇒ 2x = 20
⇒ x = 10
समीकरण (1) से, h = 10√3
अत: पेड़ की ऊँचाई 10√3 m तथा नदी की चौड़ाई 10 m है।

प्रश्न 3.
एक मनुष्य पानी के जहाज की छत जो पानी की सतह से 10 m ऊपर है, पर खड़ा है। वहाँ से पहाड़ी की चोटी का उन्नयन कोण 60° तथा पहाड़ की तली का अवनमन कोण 30° है। जहाज से पहाड़ी की दूरी और पहाड़ी की ऊँचाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 3
माना AB एक जहाज तथा CD एक पहाड़ी है। पहाड़ी की चोटी का उन्नयन कोण ∠CAE = 60°
तथा पहाड़ी की तली का अवनमन कोण ∠EAD = 30° है।
जबकि AE, A से CD पर लम्ब है।
माना पहाड़ी की ऊँचाई h m और जहाज से पहाड़ी की दूरी x m है।
CE = (h – 10) m
समकोण ∆AED में, tan 30° = \(\frac{E D}{A E}\)
\(\frac{1}{\sqrt{3}}=\frac{10}{x}\)
x = 10√3 m [∵ AB = ED = 10 m]
पुनः समकोण ∆CEA में, tan 60° = \(\frac{C E}{A E}\)
⇒ √3 = \(\frac{h-10}{x}\)
⇒ √3 = \(\frac{h-10}{10 \sqrt{3}}\)
⇒ h – 10 = 10 × 3 = 30
⇒ h = 30 + 10 = 40 m
अतः जहाज से पहाड़ी की दूरी 10√3 m तथा पहाड़ी की ऊँचाई 40 m है।

प्रश्न 4.
एक मकान के आधार से 30 m दूरस्थ एक मीनार के शिखर का उन्नयन कोण 60° तथा मकान की छत से उसी मीनार के शिखर का उन्नयन कोण 45° है। मकान तथा मीनार की ऊँचाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 4
माना AB मकान तथा PQ मीनार है।
तब प्रश्नानुसार, BQ = 30 m,
∠PBQ = 60° तथा ∠PAM = 45°
माना मीनार की ऊँचाई H तथा मकान की ऊँचाई h है।
समकोण ∆PRB में, tan 60° = \(\frac{P Q}{B Q}=\frac{H}{30}\)
⇒ √3 = \(\frac{H}{30}\)
⇒ H = 30√3 m
पुन: समकोण ∆PMA में,
tan 45° = \(\frac{P M}{A M}=\frac{P Q-M Q}{A M}\)
⇒ 1 = \(\frac{H-h}{30}\)
⇒ H – h = 30
⇒ h = H – 30 = 30√3 – 30 = 30(√3 – 1) m
अत: मकान की ऊँचाई 30(√3 – 1) m तथा मीनार की ऊँचाई 303 m है।

प्रश्न 5.
किसी मीनार के आधार से a और b दूरी पर एक ही रेखा में स्थित दो बिन्दुओं क्रमशः A और B से देखने पर मीनार के ऊपरी सिरे के उन्नयन कोण पूरक पाये जाते हैं। सिद्ध कीजिए कि मीनार की ऊँचाई √ab है।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 5
माना मीनार OC की ऊँचाई = h m तथा मीनार का आधार OA है।
माना आधार पर (एक ही रेखा पर) दो बिन्दु A तथा B इस प्रकार हैं कि
OA = a तथा OB = b
क्योंकि A तथा B पर बनने वाले कोण पूरक हैं।
अत: यदि ∠CAO = θ
तब ∠CBO = 90° – θ
समकोण ∆COA में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 5.1

प्रश्न 6.
सड़क के एक ओर स्थित मकान के, सड़क के दूसरी ओर स्थित मीनार के शिखर से मकान की छत और आधार के अवनमन कोण क्रमश: 45° और 60° हैं। यदि मकान की ऊँचाई 10 m है, तो मीनार की ऊँचाई ज्ञात कीजिए।
हल
माना AB मीनार तथा CD मकान है।
माना BD = x तथा मीनार की ऊँचाई = h m
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 6
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 6.1
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 6.2

प्रश्न 7.
एक ऊर्ध्वाधर खम्भा (जो 100 dm से अधिक लम्बा है) दो भागों में बँटा है, जिसमें नीचे का भाग उसकी कुल लम्बाई का \(\frac{1}{3}\) है। यदि खम्भे की जड़ से 40 dm दूर एक स्थान पर उसका ऊपरी भाग कोण α अन्तरित करे (जबकि tan α = \(\frac{1}{2}\)) तो खम्भे की लम्बाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 7
माना उर्ध्वाधर खम्भा AB जिसकी ऊँचाई h है जो दो भागों AC व BC में बँटा है।
जबकि BC = \(\frac{1}{3}\) h
खम्भे की जड़ से 40 dm की दूरी पर बिन्दु D है।
तब ∠ADC = α माना ∠CDB = β
समकोण ∆CBD में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 7.1
⇒ 240h – h2 = 4800 + 80h
⇒ h2 – 160h + 4800 = 0
⇒ h2 – 120h – 40h + 4800 = 0
⇒ h(h – 120) – 40(h – 120) = 0
⇒ (h – 120) (h – 40) = 0
⇒ h = 120
⇒ h = 40 जो कि मान्य नहीं है।
खम्भे की लम्बाई = 120 dm

प्रश्न 8.
एक अपूर्ण मन्दिर के आधार से 30 m दूर स्थित किसी बिन्दु से उसके शिखर का उन्नयन कोण 30° है। मन्दिर कितना ऊँचा और बनाया जाये कि उसी बिन्दु पर उन्नयन कोण 45° हो जाये (दिया है, √3 = 1.732)।
हल
माना बिन्दु D से देखने पर अपूर्ण मन्दिर AB के शिखर B का उन्नयन कोण 30° है।
∠BDA = 30°
माना मन्दिर की ऊँचाई BC बढ़ाने पर उसके शिखर C का उन्नयन कोण 45° हो जाता है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 8
∴ BC = AC – AB = 30 – 17.32 = 12.68 m
अत: मन्दिर को 1268 m ऊँचाई तक और बनवाना पड़ेगा।

प्रश्न 9.
मीनार PN पर एक स्तम्भ QP गड़ा है। मीनार के आधार N से 40 m की क्षैतिज दूरी पर एक बिन्दु A है। बिन्दु A पर मीनार PN और स्तम्भ QP के द्वारा अन्तरित कोण क्रमशः θ और Φ इस प्रकार हैं कि tan θ = \(\frac{1}{2}\) और tan Φ = \(\frac{1}{3}\) स्तम्भ की ऊँचाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 9
∴ स्तम्भ PQ की ऊँचाई = QN – PN = 40 – 20 = 20 m

प्रश्न 10.
एक नाव से जो पुल की ओर आ रही है, उस पुल का उन्नयन कोण 30° देखा गया। नाव के उसी चाल से 6 min पश्चात् उन्नयन कोण 60° हो गया। ज्ञात कीजिए नाव को उस पुल तक उसी चाल से पहुँचने में कितना समय और लगेगा?
हल
माना P पुल है और नाव की प्रथम स्थिति A है जहाँ से पुल P का उन्नयन कोण 30° है।
6 m बाद नाव की द्वितीय स्थिति B है जहाँ से पुल का उन्नयन कोण 60° है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 10
माना AB = x, BQ = y तथा PQ = h
समकोण ∆PBQ में, tan 60° = \(\frac{h}{y}\)
⇒ √3 = \(\frac{h}{y}\)
⇒ h = y√3 …….(1)
समकोण ∆PAQ में, tan 30° = \(\frac{h}{x+y}\)
⇒ \(\frac{1}{\sqrt{3}}=\frac{h}{x+y}\)
⇒ h√3 = x + y …….(2)
समी० (1) से h का मान समी० (2) में रखने पर,
y√3 . √3 = x + y
⇒ 3y = x + y
⇒ 3y – y = x
⇒ 2y = x
⇒ y = \(\frac{x}{2}\) m
∵ इकाई दूरी जाने में लगा समय = 6 min
∴ 1 इकाई दूरी जाने में लगा समय = \(\frac{6}{x}\) min
∴ \(\frac{x}{2}\) इकाई दूरी जाने में लगा समय = \(\frac{6}{x} \times \frac{x}{2}\) = 3 min
अत: नाव को पुल तक पहुँचने में 3 min का समय और लगेगा।

प्रश्न 11.
एक वायुयान दो मकानों के ऊपर से उड़ रहा है जिनके बीच की न्यूनतम दूरी 300 m है। यदि किसी समय वायुयान से एक ही दिशा में दोनों मकानों के अवनमन कोण क्रमशः 45° और 60° हैं, तो ज्ञात कीजिए कि वायुयान कितनी ऊँचाई पर उड़ रहा है?
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 11
माना वायुयान A की ऊँचाई AB है।
तथा C व D क्रमश: दो मकान हैं जबकि CD = 300 m
माना वायुयान की ऊँचाई h है तथा BC = x
तब समकोण ∆ABC में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 11.1
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 11.2

प्रश्न 12.
एक हवाई जहाज जो कि 1000 m की ऊँचाई पर उड़ रहा है, पर स्थित मनुष्य उत्तर की ओर एक शत्रु की पनडुब्बी को 30° के अवनमन कोण पर तथा दक्षिण की ओर एक युद्धपोत को 45° के अवनमन कोण पर देखता है। पनडुब्बी और युद्धपोत के बीच की दूरी ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 12
माना हवाई जहाज की स्थिति A, पनडुब्बी की स्थिति Bव युद्धपोत की स्थिति C है तब प्रश्नानुसार,
∠ABC = 30°, ∠ACB = 45°
तथा AO = 1000 m (जबकि AO ⊥ BC)
समकोण ∆AOC में, tan 45° = \(\frac{A O}{O C}\)
⇒ 1 = \(\frac{1000}{O C}\)
⇒ OC = 1000
पुनः समकोण ∆AOB में,
tan 30° = \(\frac{A O}{B O}\)
\(\frac{1}{\sqrt{3}}=\frac{1000}{B O}\)
BO = 1000√3
∴ पनडुब्बी व युद्धपोत के बीच की दूरी, BC = (BO + OC)
= (1000√3 + 1000)
= 1000(√3 + 1) m

प्रश्न 13.
क्षैतिज सड़क के ऊर्ध्वाधर स्थित हवाई जहाज से सड़क के दो क्रमागत किलोमीटर के पत्थरों के जो हवाई जहाज के दोनों ओर स्थित हैं; अवनमन कोण α और β हैं। सिद्ध कीजिए कि हवाई जहाज की ऊँचाई \(\frac{\tan \alpha \cdot \tan \beta}{\tan \alpha+\tan \beta}\) km है।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 13
माना B व C दो क्रमागत किलोमीटर के पत्थर हैं तथा उनके बीच H ऊँचाई पर बिन्दु A पर हवाई जहाज है।
∵ B व C के A से अवनमन कोण क्रमश: α व β हैं।
∠ABC = α तथा ∠ACB = β
तथा BC = 1 km
समकोण ∆ADB में, tan α = \(\frac{H}{B D}\)
⇒ BD = H cot α
इसी प्रकार समकोण ∆ADC से,
DC = H cot β
परन्तु, BD + DC = 1
H cot α + H cot β = 1
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 13.1

प्रश्न 14.
एक झील के तल से h मीटर ऊँचाई पर स्थित एक बिन्दु पर एक बादल का उन्नयन कोण α है तथा झील में उसके प्रतिबिम्ब का अवनमन कोण β है। सिद्ध कीजिए कि झील के तल से बादल की ऊँचाई \(h\left(\frac{\tan \beta+\tan \alpha}{\tan \beta-\tan \alpha}\right) \mathrm{m}\) है।
हल
माना PQ झील का तल व झील से h ऊँचाई पर बिन्दु A है।
बिन्दु A से बादल B का उन्नयन कोण ∠BAM = α
तथा बादल के प्रतिबिम्ब C का अवनमन कोण ∠MAC = β
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions LAQ 14

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

Bihar Board Class 10 Maths वृतों से संबंधित क्षेत्रफल Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
यदि R1 और R2 त्रिज्याओं वाले दो वृत्तों के क्षेत्रफलों का योग त्रिज्या R वाले वृत्त के क्षेत्रफल के बराबर हो, तो
(i) R1 + R2 = R
(ii) \(R_{1}^{2}+R_{2}^{2}=R^{2}\)
(iii) R1 + R2 < R
(iv) \(R_{1}^{2}+R_{2}^{2}<R^{2}\)
हल
(ii) \(R_{1}^{2}+R_{2}^{2}=R^{2}\)

प्रश्न 2.
यदि R1 और R2 त्रिज्याओं वाले दो वृत्तों की परिधियों का योग त्रिज्या R वाले एक वृत्त की परिधि के बराबर हो, तो
(i) R1 + R2 = R
(ii) R1 + R2 > R
(iii) R1 + R2 < R
(iv) R1, R2 और R के बीच सम्बन्ध के बारे में निश्चित रूप से कुछ नहीं कहा जा सकता।
हल
(i) R1 + R2 = R

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 3.
यदि एक वृत्त की परिधि और एक वर्ग का परिमाप बराबर है, तो
(i) वृत्त का क्षेत्रफल = वर्ग का क्षेत्रफल
(ii) वृत्त का क्षेत्रफल > वर्ग का क्षेत्रफल
(iii) वृत्त का क्षेत्रफल < वर्ग का क्षेत्रफल
(iv) वृत्त और वर्ग के क्षेत्रफलों के बीच के सम्बन्ध में निश्चित रूप से नहीं कहा जा सकता।
हल
(ii) वृत्त का क्षेत्रफल > वर्ग का क्षेत्रफल

प्रश्न 4.
त्रिज्या r के अर्धवृत्त के अन्तर्गत खींचे जा सकने वाले सबसे बड़े त्रिभुज का क्षेत्रफल है
(i) r2
(ii) \(\frac{1}{2}\) r2
(iii) 2r2
(iv) √2r2
हल
(i) r2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 5.
यदि एक वृत्त का परिमाप का एक वर्ग के परिमाप के बराबर है, तो उनके क्षेत्रफलों का अनुपात है
(i) 22 : 7
(ii) 14 : 11
(iii) 7 : 22
(iv) 11 : 14
हल
(ii) 14 : 11

प्रश्न 6.
किसी स्थान पर 16 m और 12 m व्यास वाले दो वृत्ताकार पार्को के क्षेत्रफलों के योग के बराबर क्षेत्रफल का एक अकेला साकार पार्क बनाने का प्रस्ताव है। नये पार्क की त्रिज्या होगी।
(i) 10 m
(ii) 15 m
(iii) 20 m
(iv) 24 m
हल
(i) 10 m

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 7.
भुजा 6 cm वाले एक वर्ग के अन्तर्गत खींचे जा सकने वाले वृत्त का क्षेत्रफल है
(i) 36π cm2
(ii) 18π cm2
(iii) 12π cm2
(iv) 9π cm2
हल
(iv) 9π cm2

प्रश्न 8.
त्रिज्या 8 cm वाले एक वृत्त के अन्तर्गत खींचे जा सकने वाले वर्ग का क्षेत्रफल है
(i) 256 cm2
(ii) 128 cm2
(iii) 64√2 cm2
(iv) 64 cm2
हल
(ii) 128 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 9.
व्यासों 36 cm और 20 cm वाले दो वृत्तों की परिधियों के योग के बराबर परिधि वाले एक वृत्त की त्रिज्या है.
(i) 56 cm
(ii) 42 cm
(iii) 28 cm
(iv) 16 cm
हल
(iii) 28 cm

प्रश्न 10.
त्रिज्याओं 24 cm वाले और 7 cm वाले दो वृत्तों के क्षेत्रफलों के योग के बराबर क्षेत्रफल वाले एक वृत्त का व्यास है।
(i) 31 cm
(ii) 25 cm
(iii) 62 cm
(iv) 50 cm
हल
(iv) 50 cm

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 11.
यदि त्रिज्या r वाले एक वृत्त का एक त्रिज्यखण्ड का कोण (डिग्री में) θ है, त्रिज्यखण्ड का क्षेत्रफल है
(i) \(\frac{\pi r^{2} \theta}{360^{\circ}}\)
(ii) \(\frac{\pi r^{2} \theta}{180^{\circ}}\)
(iii) \(\frac{2 \pi r \theta}{360^{\circ}}\)
(iv) \(\frac{2 \pi r \theta}{180^{\circ}}\)
हल
(i) \(\frac{\pi r^{2} \theta}{360^{\circ}}\)

प्रश्न 12.
यदि एक वृत्त का क्षेत्रफल 154 cm2 हैं, तो उसका परिमाप है
(i) 11 cm
(ii) 22 cm
(iii) 44 cm
(iv) 55 cm
हल
(iii) 44 cm

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
7 cm त्रिज्या वाले वृत्त के एक त्रिज्यखण्ड का क्षेत्रफल ज्ञात कीजिए जिसका कोण 90° है।
हल
दिया है, वृत्त की त्रिज्या = 7 cm
तथा त्रिज्यखण्ड कोण, (θ) = 90°
त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions VSAQ 1

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 2.
दो वृत्तों की परिधियों का अनुपात 2 : 3 है, उनकी त्रिज्याओं का अनुपात ज्ञात कीजिए।
हल
माना वृत्तों की त्रिज्याएँ क्रमशः r1 तथा r2 हैं, तब इनकी परिधियाँ क्रमश: 2πr1 तथा 2πr2 होंगी।
प्रश्नानुसार, परिधियों का अनुपात = 2 : 3
⇒ 2πr1 : 2πr2 = 2 : 3
⇒ r1 : r2 = 2 : 3
अत: त्रिज्याओं का अनुपात 2 : 3 है।

प्रश्न 3.
आकृति में, चाप AB की लम्बाई सेमी में ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions VSAQ 3
हल
दिया है, OA = OB = 28 cm तथा θ = 45°
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions VSAQ 3.1

लघु उत्तरीय प्रश्न

प्रश्न 1.
21 सेमी त्रिज्या वाले एक वृत्त का चाप केन्द्र पर 120° का कोण अन्तरित करता है। चाप द्वारा बने त्रिज्यखण्ड का क्षेत्रफल ज्ञात कीजिए।
हल
दिया है, वृत्त की त्रिज्या (r) = 21 cm
त्रिज्यखण्ड का कोण (θ) = 120°
त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 1
अत: चाप द्वारा बने त्रिज्यखण्ड का क्षेत्रफल = 462 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 2.
आकृति में, 35 m त्रिज्या वाले एक वृत्ताकार बाग का केन्द्र O है। इसके छायांकित भाग में पत्थर बिछाने का व्ययर 75.0 प्रति वर्ग मीटर की दर से ज्ञात कीजिए ∠AOB = 120° है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 2
हल
दिया है, r = 35 m तथा θ = 120°
त्रिज्यखण्ड (छायांकित भाग) का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 2.1
अतः पत्थर बिछाने का व्यय = ₹ 96250

प्रश्न 3.
त्रिज्या 4 cm वाले एक वृत्त के त्रिज्यखण्ड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण 60° है। संगत दीर्घ त्रिज्यखण्ड का क्षेत्रफल भी ज्ञात कीजिए। (π = 3.14)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 3
हल
दिया है, त्रिज्या (r) = 4 cm तथा त्रिज्याखण्ड का कोण (θ) = 60°
त्रिज्यखण्ड OAPB का क्षेत्रफल = \(\frac{\theta}{360^{\circ}} \times \pi r^{2}\)
= \(\frac{60^{\circ}}{360^{\circ}}\) × 3.14 × 4 × 4
= 8.37 cm2
संगत दीर्घ त्रिज्यखण्ड का क्षेत्रफल = (वृत्त का क्षेत्रफल – त्रिज्यखण्ड OAPBO का क्षेत्रफल)
= πr2 – 8.37
= 3.14 × 4 × 4 – 8.37
= 50.24 – 8.37
= 41.87 cm2
अत: वृत्त के त्रिज्यखण्ड का क्षेत्रफल = 8.37 cm2
तथा संगत दीर्घ त्रिज्यखण्ड का क्षेत्रफल = 41.87 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 4.
संलग्न आकृति में छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जहाँ ABCD भुजा 14 cm का एक वर्ग है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 4
हल
दिया है, वर्ग की भुजा = 14 cm
वर्ग ABCD का क्षेत्रफल = (14 × 14) cm2 = 196 cm2
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 4.1
अतः छायांकित क्षेत्र का क्षेत्रफल = (196 – 154) cm2 = 42 cm2

प्रश्न 5.
आकृति में, PQ = 12 cm, RP = 9 cm और O वृत्त का केन्द्र है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। (π = 3.14)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 5
हल
अर्द्धवृत्त PQORP का क्षेत्रफल = \(\frac{1}{2} \pi r^{2}\)
हम जानते हैं कि अर्द्धवृत्त में स्थित कोण समकोण होता है।
पाइथागोरस प्रमेय से,
∠QPR = 90°
RQ2 = PQ2 + RP2 = (12)2 + (9)2 = 144 + 81 = 225
⇒ RQ = 15 cm
RQ वृत्त का व्यास है।
वृत की त्रिज्या (OQ) = OR = \(\frac{15}{2}\) cm
अर्द्धवृत्त का क्षेत्रफल = \(\frac{1}{2}\) π (OQ)2
= \(\frac{1}{2} \times \frac{22}{7} \times \frac{15}{2} \times \frac{15}{2}\)
= \(\frac{4950}{56}\)
= 88.4 cm2
समकोण ΔPQR का क्षेत्रफल = \(\frac {1}{2}\) × PQ × PR
= \(\frac {1}{2}\) × 12 × 9
= 54 cm2
अत: छायांकित भाग का क्षेत्रफल = अर्द्धवृत्त का क्षेत्रफल – ΔPQR का क्षेत्रफल
= (88.4 – 54) cm2
= 34.4 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 6.
आकृति में, AC = 8cm, BC = 6 cm और O वृत्त का केन्द्र है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। (π = 3.14)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions SAQ 6
हल
अर्द्धवृत्त CBOAC का क्षेत्रफल = \(\frac{1}{2} \pi r^{2}\)
हम जानते हैं कि अर्द्धवृत्त में स्थित कोण समकोण होता है।
पाइथागोरस प्रमेय से, ∠ACB = 90°
AB2 = BC2 + CA2 = (6)2 + (8)2 = 36 + 64 = 100
⇒ AB = 10 cm
वृत्त की त्रिज्या, OA = OB = \(\frac{A B}{2}=\frac{10}{2}\) = 5 cm
अब, अर्द्धवृत्त का क्षेत्रफल = \(\frac{1}{2}\) π (OA)
= \(\frac{1}{2}\) × 3.14 × 5 × 5
= 1.57 × 5 × 5
= 39.25 cm2
समकोण ∆ABC का क्षेत्रफल = \(\frac{1}{2}\) × 5 × 5 =12.5 cm2
अत: छायांकित भाग का क्षेत्रफल = अर्द्धवृत्त का क्षेत्रफल – ΔABC का क्षेत्रफल
= (39.25 – 12.50) cm2
= 26.75 cm2

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
आकृति में, AB और CD केन्द्र O तथा त्रिज्याओं 15 सेमी वाले दो सकेन्द्रीय वृत्तों के क्रमशः दो चाप हैं, यदि ∠AOB = 60°, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 1
हल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 1.1
अतः छायांकित भाग का क्षेत्रफल 99 cm2 है।

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 2.
दी गई आकृति से लघु वृत्तखण्ड का क्षेत्रफल ज्ञात कीजिए यदि ∠AOB = 120° और वृत्त की त्रिज्या OA = 21 cm
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 2
हल
दिया है, वृत्त की त्रिज्या (R) = OA = 21 cm और θ = ∠AOB = 120°
त्रिज्यखण्ड AOBA का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 2.1
∆OAB के क्षेत्रफल के लिए :
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 2.2
∆OAB में, OA = OB
अर्थात् ∆OAB समद्विबाहु त्रिभुज है
शीर्ष O से AB पर लम्ब OD खींचा जो AB को समद्विभाजित करेगा, क्योंकि AB वृत्त की जीवा भी है और लम्ब OD वृत्त के केन्द्र से जाता है।
तब, ∆OAD में, ∠AOD = 60° और ∠OAD = 30° तथा ∠ADO = 90°
समकोण ∆OAD में,
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 2.3
अब, लघु वृत्तखण्ड का क्षेत्रफल = त्रिज्यखण्ड AOBA का क्षेत्रफल – ∆OAB का क्षेत्रफल
= (462 – \(\frac{441}{4}\) √3) cm2
= (462 – 110.25 × √3) cm2
= (462 – 110.25 × 1.732) cm2
= (462 – 190.953) cm2
= 271.047 cm2
अत: लघु वृत्तखण्ड का क्षेत्रफल = 271.047 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

प्रश्न 3.
दी गई आकृति में, OACB केन्द्र O और व्यास 7 cm वाले एक वृत्त का चतुर्थांश है। यदि OD = 2 cm है तो छायांकित भाग के क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 3
हल
दिया है, वृत्त का व्यास = 7 cm
वृत्त की त्रिज्या (r) = 3.5 cm, OD = 2 cm
वृत्त के चतुर्थांश OACB का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 3.1
अत: चतुर्थांश OACB का क्षेत्रफल = \(\frac{77}{8}\) cm2
अब छायांकित भाग का क्षेत्रफल = (चतुर्थांश OACB का क्षेत्रफल – ∆OBD का क्षेत्रफल)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions LAQ 3.2
अत: छायांकित भाग का क्षेत्रफल = \(\frac{49}{8}\) cm2

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

Bihar Board Class 10 Maths रचनाएँ Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
एक रेखाखण्ड AB को p : q के अनुपात में विभाजित करने के लिए (यहाँ p और q धनात्मक पूर्णांक हैं), एक किरण AX खींचिए ताकि ∠BAX एक न्यून कोण हो। फिर किरण AX पर समान दूरियों पर इतने बिन्दु अंकित कीजिए कि इन बिन्दुओं की न्यूनतम संख्या हो।
(i) p और q में से बड़ी
(ii) p + q
(iii) p + q – 1
(iv) pq
हल
(ii) p + q

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 2.
किसी वृत्त पर स्पर्श रेखाओं का ऐसा युग्म खींचने के लिए कि उनके बीच का कोण 35° हो, उन दो त्रिज्याओं के सिरों पर स्पर्श रेखाएँ खींचनी चाहिए, जिनके बीच का कोण हो
(i) 105°
(ii) 70°
(iii) 140°
(iv) 145°
हल
(iv) 145°

प्रश्न 3.
एक रेखाखण्ड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिन्दु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो
(i) 8
(ii) 10
(iii) 11
(iv) 12
हल
(iv) 12

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 4.
एक रेखाखण्ड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यूनकोण हो और फिर किरण AX पर समान दूरियों पर बिन्दु, A1, A2, A3,…. अंकित किए जाते हैं और बिन्दु B को निम्नलिखित से मिलाया जाता है
(i) A12
(ii) A11
(iii) A10
(iv) A9
हल
(ii) A11

प्रश्न 5.
एक रेखाखण्ड AB को 5 : 6 के अनुपात में विभाजित करने के लिए, एक किरण AX खींचिए ताकि ∠BAX एक न्यूनकोण हो, फिर BY किरण AX के समांतर विपरीत दिशा में खींचिए। इसके बाद AX और BY किरणों पर क्रमशः समान दूरियों पर बिन्दु A1, A2, A3, …और B1, B2, B3,… अंकित किए जाएँ। फिर जिन बिन्दुओं को मिलाया जाता है वे हैं
(i) A5 और B6
(ii) A6 और B5
(iii) A4 और B5
(iv) A5 और B4
हल
(i) A5 और B6

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 6.
एक दिए हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ∆ABC की संगत भुजाओं का \(\frac{3}{7}\) हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिन्दु B1, B2, B3,… अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है
(i) B10 को C से
(ii) B3 को C से
(iii) B7 को C से
(iv) B4 को C से
हल
(iii) B7 को C से

प्रश्न 7.
एक दिए हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ∆ABC की संगत भुजाओं का \(\frac{8}{5}\) हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर अंकित किए जाने वाले बिन्दुओं की न्यूनतम संख्या है
(i) 5
(ii) 8
(iii) 13
(iv) 3
हल
(ii) 8

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 8.
किसी वृत्त पर स्पर्श रेखाओं का एक ऐसा युग्म खींचने के लिए कि उनके बीच कोण 60° हों, उन दो त्रिज्याओं के सिरों पर स्पर्श रेखाएँ खींचनी चाहिए जिनके बीच का कोण हो
(i) 135°
(ii) 90°
(iii) 60°
(iv) 120°
हल
(iv) 120°

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
3.0 cm त्रिज्या के वृत्त के किसी बिन्दु P पर स्पर्श रेखा खींचिए।
या
6.0 cm व्यास के एक वृत्त की रचना कीजिए और वृत्त के किसी बिन्दु पर स्पर्शरेखा खींचिए और रचना-विधि लिखिए।
हल
दिया है : एक वृत्त जिसका केन्द्र O तथा व्यास 6.0 cm है।
रचना करनी है : वृत्त के बिन्दु P पर वृत्त की स्पर्शरेखा की
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions VSAQ 1
रचना विधि :
1. सर्वप्रथम O को केन्द्र मानकर \(\frac{6.0}{2}\) = 3.0 cm त्रिज्या का वृत्त खींचा और वृत्त पर कोई बिन्दु P लिया।
2. O को P से मिलाया।
3. बिन्दु P पर PQ ⊥ OP खींचा।
AB वृत्त के बिन्दु A पर अभीष्ट स्पर्श रेखा है। यही रचना करनी थी।

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 2.
ऐसे वृत्त की रचना कीजिए, जिसकी त्रिज्या 3.5 cm तथा जो 5 cm दूरी पर स्थित बिन्दुओं A और B से होकर जाता है।
हल
दिया है : 5 cm दूर स्थित दो बिन्दु A और B हैं।
रचना करनी है : 3.5 cm त्रिज्या के वृत्त की जो A और B बिन्दुओं से होकर जाता है।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions VSAQ 2
रचना विधि :
1. AB का लम्ब समद्विभाजक OM खींचा जो AB को बिन्दु M पर काटता है।
2. A को केन्द्र मानकर तथा 3.5 cm त्रिज्या लेकर एक चाप खींचा जो OM को बिन्दु O पर काटता है।
3. O को केन्द्र मानकर तथा 3.5 cm त्रिज्या लेकर एक वृत्त खींचा जो A और B से होकर जाता है।
यही रचना करनी थी।

लघु उत्तरीय प्रश्न

प्रश्न 1.
चित्र में AB, AC और PQ वृत्त O की स्पर्श रेखाएँ हैं। यदि AB = 5 cm, ∆APQ का परिमाप ज्ञात कीजिए।
हल
किसी बाह्य बिन्दु से वृत्त पर खींची गई स्पर्शियाँ लम्बाई में बराबर होती हैं।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions SAQ 1
AB = AC = 5 cm
इसी प्रकार, PB = PX, QC = QX
त्रिभुज का परिमाप = AP + PQ + QA
= AP + PX + XQ + AQ
= AP + PB + QC + QA
= AB + AC
= 5 + 5
= 10 cm

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 2.
संलग्न चित्र में AQ, AR तथा BC वृत्त के क्रमशः Q, R तथा P बिन्दुओं पर खींची गई स्पर्शियाँ हैं यदि AR = 8 cm है तो ∆ABC का परिमाप ज्ञात कीजिए। हल
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions SAQ 2
किसी बाह्य बिन्दु से वृत्त पर खींची गई स्पर्शियाँ लम्बाई में बराबर होती हैं।
अतः AQ = AR = 8 cm
इसी प्रकार, CP = CR तथा BP = BQ
त्रिभुज का परिमाप = AB + BC + CA
= AB + (BP + PC) + CA
= AB + BQ + CR + AC
= AQ + AR
= 8 + 8
= 16 cm

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
3 cm त्रिज्या का एक वृत्त खींचिए। वृत्त के केन्द्र से 5 cm दूर स्थित एक बिन्दु से वृत्त पर स्पर्श रेखा युग्म की रचना कीजिए और उनकी लम्बाई मापिए।
हल
रचना विधि :
1. सर्वप्रथम 5 cm लम्बाई का रेखाखण्ड OP खींचा।
2. बिन्दु O को केन्द्र मानकर 3 cm त्रिज्या का वृत्त खींचा।
3. OP का लम्बार्धक खींचा जो इसे बिन्दु M पर काटता है।
4. बिन्दु M को केन्द्र मानकर OM त्रिज्या का एक वृत्त खींचा जो केन्द्र O के दिए हुए वृत्त को A और B बिन्दुओं पर काटता है।
5. PA तथा PB को मिलाया जो वृत्त की अभीष्ट स्पर्श रेखाएँ हैं।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 1
उपपत्ति : रेखाखण्ड OA खींचा।
∵ M, OP का मध्य-बिन्दु है जिससे OP व्यास है।
तब, वृत्त OAPB में, ∠OAP, अर्द्धवृत्त OAPO में स्थित है।
∴ ∠OAP = 90°
और OA त्रिज्या है।
तब, AP, त्रिज्या OA पर लम्ब है।
∴ AP वृत्त की स्पर्श रेखा है। इसी प्रकार BP भी वृत्त की स्पर्श रेखा है।
माप करने पर प्रत्येक स्पर्श रेखा की लम्बाई = 4 cm

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 2.
एक दिए गए त्रिभुज ABC के समरूप एक त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज ABC की संगत भुजाओं की \(\frac{3}{4}\) हों।
हल
दिया है : एक त्रिभुज ABC
रचना करनी है : एक अन्य त्रिभुज की जिसकी भुजाएँ त्रिभुज ABC की संगत भुजाओं की \(\frac{3}{4}\) हों।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 2
रचना विधि :
1. BC के बिन्दु B से ∠CBX चित्र की भाँति नीचे की ओर बनाया।
2. BX में से चार समान भाग BB1, B1B2, B2B3 और B3B4 काटे।
3. B4C खींची और B3 से B4C के समान्तर एक रेखा खींची जो BC से C’ पर मिलती है।
4. C’ से AC के समान्तर रेखा C’A’ खींची जो AB से A’ पर मिलती है।
∆ABC’ अभीष्ट त्रिभुज है।

प्रश्न 3.
5 cm, भुजा वाले एक समबाहु त्रिभुज ABC की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac{6}{7}\) गुनी हों।
हल
दिया है : समबाहु ∆ABC में भुजा AB = BC = CA = 5 cm
रचना करनी है : एक समबाहु ∆ABC की तथा इसके समरूप एक ∆ की प्रत्येक भुजा ∆ABC की संगत भुजा की \(\frac{6}{7}\) गुनी हो।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 3
रचना विधि :
1. रेखाखण्ड BC = 5 cm खींचा।
2. B और C को केन्द्र मान कर 5 सेमी के दो चाप लगाए जो एक-दूसरे को A पर काटते हैं।
3. AB और AC को मिलाया। ABC अभीष्ट समबाहु ∆ है।
4. B से न्यूनकोण बनाती हुई रेखा BX खींची। उसमें से BB1, B1B2, B2B3, B3B4, B4B5, B5B6 व B6B7 के 7 समान भाग काटे।
5. ऋजु रेखा CB7 खींची।
6. B6 से CB7 के समान्तर ऋजु रेखा C’B6 खींची।
7. C’ से CA के समान्तर ऋजु रेखा C’A’ खींची जो AB को A’ पर मिलती है जिससे A’B = \(\frac{6}{7}\) AB, ∆A’BC’ अभीष्ट समरूप त्रिभुज है।

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 4.
एक समद्विबाहु त्रिभुज ABC की रचना कीजिए, जिसकी भुजाएँ AB = AC = 4.6 cm और ऊँचाई 3.6 cm। फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी संगत भुजाएँ त्रिभुज ABC की संगत भुजाओं के \(\frac{3}{2}\) गुनी है।
हल
दिया है : समद्विबाहु ∆ABC में AB = AC = 4.6 cm और ऊँचाई = 3.6 cm
रचना करनी है : उक्त समद्विबाहु त्रिभुज की और एक अन्य त्रिभुज की जिसकी भुजाएँ दिए हुए समद्विबाहु त्रिभुज की संगत भुजाओं की \(\frac{3}{2}\) हों।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 4
रचना विधि :
1. रेखा EF खींची।
2. इस पर कोई बिन्दु M लिया। इस पर एक लम्ब MP खींचा। इसमें से MA = 3.6 cm काटा।
3. A को केन्द्र मान कर 4.6 cm दूरी पर दो चाप लगाए जो EF को B और C में काटते हैं।
4. AB और AC को मिलाया। समद्विबाहु त्रिभुज ABC प्राप्त किया।
5. बिन्दु M पर BC से नीचे की ओर न्यूनकोण बनाती हुई रेखा MX खींची।
6. MX में से 3 समान भाग MM1, M1M2, M2M3 खींचे।
7. रेखाखण्ड M2C खींचा और M3 से M2C के समान्तर रेखा खींची जो EF को C’ पर मिलती है।
8. C’ से AC के समान्तर C’A’ खींची जो MP से A’ पर मिलती है।
9. अब A’ से AB के समान्तर A’B’ रेखा खींची जो EF से B’ पर मिलती है।
∆A’B’C’ अभीष्ट त्रिभुज है।

प्रश्न 5.
दो वृत्तों पर जिनकी त्रिज्याएँ 3.2 cm और 1.5 cm हैं और जिनके केन्द्रों के बीच की दूरी 6.2 cm है, उभयनिष्ठ अनुस्पर्श रेखाएँ खींचिए। इन स्पर्श रेखाओं की माप बताइए। गणना द्वारा उत्तर की जाँच कीजिए।
हल
दिया है : 3.2 cm तथा 1.5 cm त्रिज्या के O तथा E केन्द्रीय दो वृत्त जिनके केन्द्रों के बीच की दूरी OE = 6.2 cm है।
अभीष्ट :
(i) दोनों वृत्तों के उभयनिष्ठ अनुस्पर्शी रेखाओं की रचना करनी है।
(ii) उनकी लम्बाई नापकर लिखनी है।
(iii) गणना द्वारा उत्तर की जाँच करनी है।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 5
रचना विधि :
1. सर्वप्रथम रेखाखण्ड OE = 6.2 cm खींचा।
2. O पर 3.2 cm त्रिज्या का वृत्त खींचा तथा E पर 1.5 cm त्रिज्या का वृत्त खींचा।
3. OE को व्यास मानकर एक वृत्त खींचा तथा O को केन्द्र मानकर 3.2 – 1.5 = 1.7 cm त्रिज्या का वृत्त खींचा जो OE व्यास वाले वृत्त को बिन्दुओं C और C’ पर काटता है।
4. OC और OC’ को मिला कर आगे बढ़ाया जो बड़े वृत्त को D तथा D’ बिन्दुओं पर काटती हैं।
5. OD और OD’ के समान्तर छोटे वृत्त के केन्द्र E से क्रमश: EB तथा EB रेखाएँ खींची जो वृत्त को बिन्दुओं B तथा B पर काटती हैं। DB और DB को मिलाया।
नापने पर इनकी लम्बाई 6 cm लगभग है।
यही रचना करनी थी।
गणना द्वारा पुष्टि : उभयनिष्ठ अनुस्पर्शी रेखा की लम्बाई
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 5.1

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions

प्रश्न 6.
दो वृत्तों के केन्द्रों के बीच की दूरी 10 cm है, जिनकी त्रिज्या क्रमशः 4.5 cm व 3.5 cm हैं। वृत्तों की उभयनिष्ठ तिर्यक स्पर्शरेखा खींचिए तथा स्पर्शरेखा की लम्बाई नापकर लिखिए तथा गणना द्वारा उत्तर की जाँच कीजिए।
हल
दिया है : 3.5 cm तथा 4.5 cm त्रिज्या के O तथा E केन्द्रीय दो वृत्त जिनके केन्द्रों के बीच की दूरी OE = 10 cm
अभीष्ट :
(i) दोनों वृत्तों के उभयनिष्ठ तिर्यक स्पर्शरेखाओं की रचना करनी है।
(ii) स्पर्शरेखाओं की लम्बाई नापकर लिखनी है।
(iii) स्पर्शरेखा की लम्बाई गणना द्वारा जाँचनी है।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 6
रचना विधि :
1. सर्वप्रथम रेखाखण्ड OE = 10 cm खींचा।
2. O को केन्द्र मानकर 3.5 cm त्रिज्या का वृत्त तथा E को केन्द्र मानकर 4.5 cm त्रिज्या का वृत्त खींचा।
3. O को केन्द्र मानकर 3.5 + 4.5 = 8 cm त्रिज्या का वृत्त खींचा और OE को व्यास मानकर वृत्त खींचा जो 8 cm त्रिज्या वाले वृत्त को D तथा D’ पर काटता है।
4. OD तथा OD’ को मिलाया जो 3.5 cm त्रिज्या वाले वृत्त को C तथा C’ पर काटती हैं।
5. E से OD के समान्तर EB तथा OD’ के समान्तर EB’ खींची जो E केन्द्र वाले वृत्त को B तथा B बिन्दुओं पर काटती हैं।
6. BC तथा B’C’ को मिलाया। ये ही उभयनिष्ठ तिर्यक स्पर्श रेखा हैं।
नापने पर इनकी लम्बाई 6 cm है।
यही रचना करनी थी।
गणना द्वारा पुष्टि : तिर्यक उभयनिष्ठ स्पर्शरेखा की लम्बाई
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Additional Questions LAQ 6.1

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

Bihar Board Class 10 Maths वृतों से संबंधित क्षेत्रफल Ex 12.3

(जब तक अन्यथा न कहा जाए, π = \(\frac {22}{7}\) का प्रयोग कीजिए)

प्रश्न 1.
दी गई आकृति में छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि PQ = 24 cm, PR = 7 cm तथा O वृत्त का केन्द्र है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q1
हल
दिया है, PQ = 24 cm, PR = 7 cm
O वृत्त का केन्द्र है।
QR व्यास है।
तब, वृत्त की त्रिज्या (r) = \(\frac{Q R}{2}\)
∆PQR समकोणीय होगा क्योंकि अर्द्धवृत्त में बना कोण समकोण होता है।
तब, समकोण ∆PQR में, [∵ ∠QPR = 90°]
पाइथागोरस प्रमेय से,
QR2 = PQ2 + PR2
= (24)2 + (7)2
= 576 + 49
= 625
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q1.1

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 2.
दी गई आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि केन्द्र O वाले दोनों संकेन्द्रीय वृत्तों की त्रिज्याएँ क्रमशः 7 cm और 14 cm हैं तथा ∠AOC = 40° है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q2
हल
दिया है, बड़े वृत्त की त्रिज्या (r1) = 14 cm और छोटे वृत्त की त्रिज्या (r2) = 7 cm
त्रिज्यखण्ड का कोण (θ) = 40°
छायांकित भाग का क्षेत्रफल
= त्रिज्यखण्ड OAC का क्षेत्रफल – त्रिज्यखण्ड OBD का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q2.1
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q2.2
अत: छायांकित भाग का क्षेत्रफल = \(\frac{154}{3}\) cm2

प्रश्न 3.
दी गई आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि ABCD भुजा 14 cm का एक वर्ग है तथा APP और BPC दो अर्द्धवृत्त हैं।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q3
हल
दिया है, वर्ग ABCD की भुजा = 14 cm
वर्ग ABCD का क्षेत्रफल = भुजा2 = 14 × 14 cm2 = 196 cm2
अर्द्धवृत्तों का व्यास = वर्ग ABCD की भुजा
2 × त्रिज्या = 14
⇒ त्रिज्या (r) = 7 cm
दोनों अर्द्धवृत्तों का कुल क्षेत्रफल = \(2 \times \frac{1}{2} \pi r^{2}\)
= πr2
= \(\frac {22}{7}\) × 7 × 7
= 154 cm2
चित्र से स्पष्ट है कि छायांकित भाग का क्षेत्रफल = वर्ग ABCD का क्षेत्रफल – दोनों अर्द्धवृत्तों का क्षेत्रफल
= 196 cm2 – 154 cm2
= 42 cm2
अत: छायांकित भाग का क्षेत्रफल = 42 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 4.
दी गई आकृति में, छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, जहाँ भुजा 12 cm वाले एक समबाहु त्रिभुज OAB के शीर्ष O को केन्द्र मानकर 6 cm त्रिज्या वाला एक वृत्तीय चाप खींचा गया है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q4
हल
दिया है, समबाहु त्रिभुज की भुजा = 12 cm
हम जानते हैं कि समबाहु ΔOAB का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q4.1
दीर्घ त्रिज्यखण्ड का कोण, θ = 360° – 60° = 300°
(∵ समबाहु त्रिभुज का अन्त:कोण 60° का होता है।)
दिया है, वृत्त की त्रिज्या (r) = 6 cm
दीर्घ त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q4.2
छायांकित भाग का सम्पूर्ण क्षेत्रफल = दीर्घ त्रिज्यखण्ड का क्षेत्रफल + समबाहु त्रिभुज का क्षेत्रफल
= (\(\frac{660}{7}\) + 36√3) cm2
अतः सम्पूर्ण छायांकित भाग का क्षेत्रफल = (\(\frac{660}{7}\) + 36√3) cm2

प्रश्न 5.
भुजा 4 cm वाले एक वर्ग के प्रत्येक कोने से 1 cm त्रिज्या वाले वृत्त का एक चतुर्थांश काटा गया है तथा बीच में 2 cm व्यास का एक वृत्त भी काटा गया है जैसा कि आकृति में दर्शाया गया है। वर्ग के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q5
हल
ABCD एक वर्ग है जिसकी प्रत्येक भुजा 4 cm है।
वर्ग का क्षेत्रफल = 4 × 4 = 16 m2
दिया है, वृत्त के एक चतुर्थांश की त्रिज्या (r) = 1 cm
एक चतुर्थांश का क्षेत्रफल = \(\frac{1}{4}\) πr2
चारों चतुर्थांशों का क्षेत्रफल = 4 × \(\frac{1}{4}\) πr2
= πr2
= \(\frac{22}{7}\) × (1)2
= \(\frac{22}{7}\) cm2
दिया है, बीच में काटे गए वृत्त का व्यास = 2 cm
वृत्त की त्रिज्या = 1 cm
वृत्त का क्षेत्रफल = πr2
= \(\frac{22}{7}\) × (1)2
= \(\frac{22}{7}\) cm2
छायांकित भाग का क्षेत्रफल = वर्ग का क्षेत्रफल – (चारों चतुर्थांशों का क्षेत्रफल + वृत्त का क्षेत्रफल)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q5.1
अत: छायांकित भाग का क्षेत्रफल = \(\frac{68}{7}\) cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 6.
एक वृत्ताकार मेजपोश, जिसकी त्रिज्या 32 cm है, के बीच में एक समबाहु त्रिभुज ABC छोड़ते हुए एक डिजाइन बना हुआ है, जैसा कि आकृति में दिखाया गया है। इस छायांकित डिजाइन का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q6
हल
∆ABC एक समबाहु त्रिभुज है।
∠B = 60°
OB तथा OC वृत्ताकार मेजपोश की त्रिज्याएँ हैं।
OB = 32 cm
और ∠OBM = \(\frac{1}{2}\) ∠B = \(\frac{1}{2}\) × 60° = 30°
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q6.1
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q6.2

प्रश्न 7.
दी गई आकृति में, ABCD भुजा 14 cm वाला एक वर्ग है। A, B, C और D को केन्द्र मानकर, चार वृत्त इस प्रकार खींचे गए हैं कि प्रत्येक वृत्त तीन शेष वृत्तों में से दो वृत्तों को बाह्य रूप से स्पर्श करता है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q7
हल
दिया है, वर्ग ABCD की भुजा = 14 cm
अर्थात् AB = BC = CD = DA = 14 cm
वर्ग ABCD का क्षेत्रफल = (भुजा)2 = 14 × 14 = 196 cm2
चित्र से स्पष्ट है कि चारों वृत्तों के चतुर्थांश वर्ग ABCD में समाहित हैं।
चारों वृत्त-चतुर्थांशों का क्षेत्रफल = एक वृत्त का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q7.1
छायांकित भाग का क्षेत्रफल = वर्ग ABCD का क्षेत्रफल – चारों वृत्तीय चतुर्थांशों का क्षेत्रफल
= (196 – 154) cm2
= 42 cm2
अतः छायांकित भाग का क्षेत्रफल = 42 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 8.
आकृति एक दौड़ने का पथ (racing track) दर्शाती है, जिसके बाएँ और दाएँ सिरे अर्द्धवृत्ताकार हैं।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q8
दोनों आन्तरिक समान्तर रेखाखण्डों के बीच की दूरी 60 m है तथा इनमें से प्रत्येक रेखाखण्ड 106 m लम्बा है। यदि यह पथ 10 m चौड़ा है, तो ज्ञात कीजिए :
(i) पथ के आन्तरिक किनारों के अनुदिश एक पूरा चक्कर लगाने में चली गई दूरी
(ii) पथ का क्षेत्रफल।
हल
(i) दिया है, अर्द्धवृत्ताकार पथों की आन्तरिक त्रिज्या (r’) = \(\frac{60}{2}\) m = 30 m
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q8.1
दिया है, प्रत्येक रेखाखण्ड की लम्बाई = 106 m
दोनों आन्तरिक समान्तर रेखाखण्डों की लम्बाई = 106 m + 106 m = 212 m.
पथ के आन्तरिक किनारों के अनुदिश 1 चक्कर की लम्बाई = दोनों अर्द्धवृत्तों की आन्तरिक परिधि + दोनों आन्तरिक समान्तर रेखाखण्डों की लम्बाई
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q8.2
अत: पथ के आन्तरिक किनारों के अनुदिश 1 पूरा चक्कर लगाने में चली गई दूरी = \(\frac{2804}{7}\) m

(ii) वृत्ताकार पथ भागों की आन्तरिक त्रिज्या (r’) = 30 m और पथ चौड़ाई = 10 m
वृत्ताकार पथ भागों की बाह्य त्रिज्या r = (30 + 10) m = 40 m
दोनों वृत्ताकार भागों का क्षेत्रफल = π(r2 – r’2)
= π(r + r’) (r – r’)
= π(40 + 30) (40 – 30)
= \(\frac{22}{7}\) × 70 × 10
= 2200 m2
वृत्ताकार भागों के अतिरिक्त पथ का क्षेत्रफल = 2 × (लम्बाई × पथ की चौड़ाई)
= 2 × (106 × 10)
= 2120 m2
पथ का कुल क्षेत्रफल = (2200 + 2120) m2 = 4320 m2
अत: पथ का क्षेत्रफल = 4320 m2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 9.
आकृति में, AB और CD केन्द्र O वाले एक वृत्त के दो परस्पर व्यास हैं तथा OD छोटे वृत्त का व्यास है। यदि OA = 7 cm है तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q9
हल
बड़े वृत्त की त्रिज्या OA = OD = छोटे वृत्त का व्यास
छोटे वृत्त का व्यास = OD = OA = 7 cm
छोटे वृत्त की त्रिज्या (r) = \(\frac{7}{2}\) cm
छोटे वृत्त का क्षेत्रफल = πr2
= \(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=\frac{77}{2}\)
= 38.5 cm2
अब, अर्द्धवृत्त AOBCA का क्षेत्रफल = \(\frac{1}{2} \pi R^{2}\)
= \(\frac{1}{2} \times \frac{22}{7} \times 7 \times 7\)
= 77 cm2 (∵ OA = R = 7 cm)
∆ABC का क्षेत्रफल = \(\frac{1}{2}\) × AB × OC
= \(\frac{1}{2}\) × (2 × OA) × OA (∵ OC = OA तथा AB = 2OA)
= OA2
= (7)2
= 49 cm
अर्द्धवृत्त AOBCA के छायांकित भाग का क्षेत्रफल = (77 – 49) cm2 = 28 cm2
अतः सम्पूर्ण छायांकित भाग का क्षेत्रफल = (छोटे वृत्त का क्षेत्रफल + अर्द्धवृत्त AOBCA के छायांकित भाग का क्षेत्रफल
= (38.5 + 28)
= 66.5 cm2

प्रश्न 10.
एक समबाहु त्रिभुज ABC का क्षेत्रफल 17320.5 cm2 है। इस त्रिभुज के प्रत्येक शीर्ष को केन्द्र मानकर त्रिभुज की भुजा के आधे के बराबर की त्रिज्या लेकर एक वृत्त खींचा जाता है छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। (π = 3.14 और √3 = 1.73205 लीजिए)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q10
हल
माना वृत्तों की त्रिज्याएँ r cm हैं।
समबाहु त्रिभुज की भुजा = वृत्त का व्यास = 2r cm
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q10.1
समबाहु त्रिभुज का क्षेत्रफल = 17320.5 cm2
अतः त्रिभुज के उस भाग का क्षेत्रफल जो वृत्तों के अन्दर नहीं है = समबाहु त्रिभुज का क्षेत्रफल – त्रिज्यखण्डों का कुल क्षेत्रफल
= 17320.5 – 15700
= 1620.5 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 11.
एक वर्गाकार रूमाल पर नौ वृत्ताकार डिजाइन बने हैं, जिनमें से प्रत्येक की त्रिज्या 7 cm है (आकृति देखिए)। रूमाल के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q11
हल
दिया है, प्रत्येक वृत्त की त्रिज्या (r) = 7 cm
प्रत्येक वृत्त का क्षेत्रफल = πr2
= \(\frac{22}{7}\) × 7 × 7 cm2
= 154 cm2
नौ वृत्ताकार डिजाइनों का क्षेत्रफल = 9 × 154 = 1386 cm2
प्रत्येक वृत्त का व्यास = 2 × 7 = 14 cm
दिए गए चित्र में, प्रत्येक पंक्ति में 3 वृत्त हैं।
वर्गाकार रूमाल की लम्बाई = 3 x एक वृत्त का व्यास = 3 × 14 = 42 cm
वर्गाकार रूमाल का कुल क्षेत्रफल = 42 × 42 cm2 = 1764 cm2
रूमाल के शेष भाग का क्षेत्रफल = रूमाल का कुल क्षेत्रफल – 9 वृत्ताकार डिजाइनों का क्षेत्रफल
= (1764 – 1386) cm2
= 378 cm2
अतः रूमाल के शेष भाग का क्षेत्रफल = 378 cm2

प्रश्न 12.
दी गई आकृति में, OACB केन्द्र O और त्रिज्या 3.5 cm वाले एक वृत्त का चतुर्थांश है। यदि OD = 2 cm है तो निम्नलिखित के क्षेत्रफल ज्ञात कीजिए:
(i) चतुर्थांश OACB
(ii) छायांकित भाग।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q12
हल
दिया है, वृत्ताकार चतुर्थांश की त्रिज्या (r) = 3.5 cm, OD = 2 cm
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q12.1

प्रश्न 13.
दी गई आकृति में, एक चतुर्थांश OPBQ के अन्तर्गत एक वर्ग OABC बना हुआ है। यदि OA = 20 cm है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। (π = 3.14 लीजिए)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q13
हल
दिया है, वर्ग OABC की भुजा, OA = 20 cm
वर्ग OABC का विकर्ण, OB = भुजा√2 = OA√2 = 20√2 cm
चतुर्थांश OPBQ की त्रिज्या (r) = OB = 20√2 cm
चतुर्थांश OPBQ का क्षेत्रफल = \(\frac{1}{4} \pi r^{2}\)
= \(\frac{1}{4}\) × 3.14 × (20√2)2
= \(\frac{1}{4}\) × 3.14 × 20√2 × 20√2
= 628 cm2
और वर्ग OABC का क्षेत्रफल = (भुजा)2 = (OA)2 = (20)2 = 400 cm2
अंत: छायांकित भाग का क्षेत्रफल = (चतुर्थाश OPBQ का क्षेत्रफल – वर्ग OABC का क्षेत्रफल)
= 628 – 400
= 228 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 14.
AB और CD केन्द्र O तथा त्रिज्याओं 21 cm और 7 cm वाले दो संकेन्द्रीय वृत्तों के क्रमशः दो चाप हैं (आकृति देखिए) यदि ∠AOB = 30° है, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q14
हल
दिए गए चित्र में,
त्रिज्यखण्ड OBAO की लम्बाई (r1) = 21 cm
तथा त्रिज्यखण्ड OCDO की लम्बाई (r2) = 7 cm
माना संकेन्द्रीय वृत्तों का त्रिज्यकोण (θ) = 30°
त्रिज्यखण्ड ORAO का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q14.1
त्रिज्यखण्ड OCDO का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q14.2
अत: छायांकित भाग का क्षेत्रफल = दोनों त्रिज्यखण्डों के क्षेत्रफलों का अन्तर
= (त्रिज्यखण्ड OBAO का क्षेत्रफल – त्रिज्यखण्ड OCDO का क्षेत्रफल)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q14.3

प्रश्न 15.
दी गई आकृति में, ABC त्रिज्या 14 सेमी वाले एक वृत्त का चतुर्थांश है तथा BC को व्यास मानकर एक अर्द्धवृत्त खींचा गया है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q15
हल
दिया है, चतुर्थांश ABC की त्रिज्या (r) = 14 cm
चतुर्थांश ABC का क्षेत्रफल = \(\frac{1}{4} \pi r^{2}\)
= \(\frac{1}{4} \times \frac{22}{7} \times 14 \times 14\)
= 154 cm2
समकोण ∆ABC का क्षेत्रफल = \(\frac{1}{2}\) × AC × AB
= \(\frac{1}{2}\) × 14 × 14
= 98 cm2 (∵ AC = r = 14 cm)
समकोण ∆ABC में पाइथागोरस प्रमेय से,
BC2 = AC2 + AB2 = (14)2 + (14)2 = 392 (∵ ∠BAC = 90°)
BC = √392 = 14√2 cm
अर्द्धवृत्त का व्यास BC = कर्ण BC की लम्बाई = 14√2 cm
अर्द्धवृत्त की त्रिज्या (R) = 7√2 cm
अर्द्धवृत्त का क्षेत्रफल = \(\frac{1}{2} \pi R^{2}\)
= \(\frac{1}{2} \times \frac{22}{7} \times 7 \sqrt{2} \times 7 \sqrt{2}\)
= 154 cm2
छायांकित भाग का क्षेत्रफल = BC व्यास वाले अर्द्धवृत्त का क्षेत्रफल – (चतुर्थांश ABC का क्षेत्रफल – समकोण ΔABC का क्षेत्रफल)
= समकोण ∆ABC का क्षेत्रफल + अर्द्धवृत्त का क्षेत्रफल – चतुर्थांश ABC का क्षेत्रफल
= (98 + 154 – 154) cm2
= 98 cm2
अत: छायांकित भाग का क्षेत्रफल = 98 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3

प्रश्न 16.
दी गई आकृति में, छायांकित डिजाइन का क्षेत्रफल ज्ञात कीजिए, जो 8 cm त्रिज्याओं वाले दो वृत्तों के चतुर्थांशों के बीच उभयनिष्ठ है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q16
हल
ध्यान दीजिए दो समान त्रिज्यखण्डों को मिलाने 8 सेमी पर दी गई आकृति प्राप्त होती है और लूप परस्पर आच्छादित करते हैं।
दिया है, चतुर्थांशों की त्रिज्याएँ (r) = 8 cm
तथा चतुर्थांश का कोण (θ) = 90°
एक चतुर्थांश का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3 Q16.1
इसी प्रकार, दूसरे चतुर्थांश का क्षेत्रफल = \(\frac{352}{7}\) cm2
दोनों चतुर्थाशों का क्षेत्रफल = \(\left(\frac{352}{7}+\frac{352}{7}\right)\) cm2 = \(\frac{704}{7}\) cm2
इसमें वर्ग का क्षेत्रफल समाहित है और लूप के क्षेत्र परस्पर आच्छादित हैं।
लूप का क्षेत्रफल + वर्ग का क्षेत्रफल = दोनों चतुर्थांशों का क्षेत्रफल
⇒ लूप का क्षेत्रफल + (8)2 cm2 = \(\frac{704}{7}\) cm2
⇒ लूप का क्षेत्रफल = (\(\frac{704}{7}\) – 64) cm2
= \(\frac{704-448}{7}\) cm2
= \(\frac{256}{7}\) cm2
अत: छायांकित डिजाइन (लूप) का क्षेत्रफल = \(\frac{256}{7}\) cm2

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

Bihar Board Class 10 Maths रचनाएँ Ex 11.2

निम्न में से प्रत्येक के लिए रचना का औचित्य भी दीजिए-

प्रश्न 1.
6 cm त्रिज्या का एक वृत्त खींचिए। केन्द्र से 10 cm दूर एक बिन्दु से वृत्त पर स्पर्श रेखा-युग्म की रचना कीजिए और उनकी लम्बाइयाँ मापकर लिखिए।
हल
दिया है : 6 cm त्रिज्या का एक वृत्त और उसके केन्द्र O से 10 cm दूरी पर एक बिन्दु P.
रचना करनी है : वृत्त के स्पर्श रेखा-युग्म की।
रचना विधि :
1. सर्वप्रथम बिन्दु O को केन्द्र मानकर 6 cm त्रिज्या का एक वृत्त खींचा।
2. वृत्त के केन्द्र O से 10 cm की दूरी पर एक बिन्दु P लिया।
3. OP को मिलाया।
4. OP को व्यास मानकर एक वृत्त खींचा जिसने केन्द्र O वाले वृत्त को T1 और T2 बिन्दुओं पर काटा।
5. PT1 और PT2 को मिलाया जो वृत्त की अभीष्ट स्पर्श रेखाएँ हैं।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q1
मापने पर : PT1 = PT2 = 8.0 cm
उपपत्ति : रेखाखण्ड OT1 व OT2 खींचिए।
∵ OP व्यास है।
∴ OT1P तथा OT2P अर्द्धवृत्त हैं
∵ ∠OT1P, अर्द्धवृत्त OT1P में तथा ∠OT2P, अर्द्धवृत्त ∠OT2P में स्थित हैं।
∠OT1P = 90° तथा ∠OT2P = 90°
∵ OT1 और OT2, केन्द्र O वाले वृत्त की त्रिज्याएँ हैं जिनके सिरों T1 व T2 पर T1P तथा T2P समकोण बनाती हैं।
अत: PT1 तथा PT2 स्पर्श रेखाएँ हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

प्रश्न 2.
4 cm त्रिज्या के एक वृत्त पर 6 cm त्रिज्या के एक संकेन्द्रीय वृत्त के किसी बिन्दु से एक स्पर्श रेखा की रचना कीजिए और उसकी लम्बाई मापिए। परिकलन से इस माप की जाँच भी कीजिए।
हल
दिया है : 4 cm त्रिज्या का एक वृत्त और 6 cm त्रिज्या का एक संकेन्द्रीय वृत्त जिस पर एक बिन्दु P है।
रचना करनी है : 4 cm त्रिज्या वाले वृत्त की स्पर्श रेखाओं की।
रचना विधि :
1. 4 cm त्रिज्या लेकर केन्द्र O वाला एक वृत्त खींचा।
2. केन्द्र O से 6 cm त्रिज्या का एक संकेन्द्रीय वृत्त खींचा और इस पर एक बिन्दु लिया।
3. रेखाखण्ड OP खींचा और इसका लम्ब समद्विभाजक खींचा जो OP को बिन्दु M पर काटता है।
4. केन्द्र M से OP व्यास का एक वृत्त खींचा जो केन्द्र O के 4 cm त्रिज्या वाले वृत्त को T1 तथा T2 पर काटता है।
5. रेखाखण्ड PT1 तथा PT2 खींचा।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q2
PT1 तथा PT2 अभीष्ट स्पर्श रेखाएँ हैं।
मापने पर : PT1 = 4.5 cm तथा PT2 = 4.5 cm
परिकलन :
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q2.1
औचित्य : ∠OT1P = ∠OT2P = 90°
∵ दोनों कोण OP व्यास वाले वृत्त के अन्दर अर्द्धवृत्त के कोण हैं।
∴ OT1 ⊥ PT1, OT2 ⊥ PT2
अत: रेखाएँ PT1 व PT2 अभीष्ट स्पर्शियाँ हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

प्रश्न 3.
3 cm त्रिज्या का एक वृत्त खींचिए। इसके किसी बढ़ाए गए व्यास पर केन्द्र से 7 cm की दूरी पर स्थित दो बिन्दु P और Q लीजिए। इन दोनों बिन्दुओं से वृत्त पर स्पर्श रेखाएँ खींचिए।
हल
दिया है : एक वृत्त जिसका केन्द्र 0 है तथा त्रिज्या 3 cm है। AOB वृत्त का एक व्यास है जिसको इस प्रकार बिन्दुओं P व Q तक बढ़ाया गया है कि वृत्त के केन्द्र O से प्रत्येक बिन्दु P व Q की दूरियाँ OP व OQ = 7 cm हैं।
रचना करनी है : बिन्दुओं P व Q से वृत्त की स्पर्श रेखाओं की।
रचना विधि :
1. O केन्द्र वाला 3 cm त्रिज्या का एक वृत्त खींचा।
2. इसका व्यास AOB खींचा और इसे दोनों ओर क्रमश: P व Q तक इस प्रकार बढ़ाया कि OP = OQ = 7 cm
3. OP व OQ के मध्य बिन्दु क्रमश: M1 व M2 ज्ञात किए।
4. केन्द्र M1 से M1O त्रिज्या का एक वृत्त खींचा जो O केन्द्र वाले वृत्त को बिन्दुओं T1 व T2 पर काटता है।
5. रेखाखण्ड PT1 व PT2 खींचे।
6. केन्द्र M2 से M2O त्रिज्या का एक वृत्त खींचा जो O केन्द्र वाले वृत्त को बिन्दुओं S1 व S2 पर काटता है।
7. रेखाखण्ड QS1 तथा QS2 खींचे।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q3
रेखाखण्ड PT1, PT2, QS1 व QS2 अभीष्ट स्पर्श रेखाएँ हैं।
उपपत्ति : केन्द्र O वाले वृत्त की त्रिज्याएँ OT1, OT2, OS1 व OS2 खींची।
∵ केन्द्र M वाले वृत्त में ∠OT1P व ∠OT2P अर्द्धवृत्तों में स्थित कोण हैं।
∴ ∠OT1P व ∠OT2P समकोण हैं जो क्रमशः त्रिज्याओं OT1 व OT2 के सिरों T1 व T2 पर स्थित हैं।
∴ PT1 व PT2 केन्द्र O वाले वृत्त की स्पर्श रेखाएँ हैं।
इसी प्रकार, QS1 व QS2 भी केन्द्र O वाले वृत्त की स्पर्शरेखाएँ हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

प्रश्न 4.
5 cm त्रिज्या के एक वृत्त पर ऐसी दो स्पर्श रेखाएँ खींचिए, जो परस्पर 60° के कोण पर झकी हों।
हल
दिया है : एक वृत्त जिसका केन्द्र O है तथा त्रिज्या 5 cm है।
रचना करनी है : वृत्त की दो स्पर्श रेखाओं की जिनके बीच का कोण 60° हो।
विश्लेषण : माना वृत्त का केन्द्र O तथा PT और BT इसकी दो स्पर्श रेखाएँ हैं जिनके बीच का कोण 60° है।
∵ ∠PTB = 60°
∴ ∠POB = 180° – 60° = 120°
⇒ ∠POA = 60°
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q4
रचना विधि :
1. बिन्दु O को केन्द्र मानकर 5 cm त्रिज्या का एक वृत्त खींचा।
2. वृत्त का एक व्यास AB खींचा।
3. बिन्दु O पर OA से 60° का कोण बनाती हुई एक रेखा OP खींची जो वृत्त को बिन्दु P पर काटती है।
4. बिन्दु B पर OB के लम्बवत् एक रेखा खींची तथा बिन्दु P पर OP के लम्बवत् एक रेखा खींची। दोनों रेखाएँ एक-दूसरे को बिन्दु T पर काटती हैं।
अत: PT और BT वृत्त की दो अभीष्ट स्पर्श रेखाएँ हैं जो एक-दूसरे के साथ 60° का कोण बनाती हैं।
औचित्य : उपर्युक्त विश्लेषण ही अभीष्ट औचित्य है।

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

प्रश्न 5.
8 cm लम्बा एक रेखाखण्ड AB खींचिए। A को केन्द्र मानकर 4 cm त्रिज्या का एक वृत्त तथा B को केन्द्र मानकर 3 cm त्रिज्या का एक अन्य वृत्त खींचिए। प्रत्येक वृत्त पर दूसरे वृत्त के केन्द्र से स्पर्श रेखाओं की रचना कीजिए।
हल
दिया है : रेखाखण्ड AB = 8.0 cm। केन्द्र A से 4 cm त्रिज्या का एक वृत्त खींचा गया है तथा केन्द्र B से 3 cm त्रिज्या का एक अन्य वृत्त खींचा गया है।
रचना करनी है : केन्द्र बिन्दु A से केन्द्र B वाले वृत्त की दो स्पर्श रेखाओं तथा बिन्दु B से केन्द्र A वाले वृत्त की दो स्पर्श रेखाओं की।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q5
रचना विधि:
1. रेखाखण्ड AB= 8 cm खींचा।
2. केन्द्र A से 4 cm त्रिज्या का एक वृत्त खींचा और केन्द्र B से 3 cm त्रिज्या का एक वृत्त खींचा।
3. AB का मध्य बिन्दु M ज्ञात किया।
4. M को केन्द्र मानकर AB व्यास का एक वृत्त खींचा जो A केन्द्र वाले वृत्त को बिन्दुओं S1 व S2 पर तथा B केन्द्र वाले वृत्त को बिन्दुओं T1 व T2 पर काटता है।
5. रेखाखण्ड S1B व S2B तथा AT1 व AT2 खींचे।
S1B व S2B केन्द्र A वाले वृत्त की तथा AT1 व AT2 केन्द्र B वाले वृत्त की स्पर्श रेखाएँ हैं।
उपपत्ति : ∵ केन्द्र M वाले वृत्त का AB व्यास है।
∴ ∠AS1B, ∠AS2B, ∠AT1B व ∠AT2B अर्द्धवृत्त के कोण हैं। अत: प्रत्येक समकोण है।
रेखाखण्ड AS1 व AS2 केन्द्र A वाले वृत्त और BT1 व BT2 केन्द्र B वाले वृत्त की त्रिज्याएँ हैं।
∴ S1B व S2B केन्द्र A वाले वृत्त और AT1 व AT2 केन्द्र B वाले वृत्त की स्पर्श रेखाएँ हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

प्रश्न 6.
ABC एक समकोण त्रिभुज है, जिसमें AB = 6 cm, BC = 8 cm तथा ∠B = 90° है। B से AC पर BD लम्ब है। बिन्दुओं B, C व D से होकर जाने वाला एक वृत्त खींचा गया है। A से इस वृत्त पर स्पर्श रेखा की रचना कीजिए।
हल
दिया है : एक समकोण त्रिभुज ABC में AB = 6 cm, BC = 8 cm तथा ∠B = 90°| B से भुजा AC पर BD लम्ब खींचा गया है।
रचना करनी है : एक ऐसे वृत्त की जो बिन्दुओं B, C तथा D से होकर जाता है और बिन्दु A से इस वृत्त की स्पर्श रेखा की।
रचना विधि :
1. सर्वप्रथम दिए गए समकोण त्रिभुज ABC की रचना की।
2. बिन्दु B से AC पर लम्ब खींचा जो AC को D पर मिलता है।
3. ∆BCD की भुजाओं BD तथा CD के लम्ब समद्विभाजक खींचे जो परस्पर बिन्दुओं O पर काटते हैं।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q6
4. O को केन्द्र मानकर OB त्रिज्या से एक वृत्त खींचा जो बिन्दुओं B, C व D से होकर जाएगा।
5. AB स्वयं स्पर्श रेखा है; अत: A को केन्द्र BP मानकर AB त्रिज्या से चाप खींचे जो वृत्त को बिन्दु P पर काटते हैं।
AP अभीष्ट स्पर्श रेखा है।
औचित्य : ∠ABC = 90°, अत: रेखा AB स्वयं स्पर्श रेखा है।
AP = AB अतः रेखा AB, बिन्दु A से खींची गई दूसरी स्पर्श-रेखा है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2

प्रश्न 7.
किसी चूड़ी की सहायता से एक वृत्त खींचिए। वृत्त के बाहर एक बिन्दु लीजिए। इस बिन्दु से वृत्त पर स्पर्श रेखाओं की रचना कीजिए।
हल
दिया है : एक वृत्त जिसका केन्द्र ज्ञात नहीं है। वृत्त के बाहर एक बिन्दु P है।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.2 Q7
रचना करनी है : बिन्दु P से वृत्त की स्पर्श रेखाओं की।
रचना विधि :
1. बिन्दु P से ABP तथा CDP दो छेदक रेखाएँ खींची।
2. जीवाओं AB व CD के लम्ब समद्विभाजक खींचे जो परस्पर बिन्दु O पर काटते हैं। बिन्दु O दिए गए वृत्त का केन्द्र होगा।
3. रेखाखण्ड OP खींचा और इसका मध्य बिन्दु M ज्ञात किया।
4. M को केन्द्र मानकर MO त्रिज्या (OP व्यास) का वृत्त खींचा जो दिए गए वृत्त को क्रमश: बिन्दुओं T1 व T2 पर काटता है।
5. रेखाखण्ड PT1 व PT2 खींचे।
रेखाखण्ड PT1 व PT2 अभीष्ट स्पर्श रेखाएँ हैं।
औचित्य : केन्द्र O के बिन्दुओं T1 व T2 से मिलाया।
∠OT1P = ∠OT2P = 90° (अर्द्धवृत्त के कोण हैं)
∴ रेखाएँ PT1 व PT2 अभीष्ट स्पर्शियाँ हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

Bihar Board Class 10 Maths रचनाएँ Ex 11.1

निम्नलिखित में से प्रत्येक के लिए रचना का औचित्य भी दीजिए।

प्रश्न 1.
7.6 cm लम्बा एक रेखाखण्ड खींचिए और इसे 5 : 8 के अनुपात में विभाजित कीजिए। दोनों भागों को मापिए।
हल
दिया है : रेखाखण्ड AB = 7.6 cm
रचना करनी है : रेखा AB को 5 : 8 में विभाजित करने की।
रचना विधि :
1. रेखाखण्ड AB = 7.6 cm खींचा।
2. रेखाखण्ड AB पर बिन्दु A से न्यूनकोण बनाती हुई एक ऋजु रेखा AX खींची।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q1
3. रेखा AX में से समान लम्बाई के (5 + 8 = 13) भाग AA1, A1A2, A2A3, A3A4, A4A5, A5A6, A6A7, A7A8, A8A9, A9A10, A10A11, A11A12 व A12A13 खण्ड काटे।
4. रेखाखण्ड AB खींचा।
5. बिन्दु A5 से A13B के समान्तर रेखा A5P खींची जो AB को बिन्दु P पर काटती है।
AP तथा PB, रेखाखण्ड AB के अभीष्ट भाग हैं जो 5 : 8 के अनुपात में हैं।
औचित्य ( उपपत्ति) :
∆AA5P तथा ∆AA13B में A5P || A13B
अतः ये त्रिभुज परस्पर समरूप हैं।
∴ AA5 : A5A13 = AP : PB
परन्तु AA5 : A5A13 = 5 : 8
∴ AP : PB = 5 : 8
मापने पर : AP = 2.9 cm व PB = 4.7 cm

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 2.
4 cm, 5 cm और 6 cm भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर इसके समरूप एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की \(\frac{2}{3}\) गुनी हों।
हल
दिया है : ∆ABC में भुजा AB = 4.0 cm, BC = 5.0 cm तथा CA = 6.0 cm
रचना करनी है : ∆ABC के समरूप एक ∆A’BC’ की जिसकी प्रत्येक भुजा ∆ABC की संगत भुजा की \(\frac{2}{3}\) हो।
रचना विधि :
1. ऋजु रेखा BC = 5.0 cm खींची।
2. B को केन्द्र मानकर 4.0 cm त्रिज्या से और C को केन्द्र मानकर 6.0 cm त्रिज्या से चाप लगाए जो परस्पर A पर काटते हैं।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q2
3. ऋजु रेखाओं AB तथा AC को पूरा किया।
4. B से एक ऋजु रेखा BD खींचकर उसमें से BB1, BB2, BB3 तीन समान भाग काटे।
5. ऋजु रेखा CB3 खींची।
6. B2 से CB3 के समान्तर ऋजु रेखा C’B2 खींची जिससे
BC’ = \(\frac{2}{3}\) BC
7. C’ से CA के समान्तर ऋजु रेखा C’A’ खींची जो AB को A’ पर मिलती है जिससे
A’B = \(\frac{2}{3}\) AB
∆A’BC’अभीष्ट समरूप त्रिभुज है।
औचित्य : ∆BB2C’ व ∆BB3C में, B2C’ || B3C
ये त्रिभुज समरूप हैं,
BC’ : BC = BB2 : BB3
परन्तु BB2 : BB3 = 2 : 3
BC’ : BC = 2 : 3
⇒ BC’ = \(\frac{2}{3}\) BC
इसी प्रकार ∆BC’A’ व ∆BCA समरूप हैं।
BA’ : BA = C’A’ : CA = BC’ : BC = 2 : 3
अत: ∆BC’A’ दिए गए त्रिभुज के समरूप है जिसकी भुजाएँ मूल त्रिभुज की भुजाओं की \(\frac{2}{3}\) हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 3.
5 cm, 6 cm और 7 cm भुजाओं वाले एक त्रिभुज की रचना कीजिए फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की \(\frac{7}{5}\) गुनी हों।
हल
दिया है : 5 cm, 6 cm, 7 cm भुजाओं वाला एक त्रिभुज।
रचना करनी है : उपर्युक्त त्रिभुज के समरूप एक अन्य त्रिभुज की जिसकी प्रत्येक भुजा दिए त्रिभुज की प्रत्येक संगत भुजा का \(\frac{7}{5}\) वाँ भाग हो।
रचना विधि :
1. रेखाखण्ड BC = 6 cm खींचा।
2. B को केन्द्र मानकर 5 cm त्रिज्या से एवं C को केन्द्र मानकर 7 cm त्रिज्या के चाप खींचे जो परस्पर A पर काटते हैं।
3. रेखाखण्ड AB तथा AC खींचकर दिया हुआ त्रिभुज ABC प्राप्त किया।
4. बिन्दु B से रेखा BD खींची और उसमें से BB1, B1B2, B2B3, B3B4, B4B5, B5B6 तथा B6B7 सात समान भाग काटे।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q3
5. रेखाखण्ड CB खींचा।
6. B7 से रेखा B7C’ || B5C खींची जो BC को बढ़ाने पर C’ पर काटती है जिससे BC’ = \(\frac{7}{5}\) BC
7. C’ से C’A’ || CA खींची जो BA को बढ़ाने पर इसे A पर काटे जिससे A’B = \(\frac{7}{5}\) AB
∆A’BC’ अभीष्ट समरूप त्रिभुज है।
औचित्य : ∆BB2C’ व ∆BB3C में, B2C’ || B3C
ये त्रिभुज समरूप हैं,
BC’ : BC = BB2 : BB3
परन्तु BB2 : BB3 = 7 : 5
BC’ : BC = 7 : 5
⇒ BC’ = \(\frac{7}{5}\) BC
इसी प्रकार ∆BC’A’ व ∆BCA समरूप हैं।
BA’ : BA = C’A’ : CA = BC’ : BC = 7 : 5
अत: ∆BC’A’ दिए गए त्रिभुज के समरूप है जिसकी भुजाएँ मूल त्रिभुज की भुजाओं की \(\frac{7}{5}\) हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 4.
आधार 8 cm तथा ऊँचाई 4 cm के एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ इस समद्विबाहु त्रिभुज की संगत भुजाओं की 1\(\frac{1}{2}\) गुनी हों।
हल
दिया है : 8 cm आधार और 4 cm ऊँचाई का एक समद्विबाहु त्रिभुज।
रचना करनी है : उक्त समद्विबाहु त्रिभुज की और एक अन्य त्रिभुज की जिसकी भुजाएँ दिए हुए समद्विबाहु त्रिभुज की संगत भुजाओं की \(\frac{3}{2}\) हों।
रचना विधि :
1. रेखाखण्ड AB = 8 cm खींचा।
2. रेखाखण्ड AB का लम्ब समद्विभाजक खींचा जो AB को M पर काटता है।
3. M को केन्द्र मानकर समद्विभाजक में से MA = 4 cm काटा।
4. रेखाखण्ड AB व AC खींचकर समद्विबाहु त्रिभुज ABC प्राप्त किया।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q4
5. BC को दोनों ओर बढ़ाया।
6. बिन्दु M पर BC से नीचे की ओर न्यूनकोण बनाती हुई रेखा MX खींची।
7. MX में से 3 समान भाग MM1, M1M2, M2M3 खींचे।
8. रेखाखण्ड M2C खींचा और M3 से M2C के समान्तर रेखा खींची जो बढ़ी हुई BC में C’ पर मिलती है।
9. C’ से AC के समान्तर C’A’ खींची जो MA से बिन्दु A’ पर मिलती है।
10. अब A से AB के समान्तर AB’ खींची जो बढ़ी हुई CB से B’ पर मिलती है।
ΔABC’ अभीष्ट त्रिभुज है।
औचित्य : ∆BB2C’ व ∆BB3C में, B2C’ || B3C
ये त्रिभुज समरूप हैं,
BC’ : BC = BB2 : BB3
परन्तु BB2 : BB3 = 3 : 2
BC’ : BC = 3 : 2
⇒ BC’ = \(\frac{3}{2}\) BC
इसी प्रकार ∆BC’A’ व ∆BCA समरूप हैं।
BA’ : BA = C’A’ : CA = BC’ : BC = 3 : 2
अत: ∆BC’A’ दिए गए त्रिभुज के समरूप है जिसकी भुजाएँ मूल त्रिभुज की भुजाओं की \(\frac{3}{2}\) हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 5.
एक त्रिभुज ABC बनाइए जिसमें BC = 6 cm, AB = 5 cm और ∠ABC = 60° हो। फिर एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac{3}{4}\) गुनी हों।
हल
दिया है : एक त्रिभुज ABC जिसकी भुजा AB = 5 cm, BC = 6 cm और ∠ABC = 60° हैं।
रचना करनी है : एक अन्य त्रिभुज की जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac{3}{2}\) गुनी हों।
रचना विधि :
1. रेखाखण्ड BC = 6 cm खींचा।
2. BC के बिन्दु B पर BC से 60° का B कोण बनाती हुई रेखा BY खींची।
3. BY में से AB = 5 cm काटी और रेखाखण्ड AC को खींचकर त्रिभुज ABC प्राप्त किया।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q5
4. BC के दूसरी ओर बिन्दु B से BC पर न्यूनकोण बनाती हुई रेखा BX खींची।
5. BX में से चार समान भाग BB1, B1B2, B2B3 और B3B4 खींचे।
6. B4C खींची और B3 से B4C के समान्तर एक रेखा खींची जो BC से C” पर मिलती है।
7. C’ से AC के समान्तर रेखा C’A’ खींची जो AB से A’ पर मिलती है।
∆A’BC’ अभीष्ट त्रिभुज है।
औचित्य : ∆BB2C’ व ∆BB3C में, B2C’ || B3C
ये त्रिभुज समरूप हैं,
BC’ : BC = BB2 : BB3
परन्तु BB2 : BB3 = 3 : 4
BC’ : BC = 3 : 4
⇒ BC’ = \(\frac{3}{4}\) BC
इसी प्रकार ∆BC’A’ व ∆BCA समरूप हैं।
BA’ : BA = C’A’ : CA = BC’ : BC = 3 : 4
अत: ∆BC’A’ दिए गए त्रिभुज के समरूप है जिसकी भुजाएँ मूल त्रिभुज की भुजाओं की \(\frac{3}{4}\) हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 6.
एक त्रिभुज ABC बनाइए जिसमें BC = 7 cm, ∠B = 45° व ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ ∆ABC की भुजाओं की \(\frac{4}{3}\) गुनी हों।
हल
दिया है : ∆ABC जिसमें BC = 7 cm, ∠B = 45° व ∠A = 105°
रचना करनी है : एक अन्य त्रिभुज की जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac{4}{3}\) गुनी हो।
रचना विधि :
1. रेखाखण्ड BC =7 cm खींचा।
2. BC के बिन्दु B पर BC से 45° का कोण बनाती हुई एक रेखा BZ खींची।
3. BC के दूसरी ओर B पर BC से 105° के कोण पर रेखा BD खींची।
4. BD के बिन्दु B पर BD से समकोण बनाती हुई एक रेखा BX खींची।
5. BC का लम्ब समद्विभाजक खींचा जो Bx को बिन्दु O पर काटती है।
6. O को केन्द्र मानकर OB त्रिज्या से वृत्तखण्ड BAC खींचा जो BZ को बिन्दु A पर काटता है।
7. AC को मिलाकर ∆ABC प्राप्त किया।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q6
8. BX में से 4 समान खण्ड BB1, B1B2, B2B3 व B3B4 खींचे।
9. रेखाखण्ड B3C खींचा।
10. बिन्दु B4 से B4C’ समान्तर BC खींची जो बढ़ी हुई BC को C’ पर काटती है।
11. C’ से C’A’ समान्तर AC खींची जो BZ को A’ पर काटती है।
∆A’BC’ अभीष्ट त्रिभुज है।
औचित्य : क्योंकि BB4, BB3 की \(\frac{4}{3}\) गुनी है और BC || B4C’
∴ BC’, BC की \(\frac{4}{3}\) गुनी होगी।
∵ A’C’ || AC और BC’ = \(\frac{4}{3}\) BC
∴ A’B भी AB की \(\frac{4}{3}\) गुनी है।
∴ \(\frac{A^{\prime} B}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B C^{\prime}}{B C}=\frac{4}{3}\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1

प्रश्न 7.
एक समकोण त्रिभुज की रचना कीजिए जिसकी भुजाएँ (कर्ण के अतिरिक्त) 4 cm व 3 cm लम्बाई की हों। फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की \(\frac{5}{3}\) गुनी हों।
हल
दिया है : समकोण त्रिभुज जिसकी समकोण बनाने वाली भुजाएँ 3 cm व 4 cm हों।
रचना करनी है : एक अन्य त्रिभुज की जिसकी भुजाएँ उक्त समकोण त्रिभुज की संगत भुजाओं की \(\frac{5}{3}\) गुनी हों।
रचना विधि :
1. रेखाखण्ड BC = 4 cm खींचा।
2. BC के बिन्दु B से BC पर लम्ब BY खींचा और उसमें से BA (या AB) = 3 cm काटी।
3. AC को मिलाया। इस प्रकार ∆ABC प्राप्त होगा।
4. BC के बिन्दु B पर BC से न्यूनकोण बनाती हुई रेखा BX खींची।
5. BX में से 5 समान भाग BB1, B1B2, B2B3, B3B4 व B4B5 काटी।
6. B3C को मिलाया।
Bihar Board Class 10 Maths Solutions Chapter 11 रचनाएँ Ex 11.1 Q7
7. B5 से B5C के समान्तर रेखा B5C’ खींची जो बढ़ी हुई BC से C’ पर मिलती है।
8. C’ से C’A’ || CA खींची जो BY से A’ पर मिलती है।
∆A’BC’अभीष्ट त्रिभुज है।
औचित्य : ∵ BB5, BB3 की \(\frac{5}{3}\) गुनी है और B3C || B5C
BC’ = \(\frac{5}{3}\) BC और BC’ = \(\frac{5}{3}\) BC
तथा AC || AC’
A’B = \(\frac{5}{3}\) AB
अतः भुजाएँ A’B, BC’ व C’A’ क्रमश: AB, BC व CA की \(\frac{5}{3}\) गुनी है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

Bihar Board Class 10 Maths वृतों से संबंधित क्षेत्रफल Ex 12.2

(जब तक अन्यथा न कहा जाए, π = \(\frac {22}{7}\) का प्रयोग कीजिए)

प्रश्न 1.
6 cm त्रिज्या वाले एक वृत्त के एक त्रिज्यखण्ड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण 60° है।
हल
वृत्त की त्रिज्या (r) = 6 cm
त्रिज्यखण्ड का कोण (θ) = 60°
तब, त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q1
अत: त्रिज्यखण्ड का क्षेत्रफल = 18.86 cm2 (लगभग) या \(\frac{132}{7}\) cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 2.
एक वृत्त के चतुर्थांश (quadrant) का क्षेत्रफल ज्ञात कीजिए जिसकी परिधि 22 cm है।
हल
दिया है, वृत्त की परिधि (2πr) = 22 cm
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q2
अत: अभीष्ट क्षेत्रफल = 9.625 cm2

प्रश्न 3.
एक घड़ी की मिनट की सुई की लम्बाई 14 cm है। इस सुई द्वारा 5 मिनट में रचित क्षेत्रफल ज्ञात कीजिए।
हल
मिनट की सुई 1 घण्टे या 60 मिनट में 1 पूरा चक्कर लगाती है
मिनट की सुई 1 मिनट में लगाएगी = \(\frac{1}{60}\) चक्कर
मिनट की सुई 5 मिनट में लगाएगी = \(\frac{1}{60}\) × 5 चक्कर = \(\frac{1}{12}\) चक्कर
मिनट की सुई द्वारा आच्छादित वृत्त की त्रिज्या (r) = 14 cm
तब, सुई द्वारा रचित क्षेत्रफल = \(\frac{1}{12}\) πr2
= \(\frac{1}{12} \times \frac{22}{7} \times(14)^{2}\) cm2
= \(\frac{154}{3}\) cm2
अतः अभीष्ट क्षेत्रफल = \(\frac{154}{3}\) cm2 = 51\(\frac{1}{3}\) cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 4.
10 cm त्रिज्या वाले एक वृत्त की कोई जीवा केन्द्र पर एक समकोण अन्तरित करती है। निम्नलिखित के क्षेत्रफल ज्ञात कीजिए-
(i) संगत लघु वृत्तखण्ड
(ii) संगत त्रिज्यखण्ड (π = 3.14 का प्रयोग कीजिए)।
हल
(i) वृत्त की त्रिज्या (r) = 10 cm
जीवा द्वारा केन्द्र पर अन्तरित कोण (θ) = 90°
संगत लघ वत्तखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q4
अतः संगत लघु वृत्तखण्ड का क्षेत्रफल = 28.5 cm2

(ii) संगत त्रिज्यखण्ड का क्षेत्रफल = वृत्त का क्षेत्रफल – लघु वृत्तखण्ड का क्षेत्रफल
= πr2 – 28.5
= 3.14 × (10)2 – 28.5
= 314 – 28.5
= 285.5
अत: संगत त्रिज्यखण्ड का क्षेत्रफल = 285.5 cm2

प्रश्न 5.
त्रिज्या 21 cm वाले वृत्त का एक चाप केन्द्र पर 60° का कोण अन्तरित करता है। ज्ञात कीजिए-
(i) चाप की लम्बाई,
(ii) चाप द्वारा बनाए गए त्रिज्यखण्ड का क्षेत्रफल,
(iii) संगत जीवा द्वारा बनाए गए वृत्तखण्ड का क्षेत्रफल।
हल
दिया है, वृत्त की त्रिज्या (r) = 21 cm
तथा चाप द्वारा केन्द्र पर बना कोण (θ) = 60°
(i) चाप की लम्बाई (l)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q5
अतः चाप की लम्बाई (l) = 22 cm

(ii) चाप द्वारा बनाए गए त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q5.1
अत: अभीष्ट त्रिज्यखण्ड का क्षेत्रफल = 231 cm2

(iii) संगत जीवा द्वारा बने वृत्तखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q5.2
अत: अभीष्ट वृत्तखण्ड का क्षेत्रफल = 40.05 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 6.
15 cm त्रिज्या वाले एक वृत्त की कोई जीवा केन्द्र पर 60° का कोण अन्तरित करती है। संगत लघु और दीर्घ वृत्तखण्डों के क्षेत्रफल ज्ञात कीजिए। (π = 3.14 और √3 = 1.73) का प्रयोग कीजिए।
हल
वृत्त की त्रिज्या (r) = 15 cm
जीवा द्वारा केन्द्र पर अन्तरित कोण (θ) = 60°
संगत लघु वृत्तखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q6
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q6.1
तब, संगत दीर्घ वृत्तखण्ड का क्षेत्रफल = वृत्त का क्षेत्रफल – लघु वृत्तखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q6.2
अतः लघु वृत्तखण्ड का क्षेत्रफल = 20.4375 cm2
तथा दीर्घ वृत्तखण्ड का क्षेत्रफल = 686.0625 cm2

प्रश्न 7.
त्रिज्या 12 cm वाले एक वृत्त की कोई जीवा केन्द्र पर 120° का कोण अन्तरित करती है। संगत वृत्तखण्ड का क्षेत्रफल ज्ञात कीजिए।
(π = 3.14 और √3 = 1.73 का प्रयोग कीजिए।)
हल
वृत्त की त्रिज्या (r) = 12 सेमी
तथा जीवा द्वारा केन्द्र पर अन्तरित कोण (θ) = 120°
संगत (लघु) वृत्तखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q7
अतः अभीष्ट वृत्तखण्ड का क्षेत्रफल = 88.44 cm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 8.
15 cm भुजा वाले एक वर्गाकार घास के मैदान के एक कोने पर लगे खूटे से एक घोड़े को 5 m लम्बी रस्सी से बाँध दिया गया है। ज्ञात कीजिए-
(i) मैदान के उस भाग का क्षेत्रफल जहाँ घोड़ा घास चर सकता है।
(ii) चरे जा सकने वाले क्षेत्रफल में वृद्धि यदि घोड़े को 5 m लम्बी रस्सी के स्थान पर 10 m लम्बी रस्सी से बाँध दिया जाए। (π = 3.14 का प्रयोग कीजिए।)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q8
हल
वर्गाकार मैदान की भुजा = 15 m
पूरे मैदान का क्षेत्रफल = (भुजा)2 = (15)2 = 225 m2
(i) घोड़ा एक 5 मीटर लम्बी रस्सी से बँधा है, तब वह अधिकतम 5 मीटर त्रिज्या वाले वृत्त के उस त्रिज्यखण्ड की घास चर सकेगा जिसका कोण वर्ग के अन्त:कोण के बराबर अर्थात् 90° है।
तब, त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q8.1
अत: घोड़ा 19.625 m2 क्षेत्रफल की घास चर सकता है।

(ii) यदि रस्सी की लम्बाई 10 मीटर कर दी जाए अर्थात् त्रिज्या r = 10 मीटर हो तो त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q8.2
अब घोड़ा 78.5 m2 क्षेत्र की घास चर सकेगा।
अतः क्षेत्रफल में वृद्धि = 78.5 – 19.625 = 58.875 m2

प्रश्न 9.
एक वृत्ताकार ब्रच (brooch) को चाँदी के तार से बनाया जाना है जिसका व्यास 35 mm है। तार को वृत्त के 5 व्यासों को बनाने में भी प्रयुक्त किया गया है जो उसे 10 बराबर त्रिज्यखण्डों में विभाजित करता है जैसा कि आकृति में दर्शाया गया है तो ज्ञात कीजिए-
(i) कुल वांछित चाँदी के तार की लम्बाई।
(ii) ब्रूच के प्रत्येक त्रिज्यखण्ड का क्षेत्रफल।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q9
हल
दिया है, वृत्ताकार ब्रूच का व्यास = 35 mm
⇒ त्रिज्या (r) = \(\frac{35}{2}\) mm
(i) चाँदी के ब्रूच के वृत्तीय भाग की माप = π × व्यास
= \(\frac {22}{7}\) × 35
= 110 mm
और 5 व्यासों की लम्बाई = 5 × 35 = 175 mm
अतः चाँदी के तार की कुल लम्बाई = 110 + 175 = 285 mm = 28.5 cm
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q9.1
अत: ब्रूच के प्रत्येक त्रिज्यखण्ड का क्षेत्रफल = 96.25 mm2

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 10.
एक छतरी में आठ ताने हैं, जो बराबर दूरी पर लगी हुई हैं। छतरी को 45 cm त्रिज्या वाला एक सपाट वृत्त मानते हुए, इसकी दो क्रमागत तानों के बीच का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q10
हल
दिया है, छतरी की त्रिज्या (r) = 45 cm
दो क्रमागत तारों के मध्य एक त्रिज्यखण्ड बनेगा।
त्रिज्यखण्ड का कोण (θ) = \(\frac{360^{\circ}}{8}\) = 45°
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q10.1

प्रश्न 11.
किसी कार के दो वाइपर (wipers) हैं, परस्पर कभी आच्छादित नहीं होते हैं। प्रत्येक वाइपर की पत्ती की लम्बाई 25 cm है और 115° के कोण तक घूमकर सफाई कर सकता है। पत्तियों की प्रत्येक बहार के साथ जितना क्षेत्रफल साफ हो जाता है, वह ज्ञात कीजिए।
हल
प्रत्येक वाइपर की सफाई का क्षेत्र उस त्रिज्यखण्ड का क्षेत्रफल होगा जिसकी त्रिज्या (r) = पत्ती की लम्बाई = 25 cm
तथा त्रिज्यखण्ड का कोण (θ) = 115°
तब, प्रत्येक वाइपर के द्वारा साफ हुआ क्षेत्रफल = त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q11

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 12.
जहाजों को समुद्र में जलस्तर के नीचे स्थित चट्टानों की चेतावनी देने के लिए एक लाइट हाउस (light house) 80° कोण वाले एक त्रिज्यखण्ड में 16.5 km की दूरी तक लाल रंग का प्रकाश फैलाता है। समुद्र के उस भाग का क्षेत्रफल ज्ञात कीजिए। जिसमें जहाजों को चेतावनी दी जा सके।(π = 3.14 का प्रयोग कीजिए।)
हल
दिया है, त्रिज्यखण्ड का कोण (θ) = 80°
त्रिज्यखण्ड की त्रिज्या (r) = 16.5 km = \(\frac{33}{2}\) km
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q12
अतः समुद्र के उस भाग, जहाँ जहाजों को चेतावनी दी जा सके, का क्षेत्रफल = 189.97 km2

प्रश्न 13.
एक गोल मेजपोश पर छह समान डिजाइन बने हुए हैं जैसा कि आकृति में दर्शाया गया है। यदि मेजपोश की त्रिज्या 28 cm है तो ₹ 0.35 प्रति वर्ग सेंटीमीटर की दर से इन डिजाइनों को बनाने की लागत ज्ञात कीजिए। (√3 = 1.7 का प्रयोग त्रिी कीजिए)
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q13
हल
दिया है, मेजपोश के वृत्त की त्रिज्या (r) = 28 cm
सभी डिजाइनों के क्षेत्रफल समान हैं,
प्रत्येक वृत्तखण्ड का क्षेत्रफल और जीवाओं द्वारा केन्द्र पर अन्तरित कोण θ समान हैं तथा प्रत्येक 60° है।
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q13.1
₹ 0.35 प्रति वर्ग सेमी की दर से डिजाइन कराने का व्यय = ₹ (0.35 × 464.8) = ₹ 162.68
अत: डिजाइनों को बनाने की लागत = ₹ 162.68

Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2

प्रश्न 14.
निम्नलिखित में सही उत्तर चुनिए-
त्रिज्या R वाले वृत के उस त्रिज्यखण्ड का क्षेत्रफल जिसका कोण p° है, निम्नलिखित है-
(A) \(\frac{p}{180}\) × 2πR
(B) \(\frac{p}{180}\) × πR2
(C) \(\frac{p}{360}\) × 2πR
(D) \(\frac{p}{720}\) × 2πR2
हल
दिया है, वृत्त की त्रिज्या = R
तथा त्रिज्यखण्ड का कोण (θ) = p°
त्रिज्यखण्ड का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2 Q14
अत: विकल्प (D) सही है।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

Bihar Board Class 10 Maths वृत्त Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
चित्र में O केन्द्र वाले वृत्त की त्रिज्या OD = 4 cm है। यदि OB = 5 cm हो, तो स्पर्श रेखा BC की लम्बाई होगी
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions MCQ 1
(i) 3 cm
(ii) 4 cm
(iii) 2 cm
(iv) 3.5 cm
हल
(i) 3 cm

प्रश्न 2.
दो वृत्त परस्पर बाह्य स्पर्श करते हैं। उनकी त्रिज्याएँ 3.6 cm और 1.6 cm हैं। इनके केन्द्रों के बीच की दूरी होगी
(i) 1.6 cm
(ii) 3.6 cm
(iii) 2.0 cm
(iv) 5.2 cm
हल
(iv) 5.2 cm

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 3.
दो वृत्त एक-दूसरे को बाह्यतः स्पर्श करते हैं। उनके केन्द्रों के बीच की दूरी 7 cm और एक वृत्त की त्रिज्या 3 cm है, तो दूसरे वृत्त की त्रिज्या होगी
(i) 10 cm
(ii) 4 cm
(iii) 3 cm
(iv) 7 cm
हल
(ii) 4 cm

प्रश्न 4.
चित्र में वृत्त का केन्द्र O है। वृत्त के बिन्दु P पर स्पर्शरखा TPT’ खींची गई है और इसके अन्तर्गत एक त्रिभुज ABP खींचा गया है। यदि ∠BPT = 60° हो, तो ∠BAP का मान क्या होगा?
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions MCQ 4
(i) 30°
(ii) 45°
(iii) 60°
(iv) 75°
हल
(iii) 60°

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 5.
चित्र में ABCD एक चक्रीय चतुर्भुज है। वृत्त के बिन्दु B पर स्पर्श रेखा PBQ खींची गई है। यदि ∠DBQ = 110° तो ∠DAB की माप होगी
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions MCQ 5
(i) 110°
(ii) 90°
(iii) 70°
(iv) 55°
हल
(iii) 70°

प्रश्न 6.
चित्र में O वृत्त का केन्द्र है। AB एक जीवा तथा AC स्पर्शी है। यदि ∠BOA = 120° हो, तो ∠BAC का मान होगा
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions MCQ 6
(i) 40°
(ii) 60°
(iii) 80°
(iv) 100°
हल
(ii) 60°

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 7.
चित्र में एक वृत्त का केन्द्र O है। इस वृत्त के बाह्य बिन्द T से वृत्त पर स्पर्शरेखाएँ TP और TQ खींची जाती हैं। सम्पर्क जीवा PQ वृत्त के शेष भाग पर ∠PAQ = 70° बनाती है तो स्पर्शरेखाओं के बीच कितने अंश का कोण होगा?
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions MCQ 7
(i) 20°
(ii) 40°
(iii) 70°
(iv) 110°
हल
(ii) 40°

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
एक वृत्त की त्रिज्या 5 cm है। इस वृत्त पर किसी बाहरी बिन्दु से एक स्पर्शरेखा खींची जाती है। यदि स्पर्शरेखा की लम्बाई 12 cm है, तो बिन्दु की वृत्त के केन्द्र से दूरी ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 1
हल
दिया है : O केन्द्र वाले वृत्त में बाह्य बिन्दु P से स्पर्श रेखा PA खींची गयी है।
AP = 12 cm तथा त्रिज्या OA = 5 cm
गणना : O को A से मिलाया।
∆OAP में, ∠OAP = 90°
समकोण ∆OAP में,
OP2 = OA2 + AP2
⇒ OP2 = (5)2 + (12)2
⇒ OP2 = 25 + 144
⇒ OP2 = 169
⇒ OP = √169 = 13 cm
अत: बिन्दु की वृत्त के केन्द्र से दूरी 3 cm है।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 2.
उस वृत्त की त्रिज्या क्या होगी जिसके केन्द्र से 5.0 cm की दूरी पर स्थित एक बिन्दु से खींची गई उस वृत्त की स्पर्शरेखा की लम्बाई 3.0 cm है?
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 2
हल
दिया है : O केन्द्र वाले वृत्त में बाह्य बिन्दु P से स्पर्शरेखा AP = 3 cm
गणना : O को A से मिलाया।
तब ∆OAP में, ∠OAP = 90°
∆OAP में,
OA2 = OP2 – AP2
⇒ OA2 = (5.0)2 – (3.0)2
⇒ OA2 = 25 – 9 = 16
⇒ OA = √16 cm = 4 cm
अत: वृत्त की त्रिज्या 4 cm है।

प्रश्न 3.
चित्र में AB और CD दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ परस्पर बिन्दु E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AE + ED = BE + EC
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 3
हल
AE = EC (बाह्य बिन्दु से एक ही वृत्त की स्पर्श रेखाएँ) ……… (1)
इसी प्रकार ED = EB (बाह्य बिन्दु से एक ही वृत्त की स्पर्श रेखाएँ) ………. (2)
समी० (1) व (2) को जोड़ने पर,
AE + ED = EC + EB
⇒ AE + ED = BE + EC
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 4.
चित्र में, O वृत्त का केन्द्र है। वृत्त की स्पर्शरेखाओं PA तथा PB के बीच का ∠APB = 50° है, तो ∠AOB की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 4
हल
∠OAP = 90° तथा ∠OBP = 90°
(स्पर्श त्रिज्या और स्पर्शरेखा के बीच बने कोण)
∴ ∠OAP + ∠OBP = 90° + 90° = 180°
∴ OAPB एक चक्रीय चतुर्भुज है।
∴ ∠AOB + ∠APB = 180°
⇒ ∠AOB = 180° – ∠APB = 180° – 50° = 130°

प्रश्न 5.
चित्र में O, वृत्त का केन्द्र है, PA और PB वृत्त की बिन्दु P से स्पर्शियाँ हैं और ∠APB = 50° तो ∠OAB की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 5
हल
∆ABP में, AP = BP(बाह्य बिन्दु से स्पर्श रेखाखण्ड)
∴ ∠PAB = ∠ABP
पुनः ∠PAB + ∠ABP + ∠APB = 180°
⇒ 2∠PAB = 180° – 50° = 130°
⇒ ∠PAB = 65°
∠OAB = 90° – ∠PAB (∵ OA ⊥ AP)
⇒ ∠OAB = 90° – 65° = 25°

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 6.
चित्र में, बिन्दु O वृत्त का केन्द्र है तथा CPD वृत्त की स्पर्शरेखा है। यदि ∠APC = 60° तो ∠BAP की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 6
हल
P को B से मिलाया।
तब ∠ABP = ∠APC = 60° (एकान्तर वृत्तखण्ड में स्थित कोण)
तथा ∠APB = 90° (अर्द्धवृत्त में स्थित कोण)
∆APB में,
∠BAP = 180° – (∠ABP + ∠APB)
= 180° – (60° + 90° )
= 30°

प्रश्न 7.
चित्र में, O वृत्त का केन्द्र है, रेखा QAR वृत्त की बिन्दु A पर स्पर्शरेखा और AB जीवा है। यदि ∠BAR = 60° तो ∠AOB व ∠OBA की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 7
हल
∠BPA = ∠BAR = 60° (एकान्तर वृत्तखण्ड में स्थित कोण)
∠AOB = 2∠APB (समान चाप द्वारा केन्द्र और परिधि पर बने कोण)
= 2 × 60°
= 120°
समद्विबाहु त्रिभुज OAB में,
∠OBA = ∠OAB
= \(\frac {1}{2}\) (180° – ∠AOB)
= \(\frac {1}{2}\) (180° – 120°)
= \(\frac {1}{2}\) × 60°
= 30°

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 8.
चित्र में वृत्त के बिन्दु पर खींची गई स्पर्श रेखा और व्यास AB बढ़ाने पर बिन्दु P पर मिलते हैं। यदि ∠PCA = 120°, तो ∠CBA की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions VSAQ 8
हल
चित्र में ∠ACB = 90° (अर्द्धवृत्त में स्थित कोण)
∠PCB = 120° – 90° = 30°
पुनः ∠CAB = ∠PCB = 30° (एकान्तर वृत्त खण्ड में स्थित कोण)
∆ABC में, ∠CBA = 180° – (∠ACB + ∠CAB)
= 180° – (90° + 30°)
= 60°

लघु उत्तरीय प्रश्न

प्रश्न 1.
सिद्ध कीजिए कि किसी बाह्य बिन्दु से वृत्त पर खींची गई दो स्पर्शरेखाओं की लम्बाइयाँ बराबर होती हैं। तथा केन्द्र पर समान कोण अन्तरित करती है।
हल
दिया है : AP व AQ बिन्दु A से वृत्त C(O, r) पर खींचे गए दो स्पर्श रेखाखण्ड हैं।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 1
सिद्ध करना है: AP = AQ तथा ∠AOP = ∠AOQ
रचना : रेखाखण्ड OA, OP और OQ खींचिए।
उपपत्ति: ∠OPA = ∠OQA = 90° (∵ वृत्त की स्पर्शरेखा स्पर्श बिन्द से जाने वाली त्रिज्या पर लम्ब होती है।)
∆OPA व ∆OQA में,
∠OPA = ∠OQA (अभी सिद्ध किया है)
OP = OQ (वृत्त की त्रिज्याएँ)
तथा OA उभयनिष्ठ है।
ΔΟΡΑ ≅ ΔOQA
AP = AQ (सर्वांगसम त्रिभुज के संगत भाग)
तथा ∠AOP = ∠AOQ
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 2.
दिये गये चित्र में बाह्य स्पर्श करने वाले दो वृत्तों की उभयनिष्ठ अनुस्पर्शी रेखाएँ PDC तथा PEF खींची गई हैं जो वृत्तों को क्रमश: D व C तथा E व F पर स्पर्श करती हैं। सिद्ध कीजिए DC = EF
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 2
हल
दिया है : वृत्तों की बाह्य बिन्दु P से उभयनिष्ठ स्पर्श रेखाएँ PDC व PEF हैं।
सिद्ध करना है : DC = EF
उपपत्ति: ∵ PC व PF बड़े वृत्त की बाह्य बिन्दु P से स्पर्श रेखाएँ हैं।
PC = PF ………(1)
इसी प्रकार छोटे वृत्त के लिए
PD = PE ……….(2)
समी० (1) से (2) को घटाने पर,
PC – PD = PF – PE
DC = EF
इति सिद्धम्

प्रश्न 3.
दो वृत्तों के केन्द्र O और O’ हैं जो एक-दूसरे को बाह्मतः बिन्दु P पर स्पर्श करते हैं। इन वृत्तों की एक उभयनिष्ठ स्पर्श रेखा AB खींची जाती है। सिद्ध कीजिए कि
∠APB = 90°
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 3
हल
दिया है : दो वृत्त जिनके केन्द्र O व O’ है, बाह्यतः बिन्दु P पर एक-दूसरे को स्पर्श करते हैं तथा दोनों वृत्तों की एक उभयनिष्ठ स्पर्श रेखा AB है।
सिद्ध करना है : ∠APB = 90°
रचना : बिन्दु P से दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखा खींची जो AB को बिन्दु Q काटती है।
उपपत्ति : ∆BPQ में,
PQ = BQ (उभयनिष्ठ बिन्दु से वृत्त की स्पर्श रेखायें)
पुनः इसी प्रकार ∆APQ में, AQ = PQ
AQ = BQ
अर्थात् Q, AB का मध्य बिन्दु है।
अर्थात् ∆APB में शीर्ष P से खींची गयी माध्यिका सम्मुख भुजा की आधी है।
∆APB समकोण त्रिभुज है।
अर्थात् ∠APB = 90°
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 4.
दिये गये चित्र में दो संकेन्द्रीय वृत्त जिनका केन्द्र O है तथा जिनकी त्रिज्याएँ क्रमशः 5 cm तथा 3 cm मापों की हैं। बाह्य बिन्दु P से संगत वृत्तों पर खींची गई स्पर्शियाँ PA तथा PB हैं। यदि PA = 12 cm हो, तो PB की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 4
हल
O को A व B से मिलाया तब ∠OAP = 90° तथा ∠OBP = 90° तथा OA = 5 cm व OB = 3 cm
समकोण ∆OAP में,
OP2 = OA2 + AP2 = 52 + 122 = 25 + 144 = 169
या OP = 13 सेमी
पुन: समकोण ∆OPB में
PB2 = OP2 – OB2 = (13)2 – (3)2 = 169 – 9 = 160
या PB = 4√10 cm

प्रश्न 5.
∆ABC के अन्तर्गत एक वृत्त खींचा गया है तथा P, Q, R स्पर्श बिन्दु हैं। यदि PA = 4 cm, PB = 6 cm तथा AC = 12 cm तो BC की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 5
हल
चित्र में,
AP= AR = 4 cm (उभयनिष्ठ बिन्दु से वृत्त की स्पर्श रेखा)
∴ CR = AC – AR = 12 – 4 = 8 cm
पुन: CR = CQ = 8 cm (उभयनिष्ठ बिन्दु से वृत्त की स्पर्श रेखायें) तथा
तथा BP = BQ = 6 cm (उभयनिष्ठ बिन्दु B से वृत्त की स्पर्श रेखा)
∴ BC = BQ + CQ = 6 + 8 = 14 cm

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 6.
सिद्ध कीजिए कि यदि दो वृत्त एक-दूसरे को स्पर्श करते हैं तो वृत्तों के केन्द्र तथा स्पर्श बिन्दु एक रेखीय होते हैं।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 6
हल
दिया है : दो वृत्त जिनके केन्द्र A और B हैं, एक-दूसरे को बिन्दु P पर स्पर्श करते हैं।
सिद्ध करना है : बिन्दु A, P और B संरेख हैं।
रचना : दोनों वृत्त एक-दूसरे को बिन्दु P पर स्पर्श करते हैं। अतः इनके उभयनिष्ठ बिन्दु P पर एक ही उभयनिष्ठ स्पर्श रेखा PT होगी।
बिन्दु P पर दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखा PT रेखाखण्ड PA और PB खींचिए।
उपपत्ति : वृत्तों की त्रिज्याएँ AP और BP तथा उभयनिष्ठ स्पर्श रेखा PT है।
वृत्त की स्पर्श रेखा तथा स्पर्श बिन्दु से खींची गयी त्रिज्या एक-दूसरे पर लम्ब होती हैं।
∴ PA ⊥ PT और PB ⊥ PT
परन्तु किसी रेखा पर एक बिन्दु से केवल एक लम्ब खींचा जा सकता है और P से रेखा PT पर PA और PB लम्ब हैं।
अत: रेखा PA और PB संरेख हैं।
अर्थात् A, P तथा B संरेख हैं।
अतः स्पर्श बिन्दु P,रेखा AB पर स्थित है।
इति सिद्धम्

प्रश्न 7.
एक त्रिभुज ABC का अन्तः वृत्त त्रिभुज की भुजाओं AB, BC तथा CA को क्रमशः बिन्दुओं P, Q तथा R पर स्पर्श करता है। यदि ∠BAC = 100° तो ∠PQR की माप ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 7
हल
रचना : PR को मिलाया।
∆APR में, AP = PR (उभयनिष्ठ बिन्दु से स्पर्श रेखाएँ)
∠APR = ∠ARP
∆APR में,
∠APR + ∠ARP + ∠PAR = 180°
⇒ 2∠ARP + 100° = 180°
⇒ ∠ARP = 40° (एकान्तर वृत्तखण्ड में स्थित कोण)
पुनः ∠PQR = ∠ARP = 40°

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 8.
एक बाह्य बिन्दु T से एक वृत्त पर स्पर्शरेखा TP तथा एक छेदक रेखा TAB खींची गई है जो वृत्त को A और B पर काटती है। ∠APB का अर्द्धक AB को बिन्दु Q पर काटता है। सिद्ध कीजिए कि रेखाखण्ड TP = रेखाखण्ड TQ
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 8
हल
दिया है : बाह्य बिन्दु T से वृत्त पर स्पर्श रेखा TP तथा छेदक रेखा TAB है जो वृत्त को A तथा B बिन्दुओं पर काटती है। PQ, ∠APB का अर्द्धक है जो AB को Q पर काटता है।
अत: ∠APQ = ∠BPQ
सिद्ध करना है : रेखाखण्ड TP = रेखाखण्ड TQ
उपपत्ति :
∠TPA = ∠PBA (एकान्तर वृत्तखण्ड में स्थित कोण)
अतः ∠TPQ = ∠TPA + ∠APQ = ∠PBQ + ∠APQ ……(1)
पुनः ∠TQP = ∠QPB + ∠PBQ (∵ ∠TQP, DBQP का बहिष्कोण है)
⇒ ∠TQP = ∠APQ + ∠PBQ ……(2)
समीकरण (1) व (2) से,
∠TPQ = ∠TQP
∆TPQ में,
रेखाखण्ड TP = रेखाखण्ड TQ (समान कोणों के सामने की भुजाएँ)
इति सिद्धम्

प्रश्न 9.
O एक वृत्त का केन्द्र है। दो स्पर्शरेखाएँ TP और TQ जो वृत्त को क्रमशः P और Q बिन्दुओं पर स्पर्श करती हैं। वृत्त के बाहर स्थित एक बिन्द T से खींची गई है। सिद्ध कीजिए कि ∠PTQ = 2∠OPQ
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions SAQ 9
हल
दिया है : O केन्द्र वाले वृत्त के बाहर स्थित बिन्दु T से वृत्त पर स्पर्श रेखाएँ TP और TQ खींची गई है।
रचना : OP, OQ व PQ को मिलाया।
सिद्ध करना है : ∠PTQ = 2∠OPQ
उपपत्ति: ∠OPT = 90° (∵ PT बिन्दु P पर स्पर्शरेखा)
तथा इसी प्रकार ∠OQT = 90°
∠OPT + ∠OQT = 90° + 90° = 180°
चतुर्भुज के शेष कोणों ∠POQ व ∠PTQ का योग = 180°
अतः ∠POQ + ∠PTQ = 180° ………..(1)
पुन: ∆OPQ में,
∠OPQ = ∠OQP (समान भुजाओं के सामने के कोण)
∆OPQ में,
∠POQ = 180° – 2∠OPQ …….(2)
समीकरण (1) व (2) से,
180° – 2∠OPQ + ∠PTQ = 180°
⇒ 2∠OPQ = ∠PTQ
इति सिद्धम्

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
किसी वृत्त की जीवा PQ, उसके बिन्दु R पर खींची गयी स्पर्श रेखा ARB के समान्तर है। सिद्ध कीजिए बिन्दु R, चाप PRQ को समद्विभाजित करता है।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions LAQ 1
हल
दिया है : O केन्द्र वाले वृत्त में जीवा PQ है तथा वृत्त के बिन्दु R पर खींची गई स्पर्शरेखा ARB || PQ.
सिद्ध करना है : बिन्दु R, चाप PRQ को अर्द्धित करता है।
रचना : बिन्दु O को बिन्दु R से मिलाया जो PQ को बिन्दु M पर काटता है। PR व QR को मिलाया।
उपपत्ति : चूँकि स्पर्श बिन्दु से जाने वाली वृत्त की त्रिज्या स्पर्शरेखा पर लम्ब होती है।
∴ OR ⊥ AB
पुनः चूँकि PQ || AB
∴ OMR ⊥ PQ
अर्थात् ∠PMR = ∠QMR = 90°
वृत्त के केन्द्र से जीवा पर डाला गया लम्ब जीवा को समद्विभाजित करता है।
PM = MQ
ΔPMR व ΔQMR में,
PM = MQ (अभी सिद्ध किया है)
∠PMR = ∠QMR (अभी सिद्ध किया है)
तथा MR उभयनिष्ठ है।
∴ ΔPMR ≅ ΔQMR
∴ PR = QR
चूँकि समान वृत्त में बराबर जीवाओं के संगत चाप बराबर होते हैं।
∴ चाप PR = चाप RQ
अर्थात् बिन्दु R चाप PRQ को अद्धित करता है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 2.
सिद्ध कीजिए कि यदि एक रेखा वृत्त को स्पर्श करती है तो स्पर्श बिन्दु से खींची गयी जीवा और स्पर्शरेखा के बीच बने कोण संगत एकान्तर वृत्तखण्डों के कोणों के बराबर होते हैं।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions LAQ 2
हल
दिया है : केन्द्र O वाला एक वृत्त जिसके बिन्दु A पर स्पर्शरेखा PAR है तथा जीवा AB है। दो बिन्दु D और C जीवा AB के दोनों ओर वृत्तखण्डों पर स्थित हैं और D पर ∠ADB और C पर ∠ACB बना है।
सिद्ध करना है :
(i) ∠BAR = ∠BCA
(ii) ∠BAP = ∠BDA
रचना : व्यास AOE खींचा और EB को मिलाया।
उपपत्ति : वृत्त की त्रिज्या स्पर्शरेखा पर लम्ब होती है।
∠RAO अथवा ∠RAE = 90°
∠BAR + ∠BAE = 90° ……..(1)
⇒ ∠ABE = 90° (अर्द्धवृत्त में स्थित कोण)
∆ABE में,
∠BAE + ∠BEA = 90°
समीकरण (1) व (2) से,
∠BAR + ∠BAE = ∠BAE + ∠BEA
या ∠BAR = ∠BEA
परन्तु ∠BEA = ∠BCA (एक ही वृत्तखण्ड में स्थित कोण)
अत: ∠BAR = ∠BCA
इति सिद्धम्
पुनः ∠BAR + ∠BAP = 180° (∵ PAR सरल रेखा है)
तथा ∠BCA + ∠BDA = 180° (चक्रीय चतुर्भुज के सम्मुख कोण)
∠BAR + ∠BAP = ∠BCA + ∠BDA
अतः ∠BDA = ∠BAP (∵ ∠BAR = ∠BCA)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions

प्रश्न 3.
दो वृत्त एक-दूसरे को बिन्दु P पर अन्तःस्पर्श करते हैं। बड़े वृत्त की कोई जीवा AB खींची जाती है, जो छोटे वृत्त को बिन्दु पर स्पर्श करती है। सिद्ध कीजिए रेखाखण्ड CP, ∠APB का अर्द्धक है।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Additional Questions LAQ 3
हल
दिया है : दो वृत्त एक-दूसरे को बिन्दु P पर अन्त:स्पर्श करते हैं।
बड़े वृत्त की कोई जीवा AB खींची गयी है जो छोटे वृत्त को बिन्दु C पर स्पर्श करती है।
AP, BP और CP को मिलाया गया है।
सिद्ध करना है : रेखाखण्ड CP, ∠APB का अर्द्धक है।
रचना : रेखाखण्ड AP छोटे वृत्त को बिन्दु D पर काटता है।
CD को मिलाया और दोनों वृत्तों की उभयनिष्ठ स्पर्शरेखा TPT खींची।
उपपत्ति: T’PT स्पर्शरेखा छोटे वृत्त को बिन्दु P पर स्पर्श करती है और PD उसकी जीवा है।
∠TPD = एकान्तर वृत्तखण्ड में स्थित ∠PCD …….(1)
इसी प्रकार बड़े वृत्त के लिए, ∠TPA = ∠PBA
∠TPD = ∠PBC …….(2)
अतः समी० (1) व (2) से, ∠PBC = ∠PCD
अब बड़े वृत्त की जीवा AB छोटे वृत्त को बिन्दु C पर स्पर्श करती है और उसकी जीवा CP है।
अत: ∠PCB = एकान्तर वृत्तखण्ड में स्थित ∠PDC ……(3)
∆PCD और ∆PBC में,
∠PBC = ∠PCD (अभी सिद्ध किया है)
∠PCB = ∠PDC (अभी सिद्ध किया है)
शेष कोण, ∠DPC = ∠BPC
अत: रेखाखण्ड CP, ∠APB का अर्द्धक है।
इति सिद्धम्