Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4

Bihar Board Class 10 Maths त्रिकोणमिति का परिचय Ex 8.4

Bihar Board Class 10 Math Book Solution In Hindi Pdf Download प्रश्न 1.
त्रिकोणमितीय अनुपातों sin A, sec A और tan A को cot A के पदों में व्यक्त कीजिए
हल
हम जानते हैं कि cot A और cosec A में सम्बन्ध ‘cosec2 A = 1 + cot2 A’ है और cosec A और sin A में सम्बन्ध प्रतिलोम का है।
Bihar Board Class 10th Math

Bihar Board Class 10 Math Solution In Hindi प्रश्न 2.
∠A के अन्य सभी त्रिकोणमितीय अनुपातों को sec A के पदों में लिखिए।
हल
Bihar Board Class 10th Math Solution
Ex 8.4 Maths Class 10 Bihar Board

Class 10 Maths 8.4 Solution In Hindi Bihar Board प्रश्न 3.
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q3
(ii) sin 25° cos 65° + cos 25° sin 65°
हल
Bihar Board Class 10th Math Solution In Hindi

(ii) दिया है, sin 25° cos 65° + cos 25° sin 65°
= sin 25° cos (90° – 25°) + cos 25° sin (90° – 25°)
= sin 25° sin 25° + cos 25° cos 25°
[∵ cos (90° – 25°) = sin 25° तथा sin(90° – 25°) = cos 25°]
= sin2 25° + cos2 25°
= 1 [∵ sin2 A+ cos2 A = 1]
अतः sin 25° cos 65° + cos 25° sin 65° = 1

Bihar Board Class 10 Math Book Solution In Hindi प्रश्न 4.
सही विकल्प चुनिए और अपने विकल्प की पुष्टि कीजिए-
(i) 9 sec2 A – 9 tan2 A बराबर है-
(A) 1
(B) 9
(C) 8
(C) 0

(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) बराबर है-
(A) 0
(B) 1
(C) 2
(D) -1

(iii) (sec A + tan A)(1 – sin A) बराबर है-
(A) sec A
(B) sin A
(C) cosec A
(D) cos A

(iv) \(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\) बराबर है-
(A) sec2 A
(B) -1
(C) cot2 A
(D) tan2 A
हल
(i) यहाँ 9 sec2 A – 9 tan2 A
= 9 (sec2 A – tan2 A)
= 9 (1 + tan2 A – tan2 A) [∵ sec2 A = 1 + tan2 A]
= 9 × (1)
= 9
अत: विकल्प (B) सही है।

(ii) यहाँ (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
Bihar Board 10th Math Solution
Bihar Board Solution Class 10 Math
Class 10th Math Solution In Hindi Bihar Board

Class 10th Math Solution In Hindi Bihar Board Pdf प्रश्न 5.
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यूनकोण हैं-
Bihar Board Math Solution Class 10
हल
Bihar Board 10th Class Math Solution
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.2
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.3
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.4
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.5
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.4 (1)
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.7
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.8
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.9
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.10
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.4 Q5.11

Bihar Board Class 7 Maths Solutions Chapter 8 घातांक

Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Text Book Questions and Answers.

BSEB Bihar Board Class 7 Maths Solutions Chapter 8 घातांक

Bihar Board Class 7 Maths घातांक Ex 8.1

Bihar Board Class 7 Math Solution In Hindi प्रश्न 1.
घातांकीय रूप में व्यक्त कीजिए-
(i) 5 × 5 × 5 × 5
हल :
54
(ii) c × c × c
हल :
c3
(iii) 2 × 2 × 3 × 3 × 3
हल :
22 × 33
(iv) 6 × 6 × b × b
हल :
62 × b2
(v) a × a × b × b × b × b × b × d
हल :
a2 × b5 × d

Bihar Board Class 7 Math प्रश्न 2.
मान ज्ञात करें-
(i) 33
हल :
33 = 3 × 3 × 3 = 27
(ii) 64
हल :
64 = 6 × 6 × 6 × 6 = 1296
(iii) 93
हल :
93 = 9 × 9 × 9 = 729
(iv) 54
हल :
54 = 5 × 5 × 5 × 5 = 625
(v) 44
हल :
44 = 4 × 4 × 4 × 4 = 256

Bihar Board Class 7 Math Solution प्रश्न 3.
घातांकीय संकेतन (रूप) में व्यक्त कीजिए-
(i) 343
(ii) 512
(iii) 729
(iv) 3125
हल :
(i) 343
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q3
= 7 × 7 × 7 = 343 = 73
(ii) 512
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q3.1
= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 512 = 29
(iii) 729
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q3.2
= 3 × 3 × 3 × 3 × 3 × 3 = 729 = 36
(iv) 3125
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q3.3
= 5 × 5 × 5 × 5 × 5 = 3125 = 55

Bihar Board 7th Class Math Solution प्रश्न 4.
प्रत्येक में बड़ा कौन है?
(i) 43 या 34
हल :
43 = 4 × 4 × 4 = 64
34 = 3 × 3 × 3 × 3 = 81
34 बड़ा है।

(ii) 25 या 52
हल :
25 = 2 × 2 × 2 × 2 × 2 = 32
52 = 5 × 5 = 25
25 बड़ा है।

(iii) 28 या 82
हल :
28 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 256
82 = 8 × 8 = 64
28 बड़ा है।

(iv) 1002 या 2100
हल :
1002 = 100 × 100
2100 = 2 × 2 × 2…..2 × 2 = 10000
2100 बड़ा है।

Class 7 Bihar Board Math Solution प्रश्न 5.
अभाज्य गुणनखण्डों की घातों के गुणनफल के रूप में व्यक्त कीजिए-
(i) 1200
(ii) 720
(iii) 1080
(iv) 2280
(v) 3600
हल :
(i) 1200
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q5
= 24 × 3 × 52
(ii) 720
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q5.1
= 24 × 32 × 5
(iii) 1080
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q5.2
= 23 × 33 × 5
(iv) 2280
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q5.3
= 2 × 32 × 53
(v) 3600
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q5.4
= 24 × 32 × 52

Class 7 Maths Bihar Board Solution प्रश्न 6.
सरल कीजिए-
(i) 3 × 102
(ii) 72 × 32
(iii) (-1)5 × (7)3
(iv) 0 × 102
(v) 32 × 104
(vi) 34 × 23
हल :
(i) 3 × 102 = 3 × 100 = 300
(ii) 72 × 32 = 49 × 9 = 441
(iii) (-1)5 × 73 = -1 × 343 = -343
(iv) 0 × 102 = 0 × 100 = 0
(v) 32 × 104 = 9 × 10000 = 90000
(vi) 34 × 23 = 81 × 8 = 648

Bihar Board Solution Class 7 Math प्रश्न 7.
(i) (-3)3
(ii) (-1) × (-2)3
(iii) (-4)2 × (-3)2
(iv) (-2)3 × (-10)4
(v) (-5)2 × 24
हल :
(i) (-3)3 = -3 × -3 × -3 = -27
(ii) (-1) × (-2)3 = -1 × -8 = 8
(iii) (-4)2 × (-3)2 = 16 × 9 = 144
(iv) (-2)3 × (-10)4 = -8 × 10000 = -80000
(v) (-5)2 × (2)4 = 25 × 16 = 400

Bihar Board Class 7 Math Book Solution प्रश्न 8.
निम्न संख्यों की तुलना कीजिए-
(i) 5 × 1014, 4 × 107
(ii) 2.6 × 1012 ; 1.6 × 108
(iii) 2.7 × 1011; 3.0 × 1015
हल :
(i) 5 × 1014, 4 × 107
5 × 1014 = 5 × 100000000000000 = 500000000000000
4 × 107 = 4 × 10000000 = 40000000
∴ 5 × 1014 > 4 × 107

(ii) 2.6 × 1012 ; 1.6 × 108
2.6 × 1012 = \(\frac{26}{10}\) × 10000000000000 = 26000000000000
1.6 × 108 = \(\frac{16}{10}\) × 1000000000 = 1600000000
∴ 2.6 × 1018 > 1.6 × 108

(iii) 2.7 × 1011; 3.0 × 1015
2.7 × 1011 = \(\frac{27}{10}\) × 1000000000000 = 2700000000000
3.0 × 1015 = 3 × 10000000000000000 = 30000000000000000
∴ 3.0 × 1015 > 2.7 × 1011

Bihar Board Math Solution Class 7 प्रश्न 9.
निम्नलिखित को घातांकीय रूप में लिखिए-
(i) \(\frac{8}{729}\)
(ii) \(\frac{81}{343}\)
(iii) \(\frac{243}{1024}\)
हल :
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.1 Q9

Bihar Board Class 7 Maths घातांक Ex 8.2

Bihar Board Class 7 Maths Solutions प्रश्न 1.
सरल कीजिए और उत्तर को घातांकीय रूप में लिखिए-
(i) 72 × 74 × 78
(ii) 310 ÷ 36
(iii) d2 × d3
(iv) 5x × 52
(v) (53)2 ÷ 53
(vi) 35 × 55
(vii) a4 × b4
(viii) (210 ÷ 210) × 2
(ix) 9p ÷ 93
हल :
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q1

Bihar Board Class 7 Maths प्रश्न 2.
सरल कीजिए और उत्तर को घातांकीय रूप में लिखिए-
(i) \(\frac{2^{3} \times 3^{4} \times 4}{3^{2} \times 3^{2}}\)
(ii) \(\left[\left(5^{3}\right)^{2} \times 5^{3}\right]+5^{6}\)
(iii) 255 ÷ 54
(iv) 30 + 40 + 50
(v) 30 × 40 × 50
(vi) (40 + 50) × 20
(vii) \(\frac{11^{6} \times 13^{3} \times 3}{39 \times 11^{2}}\)
(viii) \(\frac{5^{7}}{5^{4} \times 5^{3}}\)
(ix) (33 × 3)3
(x) \(\frac{5^{8} \times a^{5}}{25^{3} \times a^{3}}\)
हल :
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q2
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q2.1

प्रश्न 3.
आमाज्य गुणनखंडों की घातों के गुणनफल के रूप में व्यक्त कीजिए-
(i) 1152
(ii) 64 × 81
(iii) 540
(iv) 27 × 48 × 72
(v) 9 × 6 × 15 × 4
हल :
(i) 1152
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q3
= 27 × 32
(ii) 64 × 81
= 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3
= 26 × 34
(iii) 540
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q3.1
= 2 × 2 × 3 × 3 × 3 × 5
= 22 × 33 × 5
(iv) 27 × 48 × 72
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q3.2
= 27 × 48 × 72
= 3 × 3 × 3 × 2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 3 × 3
= 33 × 24 × 3 × 23 × 32
(v) 9 × 16 × 15 × 4
= 3 × 3 × 2 × 2 × 2 × 2 × 3 × 5 × 2 × 2
= 32 × 24 × 3 × 5 × 22

प्रश्न 4.
नीचे दिए गए कथनों में सही/गलत छाँटिए तथा अपने उत्तर का कारण भी दीजिए-
(i) 100 = (1000)0
(ii) 43 × 32 = 125
(iii) 25 = 52
(iv) 10 × 106 = 1006
हल :
(i) 100 = (1000)0
100 = 1
(1000)0 = 1
100 = (1000)0 = 1 (सत्य)

(ii) 43 × 32 = 125
(22)3 × 32 = 125
26 × 32 ≠ 125 (असत्य)

(iii) 25 = 52
32 ≠ 25 (असत्य)

(iv) 10 × 106 = 1006
10 × 10000000 = 1000000000000
100000000 ≠ 1000000000000 (असत्य)

प्रश्न 5.
सरल कीजिए-
(i) \(\frac{\left(3^{2}\right)^{5} \times 5^{3}}{9^{3} \times 5^{2}}\)
(ii) \(\frac{9^{2} \times 3^{2} \times a^{8}}{3^{7} \times a^{3}}\)
(iii) \(\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}\)
हल :
Bihar Board Class 7 Maths Solutions Chapter 8 घातांक Ex 8.2 Q5

Bihar Board Class 7 Maths घातांक Ex 8.3

प्रश्न 1.
निम्नलिखित संख्याओं को विस्तारित रूप में लिखिए-
(i) 389505
(ii) 2005183
(iii) 230829
(iv) 30079
(v) 8324750
हल :
(i) 389505 = 3 × 105 + 8 × 104 + 2 × 103 + 5 × 102 + 0 + 5 × 1
(ii) 2005183 = 2 × 106 + 0 × 105 + 0 × 104 + 5 × 103 + 1 × 102 + 8 × 10 + 3 × 1
(iii) 230829 = 2 × 105 + 3 × 104 + 0 × 103 + 8 × 102 + 2 × 10 + 9
(iv) 30079 = 3 × 104 + 0 × 103 + 0 × 102 + 7 × 10 + 9
(v) 8324750 = 8 × 106 + 3 × 105 + 2 × 104 + 4 × 103 + 7 × 102 + 5 × 10

प्रश्न 2.
(i) 9 × 104 + 5 × 103 + 0 × 102 + 5 × 102 + 4 × 101
(ii) 7 × 105 + 8 × 103 + 4 × 102 + 7 × 100
(iii) 6 × 104 + 5 × 104 + 7 × 100
(iv) 8 × 105 + 3 × 102 + 8 × 101
हल :
(i) 9 × 104 + 5 × 103 + 0 × 102 + 5 × 102 + 4 × 101
= 90000 + 5000 + 0 + 500 + 40
= 950540

(ii) 7 × 105 + 8 × 103 + 4 × 102 + 7 × 101
= 700000 + 0000 + 8000 + 400 + 70
= 708470

(iii) 6 × 104 + 5 × 102 + 7 × 101
= 60000 + 0000 + 500 + 70
= 60570

(iv) 8 × 105 + 3 × 102 + 8 × 101
= 800000 + 00000 + 0000 + 300 + 80
= 800380

प्रश्न 3.
निम्नलिखित संख्याओं को मानक रूप में व्यक्त कीजिए-
(i) 70000000
(ii) 8000000
(iii) 416000000
(iv) 456234
(v) 9634.21
(vi) 72439.62
हल :
(i) 70000000 = 7 × 107
(ii) 8000000 = 8 × 106
(iii) 416000000 = 4 × 108 + 1 × 107 + 6 × 106 = 4.16 × 108
(iv) 456234 = 4 × 105 + 5 × 104 + 6 × 103 + 2 × 102 + 3 × 101 + 4 = 4.56234 × 105
(v) 9634.21 = 9.63421 × 103
(vi) 72439.62 = 7.243962 × 104

प्रश्न 4.
निम्नलिखित कथनों में प्रकट होने वाली संख्याओं को मानक रूप में व्यक्त कीजिए-
(i) 127560000
(ii) 1027.000000
(iii) 1400000000
(iv) 300000000
(v) 12000000000
(vi) 1000000000000
(vii) 300000000000000000000
(viii) 60230000000000000000000000
(ix) 1353000000
हल :
(i) 127560000 = 1.2756000 × 107
(ii) 1027.000000 = 1.027 × 109
(iii) 1400000000 = 1.4 × 109
(iv) 300000000 = 3 × 108
(v) 12000000000 = 1.2 × 1010
(vi) 1000000000000 = 1 × 1011
(vii) 300000000000000000000 = 3 × 1020
(viii) 60230000000000000000000000 = 6.023 × 1022
(ix) 1353000000 = 1.353 × 106

प्रश्न 5.
निम्नलिखित कथनों में प्रकट होने वाली दृश्यों को मानक रूप में व्यक्त करके घटते क्रम में सजायें-
(i) 1433500000000
(ii) 1439000000000
(iii) 149600000000
(iv) 384000000
हल :
(i) 1433500000000 = 1.4335 × 1012
(ii) 1439000000000 = 1.439 × 1012
(iii) 149600000000 = 1.496 × 1011
(iv) 384000000 = 3.84 × 108

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3

Bihar Board Class 10 Maths द्विघात समीकरण Ex 4.3

Bihar Board Class 10 Math Book Solution In Hindi Pdf Download प्रश्न 1.
यदि निम्नलिखित द्विघात समीकरणों के मूलों का अस्तित्व हो, तो इन्हें पूर्ण वर्ग बनाने की विधि द्वारा ज्ञात कीजिए।
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 4√3x + 3 = 0
(iv) 2x2 + x + 4 = 0
हल
(i) दिया गया द्विघात समीकरण :
2x2 – 7x + 3 = 0
⇒ \(x^{2}-\frac{7}{2} x+\frac{3}{2}=0\) [प्रत्येक पद में x2 के गुणांक 2 से भाग देने पर]
Bihar Board Class 10 Math Book Solution In Hindi
Bihar Board Class 10th Math Solution In Hindi
Bihar Board Class 10 Math Solution
Bihar Board 10th Math Solution In Hindi
Bihar Board Class 10 Maths Solution
Class 10th Math Solution In Hindi Bihar Board Pdf
Bihar Board Solution Class 10 Math
Bihar Board 10th Math Solution

Bihar Board Class 10 Math Book Solution In Hindi प्रश्न 2.
उपर्युक्त प्रश्न (1) में दिए गए द्विघात समीकरणों के मूल, द्विघाती सूत्र का उपयोग करके ज्ञात कीजिए।
हल
(i) दिया गया द्विघात समीकरण :
2x2 – 7x + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = -7 तथा c = 3
Bihar Board Class 10 Math Solution In Hindi
अत: समीकरण के मूल = 3, \(\frac{1}{2}\)

(ii) दिया गया द्विघात समीकरण :
2x2 + x – 4 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = 1 तथा c = -4
Math Class 10 Bihar Board

(iii) दिया गया द्विघात समीकरण :
4x2 + 4√3x + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
Bihar Board Math Solution
द्विघात समीकरण के दो मूल होते हैं और यहाँ b2 – 4ac = 0 है।
अत: दोनों मूल समान होंगे। तब समीकरण के मूल = \(-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\)

(iv) दिया गया समीकरण :
2x2 + x + 4 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = 1 तथा c = 4
Bihar Board 10th Math Book Solution
√-31 एक अधिकल्पित संख्या है।
x के मान अधिकल्पित होंगे।
अत: दिए गए समीकरण के मूलों का अस्तित्व नहीं है।

Bihar Board Class 10th Math Solution In Hindi प्रश्न 3.
निम्न समीकरणों के मूल ज्ञात कीजिए :
(i) x – \(\frac{1}{x}\) = 3, x ≠ 0
(ii) \(\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}\), x ≠ -4, 7
हल
Bihar Board 10th Math
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q3
Bihar Board Class 10th Math Book Solution In Hindi Pdf
Bihar Board Class 10th Math Solution

Bihar Board Class 10 Math Solution प्रश्न 4.
3 वर्ष पूर्व रहमान की आयु (वर्षों में) का व्युत्क्रम और अब से 5 वर्ष पश्चात् आयु के व्युत्क्रम का योग \(\frac{1}{3}\) है। उसकी वर्तमान आयुज्ञात कीजिए।
हल
माना रहमान की वर्तमान आयु x वर्ष है।
3 वर्ष पूर्व उसकी आयु = (x – 3) वर्ष
3 वर्ष पूर्व उसकी आयु का व्युत्क्रम = \(\frac{1}{x-3}\)
5 वर्ष पश्चात् उसकी आयु = (x + 5) वर्ष
5 वर्ष पश्चात् उसकी आयु का व्युत्क्रम = \(\frac{1}{x+5}\)
प्रश्नानुसार, दोनों व्युत्क्रमों का योग = \(\frac{1}{3}\)
\(\frac{1}{x-3}+\frac{1}{x+5}=\frac{1}{3}\)
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q4
धनात्मक (+) चिह्न लेने पर, x = 2 + 5 = 7
ऋणात्मक (-) चिह्न लेने पर, x = 2 – 5 = -3
परन्तु आयु ऋणात्मक नहीं होती; अत: x का मान -3 स्वीकार्य नहीं है
∴ x = 7
अत: रहमान की वर्तमान आयु 7 वर्ष है।

Bihar Board 10th Math Solution In Hindi प्रश्न 5.
एक क्लास टेस्ट में शेफाली के गणित और अंग्रेजी में प्राप्त किए गए अंकों का योग 30 है। यदि उसको गणित में 2 अंक अधिक और अंग्रेजी में 3 अंक कम मिले होते, तो उनके अंकों का गुणनफल 210 होता। उसके द्वारा दोनों विषयों में प्राप्त किए अंक ज्ञात कीजिए।
हल
माना शेफाली ने गणित में x अंक प्राप्त किए।
अंग्रेजी और गणित दोनों के प्राप्तांकों का योग = 30
अंग्रेजी में प्राप्तांक = (30 – x)
यदि उसको गणित में 2 अंक अधिक मिलते अर्थात् गणित में (x + 2) अंक मिलते और अंग्रेजी में 3 अंक कम मिलते अर्थात् अंग्रेजी में (30 – x – 3) या (27 – x) अंक मिलते, तो अंकों का गुणनफल (x + 2) (27 – x) होता अर्थात्
गुणनफल = (x + 2) (27 – x)
= 27x – x2 + 54 – 2x
= 25x – x2 + 54
प्रश्नानुसार, गुणनफल = 210
⇒ 25x – x2 + 54 = 210
⇒ x2 – 25x – 54 + 210 = 0 [पक्षान्तरण करने पर]
⇒ x2 – 25x + 156 = 0 [सरल करने पर]
उपर्युक्त समीकरण की तुलना मानक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 1, b = -25 तथा c = 156
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q5
तब, शेफाली ने गणित में या तो 12 अंक प्राप्त किए या फिर 13 अंक प्राप्त किए।
यदि शेफाली ने गणित में 12 अंक प्राप्त किए, तो अंग्रेजी में (30 – 12) = 18 अंक प्राप्त किए
और यदि शेफाली ने गणित में 13 अंक प्राप्त किए, तो अंग्रेजी में (30 – 13) = 17 अंक प्राप्त किए।
अतः शेफाली ने गणित व अंग्रेजी में क्रमश: 12 व 18 अंक अथवा 13 व 17 अंक प्राप्त किए।

Bihar Board Class 10 Maths Solution प्रश्न 6.
एक आयताकार खेत का विकर्ण उसकी छोटी भुजा से 60 मी अधिक लम्बा है। यदि बड़ी भुजा छोटी भुजा से 30 मी अधिक हो, तो खेत की भुजाएँ ज्ञात कीजिए।
हल
माना आयताकार खेत की छोटी भुजा x मी है।
बड़ी भुजा छोटी भुजा से 30 मी अधिक है।
बड़ी भुजा = (x + 30) मी
तब खेत की लम्बाई = (x + 30) मी तथा चौड़ाई = x मी
प्रश्नानुसार, आयताकार खेत का विकर्ण, छोटी भुजा (चौड़ाई) से 60 मी अधिक है।
आयताकार खेत का विकर्ण = (x + 60) मी
परन्तु आयत के लिए,
लम्बाई2 + चौड़ाई2 = विकर्ण2
⇒ (x + 30)2 + x2 = (x + 60)2
⇒ x2 = (x + 60)2 – (x + 30)2
⇒ x2 = (x + 60 + x + 30) (x + 60 – x – 30) [∵ a2 – b2 = (a + b) (a – b)]
⇒ x2 = (2x + 90) (30)
⇒ x2 = 60x + 2700
⇒ x2 – 60x – 2700 = 0 [पक्षान्तरण करने पर]
⇒ x2 – (90 – 30)x – 2700 = 0 [मध्यपद का विखण्डन करने पर]
⇒ x2 – 90x + 30x – 2700 = 0
⇒ x(x – 90) + 30(x – 90) = 0
⇒ (x – 90)(x + 30) = 0
⇒ (x – 90)(x + 30) = 0
यदि x – 90 = 0 हो, तो x = 90
और यदि x + 30 = 0 हो, तो x = -30
परन्तु भुजा की लम्बाई ऋणात्मक नहीं हो सकती; अत: x का मान -30 स्वीकार्य नहीं है।
∴ x = 90
दूसरी भुजा = (x + 30) मी = (90 + 30) = 120 मी
अत: आयताकार खेत की भुजाएँ 90 मी व 120 मी हैं।

Class 10th Math Solution In Hindi Bihar Board Pdf प्रश्न 7.
दो संख्याओं के वर्गों का अन्तर 180 है। छोटी संख्या का वर्ग बड़ी संख्या का आठ गुना है। दोनों संख्याएँ ज्ञात कीजिए।
हल
माना छोटी संख्या x है।
छोटी संख्या का वर्ग बड़ी संख्या का 8 गुना है।
बड़ी संख्या × 8 = छोटी संख्या का वर्ग
बड़ी संख्या × 8 = x2
बड़ी संख्या = \(\frac{x^{2}}{8}\)
प्रश्नानुसार, वर्गों का अन्तर = 180
(बड़ी संख्या)2 – (छोटी संख्या)2 = 180
⇒ \(\left(\frac{x^{2}}{8}\right)^{2}-(x)^{2}=180\)
⇒ \(\frac{x^{4}}{64}\) – (x)2 = 180
⇒ x4 – 64x2 = 11520
⇒ x4 – 64x2 – 11520 = 0
माना x2 = X, तब उक्त समीकरण :
X2 – 64X – 11520 = 0
उपर्युक्त समीकरण की तुलना मानक द्विघात समीकरण AX2 + BX + C = 0 से करने पर,
A = 1, B = -64 तथा C = -11520
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q7
धनात्मक (+) चिह्न लेने पर, x = 32 + 112 = 144
ऋणात्मक (-) चिह्न लेने पर, x = 32 + 112 = -80
X = x2
⇒ x2 = 144 या -80
⇒ x = ±12 या √-80 जो कि अधिकल्पित संख्या है।
तब, छोटी संख्या = 12 या -12
तब, बड़ी संख्या = \(\frac{x^{2}}{8}=\frac{144}{8}=18\)
अतः संख्याएँ = 12, 18 अथवा -12, 18

Bihar Board Solution Class 10 Math प्रश्न 8.
एक रेलगाड़ी एकसमान चाल से 360 km की दूरी तय करती है। यदि यह चाल 5 km/h अधिक होती, तो वह उसी यात्रा में 1 घंटा कम समय लेती। रेलगाड़ी की चाल ज्ञात कीजिए।
हल
माना रेलगाड़ी की चाल x km/h है।
सूत्र; समय = \(\frac{\text { दूरी }}{\text { चाल }}\) से
360 किमी दूरी तय करने में लगा समय = \(\frac{360}{x}\) घंटा
यदि रेलगाड़ी की चाल 5 km/h अधिक होती अर्थात् चाल (x + 5) km/h होती, तो
360 km दूरी तय करने में लगा समय = \(\frac{360}{x+5}\) घंटा
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q8
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q8.1
रेलगाड़ी की चाल ऋणात्मक नहीं हो सकती जिससे x का मान -45 स्वीकार्य नहीं है, तब x = 40
अत: रेलगाड़ी की चाल = 40 km/h

Bihar Board 10th Math Solution प्रश्न 9.
दो पानी के नल एक-साथ एक हौज को 9\(\frac{3}{8}\) घंटों में भर सकते हैं। बड़े व्यास वाला नल हौज को भरने में, कम व्यास वाले नल से 10 घंटे कम समय लेता है। प्रत्येक द्वारा अलग से हौज को भरने के समय ज्ञात कीजिए।
हल
माना कम व्यास वाला नल पानी के हौज को x घंटे में भरता है।
बड़े व्यास वाला नल हौज को भरने में 10 घंटे कम समय लेता है।
बड़े व्यास वाला नल हौज को (x – 10) घंटे में भरेगा।
पहले नल द्वारा हौज को भरने की प्रति घंटा दर = \(\frac{1}{x}\) भाग
इसी प्रकार, दूसरे नल द्वारा हौज को भरने की प्रति घंटा दर = \(\frac{1}{x-10}\) भाग
यदि दोनों नल एक-साथ खुले हों, तो 1 घंटे में हौज का \(\left(\frac{1}{x}+\frac{1}{x-10}\right)\) भाग भर जाएगा। परन्तु दिया है कि 9\(\frac{3}{8}\) घंटे या \(\frac{75}{8}\) घंटे में पूरा हौज भर जाएगा
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q9
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q9.1
अत: छोटा नल हौज को 25 घंटे या 3\(\frac{3}{4}\) घंटे में भर सकता है।
जब दोनों नल हौज को भरते हैं, तब 9 घंटे से अधिक समय लगता है तब केवल एक नल उसे 3\(\frac{3}{4}\) घंटे में भर दे यह असम्भव एवं असंगत है।
अत: छोटा नल उसे 25 घंटे में भरता है, तब बड़ा नल उसे 25 – 10 = 15 घंटे में भर सकता है।
अत: कम व्यास वाला नल हौज को 25 घंटे में और अधिक व्यास वाला नल उसे 15 घंटे में भर सकता है।

Bihar Board Class 10 Math Solution In Hindi प्रश्न 10.
मैसूर और बैंगलौर के बीच के 132 km यात्रा करने में एक एक्सप्रेस रेलगाड़ी, सवारी गाड़ी से 1 घंटा समय कम लेती है (मध्य के स्टेशनों पर ठहरने का समय ध्यान में न लिया जाए)। यदि एक्सप्रेस रेलगाड़ी की औसत चाल, सवारी गाड़ी की औसत चाल से 11 km/h अधिक हो, तो दोनों रेलगाड़ियों की औसत चाल ज्ञात कीजिए।
हल
माना सवारी गाड़ी की औसत चाल x km/h है।
एक्सप्रेस रेलगाड़ी की औसत चाल सवारीगाड़ी की अपेक्षा 11 km/h अधिक है।
एक्सप्रेस रेलगाड़ी की औसत चाल = (x + 11) km/h.
तब, 132 km यात्रा में सवारी गाड़ी द्वारा लिया समय = \(\frac{\text { दूरी }}{\text { चाल }}=\frac{132}{x}\) घंटा
और उसी यात्रा में एक्सप्रेस रेलगाड़ी द्वारा लिया समय = \(\frac{132}{x+11}\) घंटा
प्रश्नानुसार, एक्सप्रेस रेलगाड़ी 1 घंटा कम समय लेती है।
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q10
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.3 Q10.1
रेलगाड़ी की चाल ऋणात्मक नहीं हो सकती जिससे x का मान -44 स्वीकार्य नहीं है।
∴ x = 33
अत: सवारी गाड़ी की चाल 33 km/h तथा एक्सप्रेस गाड़ी की चाल (33 + 11) = 44 km/h है।

Bihar Board Class 10 Math Book Solution In Hindi Pdf Download प्रश्न 11.
दो वर्गों के क्षेत्रफलों का योग 468 m2 है। यदि उनके परिमापों का अन्तर 24 m हो, तो दोनों वर्गों की भुजाएँ ज्ञात कीजिए।
हल
माना एक वर्ग की भुजा x m है।
तब, उस वर्ग का परिमाप = 4x m
दोनों वर्गों के परिमापों में 24m का अन्तर है।
दूसरे वर्ग का परिमाप = (4x + 24) m
तब, दूसरे वर्ग की भुजा = (\(\frac{4 x+24}{4}\)) m = \(\frac{4(x+6)}{4}\) m = (x + 6) m
पहले वर्ग का क्षेत्रफल = x2 m2
तथा दूसरे वर्ग का क्षेत्रफल = (x + 6)2 m2 = (x2 + 12x + 36) m2
प्रश्नानुसार, दोनों वर्गों के क्षेत्रफलों का योग = 468 m2
⇒ x2 + (x2 + 12x + 36) = 468
⇒ 2x2 + 12x + 36 – 468 = 0
⇒ 2x2 + 12x – 432 = 0
⇒ 2(x2 + 6x – 216) = 0
⇒ x2 + 6x – 216 = 0
⇒ x2 + 2 × x × 3 + (3)2 – 216 – (3)2 = 0 [32 जोड़ने व घटाने पर]
⇒ (x + 3)2 – 225 = 0
⇒ (x + 3)2 – (15)2 = 0 [पूर्ण वर्ग बनाने पर]
⇒ (x + 3 + 15) (x + 3 – 15) = 0 [∵ a2 – b2 = (a + b) (a – b)]
⇒ (x + 18) (x – 12) = 0
⇒ (x + 18) (x – 12) = 0
यदि x + 18 = 0 हो तो x = -18
या x – 12 = 0 हो, तो x = 12
वर्ग की भुजा x = -18 ऋणात्मक नहीं हो सकती; अत: x का मान -18 स्वीकार्य नहीं है।
छोटे वर्ग की भुजा = 12 m
तब, बड़े वर्ग की भुजा = x + 6 = 12 + 6 = 18 m
अत: वर्गों की भुजाएँ क्रमश: 12 m व 18 m हैं।

Bihar Board Class 7 Maths Solutions Chapter 9 बीजीय व्यंजक

Bihar Board Class 7 Maths Solutions Chapter 9 बीजीय व्यंजक Text Book Questions and Answers.

BSEB Bihar Board Class 7 Maths Solutions Chapter 9 बीजीय व्यंजक

Bihar Board Class 7 Maths बीजीय व्यंजक Ex 9.1

बीजीय व्यंजक Class 7 Bihar Board प्रश्न 1.
निम्नलिखीत व्यंजकों में से चर एवं अचर राशियाँ ज्ञात करें-
(a) 5x + 2
(b) 2ab + 1
(c) 2x2y – 1 + 2x
(d) m3 – n2 – 1
(e) 9x2y2
हल :
(a) 5x + 2
चर = x
अचर = 5, 2

(b) 2ab + 1
चर = a, b
अचर = 2, 1

(c) 2x2y2 – 1 + 2x
चर = x2, y, x
अचर = 2, -1, 2

(d) m3 – n2 – 1
चर = m, n
अचर = -1

(e) 9x2y2
चर = x, y, z
अचर = 9

Bihar Board 7th Class Math Solution प्रश्न 2.
निम्नलिखित व्यंजकों के पदों को पहचानिए-
(a) x2 + 2x + 1
(b) 8a2 + 11ab = 2b2
(c) 9p2 – 4q
(d) a2b2 – 9
(e) 8ab – 3b
हल :
(a) x2 + 2x + 1
x2 = x × x
2x = 2 × x
1 = 1
पेड़ की आरेख विधि से
Bihar Board Solution Class 7 Math

(b) 8a2 + 11ab = 2b2
8a = 8 × a × a
11ab = 11 × a × b
2b2 = b × b × 2
Class 7 Math Chapter 9 Bihar Board

(c) 9p2 – 4q
9p2 = 9 × p × p
4q = 4 × q
Class 7 Maths Bihar Board

(d) a2b2 – 9
a2b2 = a × a × b × b
Bihar Board Class 7 Maths Solutions Chapter 9 बीजीय व्यंजक Ex 9.1 Q2.3

(e) 8ab – 3b
8ab = 8 × a × b
3b = 3 × b
Bihar Board Class 7 Maths Solutions Chapter 9 बीजीय व्यंजक Ex 9.1 Q2.4

Bihar Board Class 7 Math Solution In Hindi प्रश्न 3.
12x2y में x2y, x तथा y का गुणांक बताइए-
हल :
12x2y में
x2y का गुणांक = 12
xy का गुणांक = 12xy
y का गुणांक = 12x2

Bihar Board Class 7 Math Solution प्रश्न 4.
निम्नलिखित पद युग्मों में से समान पदों के समूह लिखिए-
9x2y, 8xy2, 3ab, -7ba, 7ab2, -4b2, 7a, 7, 11a, -11a2, 2xy, -2xy, 8ab, -2a, -2, 1, -x, 3x, 8x, 8
हल :
समान पद-
3ab, 8ab, -7ab
3x, 8x, -x
7, -2, 1, 8
11a, -2a
7a, 11a, -2a

Bihar Board Class 7 Math प्रश्न 5.
(a) 2x – y (द्विपदी)
(b) a2 – 3 – 3a (त्रिपदी)
(c) 3mn (एकपदी)
(d) a2b – 7a + 6 (त्रिपदी)
(e) 3a2 – 2a (द्विपदी)

Bihar Board Class 7 Maths बीजीय व्यंजक Ex 9.2

Class 7 Maths Chapter 9 Bihar Board प्रश्न 1.
निम्नलिखित व्यंजको को जोड़े-
(a) 6ab + 7ab
हल :
6ab + 7ab = 13ab

(b) 8x2y + (-4x2y)
हल :
8x2y + (-4x2y) = 4x2y

(c) x एवं y – 4
हल :
x + y – 4

(d) x – y, y – z, z – z
हल :
x – y + y – z + z – x = 0

(e) 3ab – b + 3b – ab
= 3ab – ab + 3b – b
= 2ab + 2b

(f) x2 – y2, y2 – x2
हल :
x2 – y2 + y2 – x2 = 0

(g) a2 + 2ab + b2, a2 – 2ab + b2
हल :
a2 + 2ab + b2 + a2 – 2ab + b2
= 2a2 + 2b2
= 2(a2 + b2)

(h) 3x + 11 + 8z, 5x – 7
हल :
3x + 11 + 8z + 5x – 7
= 3x + 5x + 8z + 11 – 7
= 8x + 8z + 4

(i) x2 – y2 – 1, y2 – 1 – x2, 1 – x2 – y2
हल :
x2 – y2 – 1 + y2 – 1 – x2 + 1 – x2 – y2 = y2 – x2 – 1

Algebraic Expressions Class 7 Bihar Board प्रश्न 2.
घंटाइए-
(a) 3a2 में से (-7a2)
(b) a2 + b2 में से (a2 – b2)
(c) a2 + 2ab + b2 में से (a2 – 2ab + b2)
(d) b(8 – a) में से -{a(b – 3)}
(e) 3xy – 2x2 – 2y2 में से (5x2 – 7xy + 5y2)
हल :
(a) 3a2 – (-7a2) = 3a2 + 7a2 = 10a2
(b) a2 + b2 – (a2 – b2) = a2 + b2 – a2 + b2 = 2b2
(c) a2 + 2ab + b2 – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2
= 4ab
(d) b(8 – a) – {a(b – 3)}
= 8b – ab – {ab – 3a}
= 8b – ab – ab + 3a
= 8b – 2ab + 3a
(e) 3xy – 2x2 – 2y2 – (5x2 – 7xy + 5y2)
= 3xy – 2x2 – 2y2 – 5x2 + 7xy – 5y2
= 10xy – 7x2 – 7y2

Class 7 Maths Chapter 9 Exercise 9.1 Solution प्रश्न 3.
सरल करें-
(a) 4xy – 7x2y – 6xy + 2yz2 + 4y2z – 3yz2
(b) a2 + ab + b2 + a2 + b2 – ab + 3
हल :
(a) 4xy – 7x2y – 6xy + 2yz2 + 4y2z – 3yz2
= 4xy – 6xy – 7x2y + 2yz2 – 3yz2 + 4yz2
= -2xy – 7x2y – yz2 +4y2z

(b) a2 + ab + b2 + a2 + b2 – ab + 3
= 2a2 + 2b2 + 3

Bihar Board Class 7 Maths Solutions प्रश्न 4.
x2 + y2 प्राप्त करने के लिए 2x2 + y2 – 3 में क्या जोड़े
हल :
2x2 + y2 – 3 – (x2 + y2)
= 2x2 + y2 – 3 – x2 – y2
= -3

Class 7 Maths Chapter 9 Exercise 9.2 Solution प्रश्न 5.
a + b + c प्राप्त करने के लिए 7a – 8b में क्या घटाना चाहिए-
हल :
7a – 8b – (a + b + c)
= 7a – 8b – a – b – c
= 6a – 7b – c

Bihar Board Math Solution Class 7 प्रश्न 6.
यदि सुनील ने a रु. की दर से 5 कलम b रु. की दर से 7 पेन्सिलें एवं पुनः a रु. की दर से 10 कलमें एवं b रु. की दर से 3 पेन्सिलें खरीदीं तो उसने कुल कलम एवं पेंसिल खरीदने में कितने रुपये खर्च किये?
हल :
a रु. की दर से 5 कलम = 5a
b रु. की दर से 7 पेंसिलें = 7b
a रु. की दर से 10 कलम = 10a
b रु. की दर से 3 पेंसिलें = 3b
कुल = 5a + 7b + 10a + 3b = 15a + 10b

Bihar Board Class 7 Maths बीजीय व्यंजक Ex 9.3

Chapter 9 Class 7 Maths Bihar Board प्रश्न 1.
नीचे दिए गए बीजीय व्यंजकों का गुणा कीजिए-
(a) (7a + 2b) (a + 4b)
(b) (x – 6) (4x + 9)
(c) (5x – 1) (3y – 8)
(d) (a3 – b3) (a – b)
(e) (0.7x – 0.2y) (1.5x – 3y)
(f) (3a2 + 5a – 9) (3a – 9)
(g) (-x – y) (-x – y)
(h) (x2 – 5x + 8) (x2 + 3)
(i) \(\left(\frac{1}{2} x-\frac{1}{2} y\right)\left(x^{\prime}-y\right)\)
(j) (3pq – 3q) (3q – 7pq)
हल :
(a) (7a + 2b) (a + 4b)
= (7a × a) + (7a × 4b) + (2b × a) + (2b × 4b)
= 7a2 + 28ab + 2ab + 8b2
= 7a2 + 30ab + 8b2

(b) (x – 6) (4x + 9)
= (x × 4x) + (x × 9) + (-6 × 4x) + (-6 × 9)
= 4x2 + 9x – 24x – 54
= 4x2 – 15x – 54

(c) (5x – 1) (3y – 8)
= (5x × 3y) + (5x × -8) + (-1 × 3y) + (-1 × -8)
= 15xy – 40x – 3y + 8

(d) (a3 – b3) (a – b)
= (a3 × a) – (a3 × b) + (-b3 × a) + (-b3 × -b)
= a4 – a3b – b3a + b4

(e) (0.7x – 0.2y) (1.5x – 3y)
= (0.7x × 1.5x) + (0.7x × -3y) + (-0.2y × 1.5x) + (0.2y × -3y)
= 0.45x2 – 2.1xy – 3xy + 0.6y2

(f) (3a2 + 5a – 9) (3a – 9)
= (3a2 × 3a) + (3a2 × -9) + (5a × 3a) + (5a × -9) + (-9 × 3a) + (-9 × -9)
= 9a3 – 27a2 + 15a2 – 45a – 27a + 81
= 9a3 – 12a2 – 72a + 81

(g) (-x – y) (-x – y)
= (-x × -x) + (-x × -y) + (-y × -x) + (-y × -y)
= x2 + xy + xy + y2
= x2 + 2xy + y2

(h) (x2 – 5x + 8) (x2 + 3)
= (x2 × x2) + (x2 × 3) + (-5x × x2) + (-5x × 3) + (8 × x2) + (8 × 3)
= x4 + 3x2 – 5x3 – 15x + 8x2 + 24
= x4 + 11x2 – 5x3 – 15x + 24

Bihar Board Class 7 Maths Solutions Chapter 9 बीजीय व्यंजक Ex 9.3 Q1

(j) (3pq – 3q) (3q – 7pq)
= (3pq × 3q) + (3pq × -7pq) + (-3q × 3q) + (-3q × -7pq)
= 9pq2 – 21p2q2 – 9q2 + 21pq2
= 30pq2 – 21p2q2 – 9q2
= 3(10pq2 – 7p2q2 – 3q2)

Class 7 Bihar Board Math Solution प्रश्न 2.
सरल करें-
(a) (a + b) (a – b) + (a – b) (a2 + ab + b2)
(b) a3 – b3 + (a + b) (a2 – ab + b2)
(c) m2 – n2 – (m – n) (m + n)
(d) (2a + 5b) (3b + 4a) – (7a + 3b) (2a + b)
हल :
(a) (a + b) (a – b) + (a – b) (a2 + ab + b2)
= (a × a) + (a × -b) + (b × a) + (b × -b)} + {(a × a2)+ (a × ab) + (a × b2) + (-b × a2) + (-b × ab) + (-b × b2)
= {a2 – ab + ab – b2} + {a3 + a2b + ab2 – ba2 – ab2 – b3}
= (a2 – b2) + (a3 – b3)

(b) a3 – b3 + (a + b) (a2 – ab + b2)
= a3 – b3 + (a × a2 + a × -ab + a × b2 + b × a2 + b × -ab + b × b2)
= a3 – b3 + a3 – a2b + ab2 + ba2 – ab2 + b3
= a3 – b3 + a3 + b3
= 2a3

(c) m2 – n2 – (m – n) (m + n)
= m2 – n2 – {m × m + m × n – n × m – n × n)
= m2 – n2 – {m2 + mn – mn – n2}
= m2 – n2 – m2 + n2
= 0

(d) (2a + 5b) (3b + 4a) – (7a + 3b) (2a + b)
= {2a × 3b + 2a × 4a + 5b × 3b + 5b × 4a} – {7a × 2a + 7a × b + 3b × 2a + 3b × b}
= {6ab + 8a2 + 15b2 + 20ab} – {14a2 + 7ab + 6ab + 3b2}
= 6ab + 8a2 + 15b2 + 20ab – 14a2 – 7ab – 6ab – 3b2
= 8a2 – 14a2 + 15b2 – 3b2 + 20ab – 7ab
= -6a2 + 12b2 + 13ab

Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न

Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Text Book Questions and Answers.

BSEB Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न

Bihar Board Class 7 Maths दशमलव भिन्न Ex 3.1

Bihar Board Class 7 Maths प्रश्न 1.
निम्नलिखित दशमलव संख्या के जोड़े में से बड़ी संख्या लिखिए-
(a) 5.67 एवं 5.7
हल :
5.67 एवं 5.7
बड़ी संख्या = 5.67

(b) 5.60 एवं 5.61
हल :
5.60 एवं 5.61
बड़ी संख्या = 5.7

(c) 5.67 एवं 4.67
हल :
5.67 एवं 4.67
बड़ी संख्या = 5.61

Bihar Board Class 7 Math Solution In Hindi प्रश्न 2.
जोडिए-
(a) 1.22 में 2.11
हल :
1.22 + 2.11 = 3.33

(b) 1.23 में 0.12
हल:
1.23 + 0.12 = 1.35

(c) 2.13 में 0.87
हल :
2.13 + 0.87 = 3

(d) 1.2 में 1.002
हल :
1.2 + 1.002 = 2.202

(e) 1.02 में 2.099
हल :
1.02 + 2.099 = 3.119

(f) 2.37 + 3.76
हल :
2.37 + 3.76 = 6.13

Bihar Board Solution.Com Class 7 प्रश्न 3.
घटाइए-
(a) 2.34 में से 1.23
हल :
2.34 – 1.23 = 1.11

(b) 1.01 में से 0.1
हल :
1.01 – 0.1 = 0.91

(c) 1.02 में से 0.02
हल :
1.02 – 0.02 = 1

Class 7 Math Bihar Board प्रश्न 4.
1.20, 2.01, 0.123, 0.21, 1.02 को बढ़ते क्रम में लिखिए-
हल :
बढ़ते क्रम में
-0.123 < 0.21 < 1.02 < 1.20 < 2.01

Bihar Board Class 7 Math Book Pdf प्रश्न 5.
दशमलव का प्रयोग कर निम्नलिखित को रुपये में व्यक्त कीजिए-
(a) 212 रुपये 10 पैसे
हल :
212.1 रु.

(b) 5 रुपये 5 पैसे
हल : 5.05 रु.

(c) 315 पैसे
हल :
3.15 रु.

Bihar Board Class 7 Math प्रश्न 6.
(i) 10 सेमी को मीटर एवं किमी० में लिखिए-
हल :
10 cm = \(\frac{10}{100}\) = 0.1 meter
1 cm. = 0.001 km.

(ii) 115 सेमी को मीटर एवं किमी. में लिखिए।
हल :
115 cm.
\(\frac{115}{100}\) = 1.15 meter
\(\frac{115}{10000}\) = 0.00115 km.

Bihar Board Class 7 Math Book Solution प्रश्न 7.
(i) 2.345
हल :
2.345 = 2 + 0.3 + 0.04 + 0.005

(ii) 3.24
हल :
3.24 = 3 + 0.2 + 0.04

Bihar Board Class 7 Math Solution प्रश्न 8.
घर से बाजार होते हुए विद्यालय जाने पर माला द्वारा तय की गई = (0.5 + 0.25) km. = 0.75 km.
मित्र के घर से होते हुए विद्यालय जाने पर माला द्वारा तय की गई दृग = (0.3 km + 0.5 m) = 0.8 km.
(0.8 – 0.75) km = 0.05 km.
घर से बाजार होते हुए विद्यालय जाने पर माला को 0.05 km. की कम दूरी तय करनी होगी।

Bihar Board 7th Class Math Solution प्रश्न 9.
बबलू द्वारा खरीदा गया समान 3 kg 500 gm आलू, 1 kg बैंगन अफसाना द्वारा खरीदा गया सामान 2 kg 50 gram चीनी, 2 kg 250 grm. बेसन।
हल :
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.1 Q9
= (4.5 – 4.3)
= 0.2
बबलू ने 0.2g (200 gram) सामान ज्यादा खरीदा।

Bihar Board Class 7 Maths Solutions प्रश्न 10.
15.00
-6.50
8.50m
15 मीटर से 6.5 मीटर 8.50 मीटर अधिक है।

Bihar Board Class 7 Maths दशमलव भिन्न Ex 3.2

7th Class Math Bihar Board प्रश्न 1.
गुणनफल ज्ञात कीजिए-
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.2 Q1
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.2 Q1.1
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.2 Q1.2
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.2 Q1.3
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.2 Q1.4

Class 7 Maths Chapter 3 Exercise 3.2 Solution प्रश्न 2.
किसी वर्ग की भुजा 2.3 मीटर है तो उसका क्षेत्रफल क्या होगा?
हल :
वर्ग की भुजा = 2.3 m
क्षेत्रफल = (भुजा)2 = (2.3)2 = 5.29

Math Class 7 Bihar Board प्रश्न 3.
किसी त्रिभुज का आधार एवं आधार पर शीर्षस्तंब की लम्बाई क्रमशः 2 सेमी एवं 1.5 सेमी है| त्रिबजुज का क्षेत्रफल ज्ञात कीजिए|
हल :
त्रिभुज का आधार = 2 सेमी.
आधार पर शीर्षलंब की लं० = 1.5 सेमी.
∆ का क्षेत्रफल = ?
∆ का क्षेत्रफल = \(\frac {1}{2}\) × आधार × ऊँचाई
= \(\frac {1}{2}\) × 2 × 1.5
= 1.5 cm2

Bihar Board Class 7 Math Book प्रश्न 4.
70.5 रु प्रति मीटर की दूर से 3.5 मीटर कपाई का मूल्य क्या होगा?
हल :
1 मीटर कपड़े की दर = 70.5 रु०
3.5 मीटर कपड़े की दर = ?
3.5 m कपड़े की दर = 70.5 × 3.5 = 246.76
3.5 m कपड़े की दर 246.76 रु. होगा।

Class 7 Bihar Board Math Solution प्रश्न 5.
1 लीटर पेट्रोल में तय की गई दूरी = 55.75 km.
2.75 लीटर पेट्रोल में तय की गई दूरी = 55.75 × 2.75 = 153.3125
2.75 लीटर पेट्रोल में 153.3125 km. की दूरी तय की जाएगी।

Bihar Board Class 7 Maths दशमलव भिन्न Ex 3.3

Bihar Board 7th Class Math Book प्रश्न 1.
भाग कीजिए-
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.3 Q1
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.3 Q1.1

Class 7 Math Solution Hindi Medium Bihar Board प्रश्न 2.
हल कीजिए-
Bihar Board Class 7 Maths Solutions Chapter 3 दशमलव भिन्न Ex 3.3 Q2

प्रश्न 3.
कपड़े के थान की लम्बाई = 32.50 मीटर
एक छात्रा को पोशाक = 3.25 मीटर
कुल पोशाक की संख्या = \(\frac{32.50}{3.25} \times \frac{100}{100}\) = 10
10 छात्राओं के लिए पोशाक बनाई जा सकती है।

प्रश्न 4.
आयत का क्षेत्रफल = 6.5 वर्ग मीटर
आयत की चौड़ाई = 1.25
आयत की लम्बाई = x
तो, आयत का क्षेत्रफल = लम्बाई × चौड़ाई
6.5 = 1.25 × x
x = \(\frac{6.5}{1.25} \times \frac{100}{10}=\frac{650}{125}\) = \(\frac{26}{5}\) = 5.2

प्रश्न 5.
कॉल की दर = 3 पैसे प्रति सेकेण्ड
0.9 सेकेण्ड = \(\frac{0.90}{0.30}\) = 30 सेकेण्ड
सोनाली द्वारा फोन पर 30 सेकेण्ड बात की गयी।

प्रश्न 6.
एक सलवार बनाने में लगा समय = 3.5 घंटे
10.5 घंटे में बने सलवारों की संख्या = \(\frac{10.5}{3.5}\) = 3
10.5 घंटे में 3 सलवार बनेंगे।

प्रश्न 7.
लस्सी के 15 पैकेट का वजन = 1.47 kg.
1.47 लस्सी के 1 पैकेट का वजन = \(\frac{1.47}{15}\) = 0.098 ग्राम
लस्सी के 1 पैकेट का वजन 0.098 ग्राम होगा।

Bihar Board Class 9 English Book Solutions Poem 5 Sound

Get Updated Bihar Board Class 9th English Book Solutions in PDF Format and download them free of cost. Bihar Board Class 9 English Book Solutions Poem 5 Sound Questions and Answers provided are as per the latest exam pattern and syllabus. Access the topics of Panorama English Book Class 9 Solutions Poem 5 Sound through the direct links available depending on the need. Clear all your queries on the Class 9 English Subject by using the Bihar Board Solutions for Poem 5 Sound existing.

Panorama English Book Class 9 Solutions Poem 5 Sound

If you are eager to know about the Bihar Board Solutions of Class 9 English Poem 5 Sound Questions and Answers you will find all of them here. You can identify the knowledge gap using these Bihar Board Class 9 English Solutions PDF and plan accordingly. Don’t worry about the accuracy as they are given after extensive research by people having subject knowledge alongside from the latest English Textbooks.

Bihar Board Class 9 English Sound Text Book Questions and Answers

A. Work in small groups and discuss the questions given below:

Bihar Board Class 9 English Book Solution Question 1.
How do trees help us?
Answer:
Trees help us in many ways. They purify the air, they give us oxygen. They give shelter to wild animals and birds. They also give us fruits and fuel. They check the soil erosion and act as a balance to ecology.

Bihar Board 9th Class English Book Solution Question 2.
Should you cut trees?
Answer:
We should never cut trees.

English Poem For Class 9 Bihar Board Question 3.
Name the frees which you have in your school garden.
Answer:
The trees are mango, guava, peapal, neem and a big bunyan trees.

Bihar Board 9th Class English Book Question 4.
Have you planted trees in your locality? If not, would you do it?
Answer:
I live in a city. There is no place to plant a tree, so, I have not planted any tree. Yes, I like to do it.

B. Answer the following questions very briefly:

Bihar Board English Book Class 9 Pdf Download Question 1.
What happens to a trees in the woods?
Answer:
A tree is hacked in the woods.

Bihar Board Class 9 English Question 2.
Do the halves express their grief?
Answer:
Yes, the halves express their grief to each other.

Bihar Board 9th Class English Book Pdf Question 3.
Do they make a sound because they are in pain?
Answer:
Yes. they make a sound because they are in pain.

English Poems For Class 9 Bihar Board Question 4.
Where do the logs go?
Answer:
The logs are driven from each other and go to different places.

Class 9 English Book Bihar Board Question 5.
Who knows the predicament of trees?
Answer:
The wind knows the predicament of trees.

Sound Class 9 Solutions Bihar Board Question 6.
Can all men sense the agonies of trees.
Answer:
No, all men cannot sense the agonies of trees.

Bihar Board Class 9 English Book Pdf Question 7.
Why does the poet call the songs not song but just sounds?
Answer:
The poet does not call them songs but sounds because they are the cries of lamentation.

English Poems For Class 9 On Nature Bihar Board Question 8.
What will be the ultimate end of such sounds?
Answer:
Such sounds would be choked to death as they would be confined to script only.

C.1. Long Answer Type Questions

Question 1.
The poet has given a touching account of a tree which has been cut down. Don’t you think that this is a sad poem in memory of a felled tree?
Answer:
Yes, I agree to this point that through cutting of tree the poet presents a sad memory of a felled tree. The tree which has been cut mercilessly must have felt agonies. Its branches are driven away far off places. The whispering of the logs present its sad plight. So this poem is decidedly a sad poem.

Question 2.
Why has the poet indulged in reminiscences? Has anything ever compelled you to reminisce?
Answer:
The felled tree has touched the sensitivity of the poet so she goes on thinking. She has become emotional. She saw the sad mood of the tree insight in him. She has indulged herself with the sad tree. It is mind which makes me sad or happy. It is also true that trees eat, drink and breath. They grow like human beings. They also take rest .at night. They enjoy the pleasure and suffer the furies of nature. When they are hacked they must feel pain. So the poet thinks so.
Once I was going to my school hostel. I was waiting for the train. Suddenly a lady came to me and made friendship with me. She called me son. She took me to the canteen and both had a good break fast there. She talked me a lot. When the train came I boarded into the train I looked at her. She was too looking at me and made me see off. That day always reminisces me.

Question 3.
What does ‘the wind know and what the wind blowing a din’ suggest?
Answer:
The wind knows how the tree suffered when it was tossed. It knows that the tree bore all seasons rain. The wind is blowing and making din. This is to suggest that the wind crying over the pain of the tree.

Question 4.
“Many a man is blunt, so blunt,/ He doesn’t even sense the agonies caught/Even in simple words.” Explain the lines.
Answer:
The given lines are very suggestive. The poet says that majority of men have got their sensitivity blunted. So much so that they fail to perceive the agonies behind the simple words. In fact the poem conveys that it is because of their blunted sensitivity v that men fell trees.

Question 5.
Justify the title of the poem.
Answer:
Cutting of tree compel the halves to cry. The wind is also crying over the loss of the tree. The poet also laments such loss and pain. But all these make sound only. The effect is unknown. They fall flat on him as me resounds. Hence, the title ‘sound’ very subtly but aptly conveys the feeling of the poem.

Question 6.
The poem suggests that the writer of this poem is an environmentalist. She is deeply concerned with protecting and preserving the natural environment. Do you agree with it? Write your opinion.
Answer:
The way of thinking shows that the writer of the poem is an environmentalist and that she is deeply concerned with protecting and preserving the natural environment. She does not want that even a tree should be cut. I agree that she has tried to make us aware of the importance of trees and plant life.

Question 7.
‘A lot of people are insensitive to the agonies of trees’. Comment.
Answer:
The poet describes the cutting of the tree as if it were duty of insensitive people. The tree is the symbol of Nature and the environment and the poem can be read as a parable on what man has been doing to nature. Man is entitled to exploit the reasources of nature to make a living. But there is no justification Tor exploiting a tree to satisfy his greed. In this sense man does not foci the agonies of a tree.

Question 8.
What is the theme of the poem? Could you suggest another r title?
Answer:
The theme of the poem ‘Sound’ is the degradation nature has suffered at the hands of modem men who are blunt and insensitive to the agonies of trees. ‘Sound’ is of Nature’s love lover poem which lays bare before us man’s wanton destruction of the environment to satisfy his greed. Another title may be ‘Echo’.

Question 9.
Do trees have souls? Give your opinion.
Answer:
The great Indian scientist Jagdish Chandra Bose has already proved that plants are living things. They eat, drink and breathe. They grew like the human beings. They also take rest at night. Their green leaves produce all the starch. They enjoy the pleasures and suffer the furies of nature like the human beings. Hence wc can say that trees are alive and have souls.

Question 10.
Imagine yourself to be a branch which has just been hacked out. Describe your feelings to your parent tree.
Answer:
What happened to me that cannot be borne. It is a matter of regret that I have been hacked. Oh! the pain is unbearable I am fallen on the ground lifeless. I am helpless. I ani dying. My agony can’t he understood by blunt people who have hacked me. I was y.our inseparable part but these rude and blunt people have cut me apart.

C.2. Group Discussion

Discuss the following in groups or pairs:

Question 1.
Trees are our friends; we must not cut them.
Answer:
Trees play a key role in our life. The people play and refresh themselves in their cool shade. They give us fire wood and fruits. They give us Limber and building macrial. Paper is also tiude of wood. Trees supply oxygen to the alomosphere. They absorb Carbon dioxide. Their leaves produce Oxygen and release ¡milo the air. The green leaves also produce starch. It is an essential pari bi the food of men and animals. The leaves of trees breathe out a lot of water vapour. It helps to cool the air. So it is often cooler under a tree than inside a building. Forest attracts rain. Trees prevent floods. They protect the soil from being washed off. Trees are home of birds. They support to live wild animals as well. Thus it is clear that trees are our friends.

Question 2.
Save trees today for a better tomorrow.
Answer:
This should be always remembered save trees to day for a better tomorrow children of today will be the elders of tomorrow. Then they will need trees. Thinking this the Indian Government has started a festival. It is called “Vanmahotsava’ or the “Forest Festival”. This festival is held every year in order to make the people realise the value of trees’ in the present period and in future. Large number of trees are planted on this day. The people are apprised of their duty to look after the trees well and protect them from every harm.

Comprehension Based Questions with Answers

1. A tree in the woods is hacked
Its branch breaking away
what do the halves
whisper to each other?
Do they moan and groan
In the heart of their hearts?
And do these logs driven from each other Reminisce?

Questions:

  1. Name the poem and its poet.
  2. What happened to the tree in the woods?
  3. What pain do the halves feel?
  4. What do the logs do?

Answers:

  1. The name of the poem is ‘Sound’ and its poet is Rajani Parulekar.
  2. The tree was cut down in the woods.
  3. The halves moan and groan in pain.
  4. The logs reminisce their past life.

2. Do they remember how the wind tossed them?
How they got drenched.in the rain?
And the blossoms in the spring And the fall in autumn?
Oh! But the wind knows
The wind blowing with a din
In places forlorn Sings such songs.

Questions:

  1. What does the tree remember?
  2. Which season is mentioned in the poem?
  3. Who knows everything that happens to the tree?
  4. Find the word from the poem which mean ‘Sad state’.

Answers:

  1. The tree remembers how the wind tossed it.
  2. Autumn’ has been mentioned in the poem.
  3. The wind knows every thing that happens to the tree.
  4. Forlorn.

3. Those songs not all could praise
Many a man is blunt,
He doesn’t even sense
The agonies caught
Even in simple words!
What then of these songs
They are just sounds
Such sounds as would be choked to death
If confined in the strokes and coils of the script.

Questions:

  1. Could all praise those songs?
  2. What type of men are mentioned here?
  3. What does the poet think about the songs?
  4. What will be to such sound?
  5. What is confined?

Answers:

  1. No, those songs could not be praised by all.
  2. Blunt people are mentioned here.
  3. The poet thinks that the songs are not effective.
  4. Such sound will be choked to death.
  5. They will be confined to the strokes and coils or script only.

Hope you liked the article on Bihar Board Solutions of Class 9 English Poem 5 Sound Questions and Answers and share it among your friends to make them aware. Keep in touch to avail latest information regarding different state board solutions instantly.

Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण

Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Text Book Questions and Answers.

BSEB Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण

Bihar Board Class 7 Maths त्रिभुज और उसके गुण Ex 6.1

Bihar Board Class 7 Math Solution In Hindi प्रश्न 1.
x का मान ज्ञात कीजिए-
Bihar Board Class 7 Math Solution In Hindi
हल :
∠1 + ∠2 + ∠3 = 180°
∠80° + ∠40° + ∠x = 180°
∠x = 180° – (80° + 40°)
∠x = 180° – 120°
∠x = 60°
Bihar Board Class 7 Math
हल :
∠1 + ∠2 + ∠x = 180°
∠15° + ∠35° + ∠x = 180°
∠x = 180° – (15° + 35°)
∠x = 180° – 50°
∠x = 130°
Bihar Board 7th Class Math Solution
हल :
∠1 + ∠2 + ∠3 = 180°
∠x + ∠50° + ∠40° = 180°
∠x = 180° – (50° + 40°)
∠x = 180° – 90°
∠x = 90°

Bihar Board Class 7 Math प्रश्न 2.
∠1 + ∠2 + ∠3 = 180° [∵ समकोण ∆ का एक कोण = 90°]
∠1 = 35°, ∠2 = 90°
∠3 = 180° – (35° + 90°)
∠3 = 180° – 125°
∠3 = 55°

Bihar Board 7th Class Math Solution प्रश्न 3.
Class 7 Bihar Board Math Solution
समबाहु त्रिभुज = जिसकी तीनों भुजाएँ और कोण बराबर हों।
∠1 + ∠2 + ∠3 = 180°
∠60° + ∠60° + ∠60° = 180°
तीनों कोणों की माप ∠60° + ∠60° + ∠60° = 180° होगी।

Class 7 Bihar Board Math Solution प्रश्न 4.
Class 7 Maths Bihar Board
(i) ∠1 + ∠2 + ∠3 = 180°
∠140° + ∠y + ∠y = 180°
∠y + ∠y = 180°
∠y + ∠y = 180° – 140°
∠y + ∠y = 40°
2∠y = 40°
∠y = 20°
y = 20°
(ii) समद्विबाहु, अधिककोण त्रिभुज

Class 7 Maths Bihar Board प्रश्न 5.
माना पहला कोण = ∠1
दूसरा कोण = ∠2
तीसरा = ∠3
प्रश्नानुसार, ∠1 = ∠2 + ∠3
तथा ∠2 = ∠3
इस त्रिभुज के दो कोण बराबर हैं।
यह एक समद्विबाहु त्रिभुज है।

Bihar Board Solution Class 7 Math प्रश्न 6.
Bihar Board Solution Class 7 Math
∠A = 2y
∠B = 90° (समकोण)
∠C = y°
∠A + ∠B + ∠C = 180°
2y + 90° + y = 180
3y = 180° – 90°
y = 30°
∠A = 2y = 2 × 30 = 60°
∠C = y = 30°

त्रिभुज और उसके गुण कक्षा 7 Bihar Board प्रश्न 7.
त्रिभुज और उसके गुण कक्षा 7 Bihar Board
∠A = 2x
∠B = 3x
∠C = 4x
∠A + ∠B + ∠C = 180°
2x + 3x + 4x = 180°
9x = 180°
x = 20°
∠A = 2x = 2 × 20 = 40°
∠B = 3x = 3 × 20 = 60°
∠C = 4x = 4 × 20 = 80°

Class 7 Math Bihar Board प्रश्न 8.
Class 7 Math Bihar Board
AB = AC
∠C = ∠B = 55°
∠A + ∠B + ∠C = 180°
∠A + 55° + 55° = 180°
∠A = (180°) – (55° + 55°)
∠A = 180° – 110°
∠A = 70°

Bihar Board Class 7 Maths Solutions प्रश्न 9.
Bihar Board Class 7 Maths Solutions
∠A + ∠B + ∠C = 180°
40° + 100° + ∠C = 180°
∠C = 180° – (40° + 100°)
∠C = 180° – 140°
∠C = 40°
x = 180° – ∠C = 180° – 40° = 140°

Bihar Board Class 7 Math Solution प्रश्न 10.
Bihar Board Class 7 Math Solution
∠C = 180° – 130° = 50°
∠A + ∠B + ∠C = 180°
∠A = 180° – (85° + 50°)
∠A = 180° – 135°
∠A = 45°

Math Class 7 Bihar Board प्रश्न 11.
रेखा का नाम : कोण समद्विभाजक
कारण : क्योंकि यह कोण को दो बराबर भागों में बाँटता है।
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q11

Class 7th Math Bihar Board प्रश्न 12.
रेखा का नाम : आधार पर लम्ब
कारण : क्योंकि यह आधार को दो भागों में बाँटता है तथा आधार पर लम्ब है।
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q12

Bihar Board Math Class 7 प्रश्न 13.
रेखा का नाम : आधार पर लम्ब । क्योंकि यह लम्ब पर 90° डिग्री का कोण बनाता है।
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q13

Class 7 Math Solution Bihar Board प्रश्न 14.
अधिककोण त्रिभुज
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q14

Bihar Board Class 7th Math Solution प्रश्न 15.
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q15
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q15.1
(i) ये सभी रेखा एक ही हैं।
(ii) विशेषताएँ-
(क) यह कोण A को दो भागों में बाँटती है।
(ख) यह सामने वाली भुजा को दो भागों में बाँटती है ।

Class 7 Maths Bihar Board Solution प्रश्न 16.
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q16

Bihar Board Class 7th Math प्रश्न 17.
खाली स्थान भरिए-
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.1 Q17

Bihar Board Class 7 Maths त्रिभुज और उसके गुण Ex 6.2

Bihar Board Math Solution Class 7 प्रश्न 1.
पाइथागोरस प्रमेय के अनुसार D में a2 + b2 = c2
(i) (3, 4, 5)
हल :
a2 + b2 = c2
32 + 42 = 52
9 + 16 = 25
25 = 25
यह त्रिभुज की भुजाओं को प्रदर्शित करता है।
(ii) (2, 3, 4)
हल :
a2 + b2 = c2
22 + 32 = 42
4 + 9 = 16
13 = 16
यह त्रिभुज की भुजाओं को प्रदर्शित नहीं करता।
(iii) (1, 2, 3)
हल :
a2 + b2 = c2
12 + 22 = 32
1 + 4 = 9
5 = 9
यह त्रिभुज की भुजाओं को प्रदर्शित नहीं करता।
(iv) (1, 3, 5)
हल :
a2 + b2 = c2
12 + 32 = 52
1 + 9 = 25
10 = 25
यह त्रिभुज की भुजाओं को प्रदर्शित नहीं करता है।

प्रश्न 2.
सत्य/असत्य बताएँ-
(i) AO + OB < AB
हल :
असत्य
(ii) AO + OC > AC
हल :
सत्य
(iii) BO + OC = BC
हल :
असत्य

प्रश्न 4.
एक त्रिभुज को दो भुजाओं की माप 10 cm. और 14 cm. है तो त्रिभुज की तीसरी भुजा की-
न्यूनतम सीमा = a – b = 14 – 10 = 4 cm
अधिकतम सीमा = a + b = 14 + 10 = 24 cm
त्रिभुज की न्यूनतम सीमा 4 cm. ज्यादा और अधिकतम सीमा 24 cm. से कम होनी चाहिए।

प्रश्न 5.
Bihar Board Class 7 Maths Solutions Chapter 6 त्रिभुज और उसके गुण Ex 6.2 Q5

प्रश्न 6.
समकोण त्रिभुज में,
a2 + b2 = c2
माना = 6 cm, b = 8 cm, c = 10 cm.
a2 + b2 = c2
62 + 82 = 102
36 + 64 = 100
100 = 100
यह एक समकोण त्रिभुज है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3

Bihar Board Class 10 Maths समांतर श्रेढ़ियाँ Ex 5.3

Bihar Board Class 10 Math Book Solution In Hindi प्रश्न 1.
निम्नलिखित समान्तर श्रेढ़ियों का योग ज्ञात कीजिए :
(i) 2, 7, 12, ……., 10 पदों तक
(ii) -37, -33, -29, ….., 12 पदों तक
(iii) 0.6, 1.7, 2.8, ……, 100 पदों तक
(iv) \(\frac{1}{15}, \frac{1}{12}, \frac{1}{10}\)….., 11 पदों तक
हल
(i) दी गई समान्तर श्रेढ़ी : 2, 7, 12, …….., 10 पदों तक
पहला पद (a) = 2, सार्वान्तर (d) = 7 – 2 = 5, पदों की संख्या (n) = 10
n पदों का योग, Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
10 पदों तक योग, S10 = \(\frac{10}{2}\) [2 × 2 + (10 – 1)5]
= 5[4 + (9 × 5)]
= 5[4 + 45]
= 5 × 49
= 245
अत: 10 पदों तक का योग = 245

(ii) दी गई समान्तर श्रेढ़ी : -37, -33, -29, ….., 12 पदों तक
पहला पद (a) = -37, सार्वान्तर (d) = (-33) – (-37) = -33 + 37 = 4,
पदों की संख्या (n) = 12
पदों का योग, Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
12 पदों का योग, S12 = \(\frac{12}{2}\) [(2 × -37) + (12 – 1) × 4]
= 6[-74 + (11 × 4)]
= 6[-74 + 44]
= 6 × (-30)
= -180
अत: 12 पदों तक का योग = -180

(iii) दी गई समान्तर श्रेढ़ी : 0.6, 1.7, 2.8, …… , 100 पदों तक
पहला पद (a) = 0.6, सार्वान्तर (d) = 1.7 – 0.6 = 1.1, पदों की संख्या (n) = 100
पदों तक योग, Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
100 पदों तक योग, S100 = \(\frac{100}{2}\) [(2 × 0.6) + (100 – 1) × 1.1]
= 50[1.2 + 99 × 1.1]
= 50[1.2 + 108.9]
= 50 × 110.1
= 5505
अत: 100 पदों तक का योग = 5505

Bihar Board Class 10 Math Book Solution In Hindi

Bihar Board Class 10 Math Book Solution In Hindi Pdf Download प्रश्न 2.
नीचे दिए हुए योगफलों को ज्ञात कीजिए :
(i) 7 + 10\(\frac{1}{2}\) + 14 +…..+ 84
(ii) 34 + 32 + 30 +………+10
(iii) -5 + (-8) + (-11) + ….. + (-230)
हल
Bihar Board Class 10 Math Book Solution In Hindi Pdf Download
Bihar Board Math Solution
Class 10 Maths Bihar Board
Bihar Board Class 10th Math Solution
Bihar Board Class 10th Math Solution In Hindi

Bihar Board Math Solution प्रश्न 3.
एक A.P. में,
(i) a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
(ii) a = 7 और a13 = 35 दिया है। d और S13 ज्ञात कीजिए।
(iii) a12 = 37 और d = 3 दिया है। n और S12 ज्ञात कीजिए।
(iv) a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।
(v) d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
(vi) a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।
(vii) a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
(viii) an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
(ix) a = 3, n = 8 और S = 192 दिया है। d ज्ञात कीजिए।
(x) l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।
हल
(i) दिया है, a = 5, d = 3 और an = 50
अनुक्रम A.P. में है और an = 50
a + (n – 1)d = 50
⇒ 5 + (n – 1) 3 = 50
⇒ 5 + 3n – 3 = 50
⇒ 3n = 50 + 3 – 5
⇒ 3n = 48
⇒ n = 16
सूत्र Sn = \(\frac{n}{2}\) [2a + (n – 1) d] से,
S16 = \(\frac{16}{2}\) [(2 × 5) + (16 – 1) × 3]
= 8 [10 + (15 × 3)]
= 8 [10 + 45]
= 8 × 55
= 440
अत: n = 16 तथा Sn = 440

(ii) दिया है, a = 7 और a13 = 35
यहाँ, a13 = 35
Bihar Board Class 10th Math Book
= \(\frac {13}{2}\) × 42
= 13 × 21
= 273
अत: d = \(\frac{7}{3}\) तथा S13 = 273

(iii) दिया है, a12 = 37 और d = 3
यहाँ, a12 = 37
⇒ a + (12 – 1)d = 37
⇒ a + 11d = 37
⇒ a + 11 x 3 = 37
⇒ a + 33 = 37
⇒ a = 4
तब, S12 = \(\frac{12}{2}\) [2a + (12 – 1)d]
= 6 [(2 × 4) + 11 × 3]
= 6[8 + 33]
= 6 × 41
= 246
अत: a = 4 तथा S12 = 246

(iv) दिया है, a3 = 15 और S10 = 125
a3 = 15
a + (3 – 1)d = 15
a + 2d = 15 …… (1)
और S10 = 125
\(\frac{10}{2}\) [2a + (10 – 1)d] = 125
2a + 9d = \(\frac{125 \times 2}{10}\) = 25
2a + 9d = 25 …….(2)
समीकरण (1) को 2 से गुणा करके समीकरण (2) में से घटाने पर,
(2a + 9d) – (2a + 4d) = 25 – 30
5d = -5
d = -1
समीकरण (1) में d का मान रखने पर,
a + 2(-1) = 15
a = 15 + 2 = 17
a10 = a + (10 – 1)d
= 17 + 9 × (-1)
= 17 – 9
= 8
a10 = 8
अतः d = -1 और a10 = 8

(v) दिया है, d = 5 और S9 = 75
S9 = \(\frac{9}{2}\) [2a + (9 – 1)d]
= \(\frac{9}{2}\) [2a + 8d]
= 9a + 36d
= 9(a + 4d)
परन्तु S9 = 75 दिया है
9(a + 4d) = 75
Bihar Board Class 10 Maths Solution
Class 10 Bihar Board Math Solution
Bihar Board Math Solution Class 10

(viii) दिया है, an = 4, d = 2 और Sn = -14
यहाँ, an = 4
⇒ a + (n – 1)d = 4
⇒ a + (n – 1)2 = 4
⇒ a + 2n – 2 = 4
⇒ a + 2n = 6 ……..(1)
Sn = -14
\(\frac{n}{2}\) [2a + (n – 1) 2] = -14
⇒ n[a + n – 1] = -14 ……..(2)
समीकरण (1) से, a = 6 – 2n
तब, समीकरण (2) में a का मान रखने पर,
n(6 – 2n + n – 1) = -14
⇒ n(5 – n) = -14
⇒ 5n – n2 = -14
⇒ n2 – 5n – 14 = 0
⇒ n2 – 7n + 2n – 14 = 0
⇒ n(n – 7) + 2 (n – 7) = 0
⇒ (n – 7) (n + 2) = 0
⇒ n = 7 या n = -2
n एक धन पूर्णांक होना चाहिए।
n = 7
तब, a = 6 – 2n = 6 – (2 × 7) = 6 – 14 = -8
a = -8 तथा n = 7

(ix) दिया है, a = 3, n = 8 और Sn = 192
Sn = \(\frac{n}{2}\) [2a + (n – 1) d] से,
⇒ \(\frac{n}{2}\) [2a + (n – 1)d] = 192 [∵ S = 192, दिया है]
⇒ \(\frac{8}{2}\) [(2 × 3) + (8 – 1) d] = 192
⇒ 4[6 + 7d] = 192
⇒ 24 + 28d = 192
⇒ 28d = 192 – 24 = 168
⇒ d = 6
अत: d = 6

(x) दिया है, अन्तिम पद, l = 28, S = 144 और कुल पद = 9
सूत्र, S = \(\frac{n}{2}\) [a + l] से,
⇒ 144 = \(\frac{9}{2}\) [a + 28]
⇒ 288 = 9[a + 28]
⇒ 288 = 9a + 252
⇒ 9a = 288 – 252
⇒ 9a = 36
⇒ a = 4
अतः a = 4

Class 10 Maths Bihar Board प्रश्न 4.
636 योग प्राप्त करने के लिए A.P.: 9, 17, 25,….. के कितने पद लेने चाहिए?
हल
दी गई A.P. : 9, 17, 25, ……..
यहाँ a = 9 तथा d = 17 – 9 = 8
माना पदों की संख्या n है। .
Sn = 636 (दिया है)
⇒ \(\frac{n}{2}\) [2a + (n – 1)d] = 636
⇒ \(\frac{n}{2}\) [2 × 9 + (n – 1)8] = 636
⇒ \(\frac{n}{2}\) [18 + 8n – 8] = 636
⇒ \(\frac{n}{2}\) [8n + 10] = 636
⇒ n(4n + 5) = 636
⇒ 4n2 + 5n – 636 = 0
⇒ 4n2 + 53n – 48n – 636 = 0
⇒ n(4n + 53) – 12(4n + 53) = 0
⇒ (4n + 53) (n – 12) = 0
⇒ n – 12 = 0 या 4n + 53 = 0
⇒ n = 12 या \(-\frac{53}{4}\)
परन्तु n एक धन पूर्णांक होना चाहिए।
n = 12
अत: 12 पद लेने चाहिए।

Bihar Board Class 10th Math Solution प्रश्न 5.
किसी A.P. का प्रथम पद 5, अन्तिम पद 45 और योग 400 है। पदों की संख्या और सार्वान्तर ज्ञात कीजिए।
हल
दिया है, प्रथम पद (a) = 5, अन्तिम पद (l) = 45 योग (S) = 400
माना पदों की संख्या n है।
सूत्र, S = \(\frac{n}{2}\) (a + l) से,
400 = \(\frac{n}{2}\) [5 + 45]
400 = \(\frac{n}{2}\) × 50
25n = 400
n = 16
अन्तिम पद (l) = 45 परन्तु 16 वाँ पद भी अन्तिम पद है।
a16 = 45
a + (16 – 1)d = 45
5 + 15d = 45
15d = 45 – 5 = 40
d = \(\frac{40}{15}=\frac{8}{3}\)
अतः पदों की संख्या n = 16 तथा सार्वान्तर = \(\frac{8}{3}\)

Bihar Board Class 10th Math Solution In Hindi प्रश्न 6.
किसी A.P. के प्रथम और अन्तिम पद क्रमशः 17 और 350 हैं। यदि सार्वान्तर 9 है तो इसमें कितने पद हैं और इनका योग क्या है?
हल
दिया है, प्रथम पद (a) = 17 अन्तिम पद (l) = 350 तथा सार्वान्तर (d) = 9
माना दी गई A.P. में पदों की संख्या n हैं।
तब, अन्तिम पद, l = n वाँ पद
l = a + (n – 1)d
350 = 17 + (n – 1)9
350 – 17 = 9n – 9
350 – 17 + 9 = 9n
9n = 342
n = 38
तब, 38 पदों का योग, S38 = \(\frac{n}{2}\) (a + l)
= \(\frac{38}{2}\) (17 + 350)
= 19 × 367
= 6973
अतः पदों की संख्या = 38 तथा पदों का योग = 6973

Bihar Board Class 10th Math Book प्रश्न 7.
उस A.P. के प्रथम 22 पदों का योग ज्ञात कीजिए, जिसमें d = 7 है और 22 वाँ पद 149 है।
हल
दिया है, d = 7 तथा n = 22
22 वाँ पद = 149
a22 = a + (22 – 1)d = 149
a + 21 × 7 = 149
a + 147 = 149
a = 2
तब, प्रथम 22 पदों का योग, S22 = \(\frac{n}{2}\) (a + a22)
= \(\frac{22}{2}\) (2 + 149)
= 11 × 151
= 1661
अत: दी गई A.P. के प्रथम 22 पदों का योग = 1661

Bihar Board Class 10 Maths Solution प्रश्न 8.
उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमश: 14 और 18 हैं।
हल
दिया है, A.P. का दूसरा पद (a2) = 14
तीसरा पद (a3) = 18
सार्वान्तर (d) = a3 – a2 = 18 – 14 = 4
अब पुनः दूसरा पद = 14
a + d = 14
a + 4 = 14 [∵ d = 4]
a = 14 – 4
a = 10
तब, सूत्र Sn = \(\frac{n}{2}\) [2a + (n – 1)d] से,
51 पदों का योग, S51 = \(\frac{51}{2}\) [2 × 10 + (51 – 1) 4] [∵ n = 51]
= \(\frac{51}{2}\) [20 + (50 × 4)]
= \(\frac{51}{2}\) [20 + 200]
= \(\frac{51}{2}\) × 220
= 51 x 110
= 5610
अत: दी गई A.P. के प्रथम 51 पदों का योग 5610 है।

Class 10 Bihar Board Math Solution प्रश्न 9.
यदि किसी A.P. के प्रथम 7 पदों का योग 49 है और प्रथम 17 पदों का योग 289 है, तो इसके प्रथम n पदों का योग ज्ञात कीजिए।
हल
माना A.P. का पहला पद a तथा सार्वान्तर d है।
दिया है, प्रथम 7 पदों का योग (S7) = 49
\(\frac{7}{2}\) [2a + (7 – 1) d] = 49
\(\frac{7}{2}\) [2a + 6d] = 49
7(a +3d) = 49
a + 3d = 7 ……..(1)
इसी प्रकार, प्रथम 17 पदों का योग = 289
\(\frac{17}{2}\) [2a + (17 – 1) d] = 289
\(\frac{17}{2}\) [2a + 16d] = 289
\(\frac{17}{2}\) × 2[a + 8d] = 289
a + 8d = 17 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
a + 8d – (a + 3d) = 17 – 7
5d = 10
d = 2
समीकरण (1) में d का मान रखने पर,
a + 3 × 2 = 7
a + 6 = 7
a = 1
a = 1, तथा d = 2
तब, प्रथम n पदों का योग, Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{n}{2}\) [2 × 1 + (n – 1)2]
= \(\frac{n}{2}\) [2 + (n – 1)2]
= \(\frac{n}{2}\) [2 + 2n – 2]
= \(\frac{n}{2}\) (2n)
= n2
अत: प्रथम n पदों का योग = n2

Bihar Board Math Solution Class 10 प्रश्न 10.
दर्शाइए कि a1, a2,….., an,…..से एक A.P. बनती है, यदि an नीचे दिए अनुसार परिभाषित है :
(i) an = 3 + 4n
(ii) an = 9 – 5n
साथ ही, प्रत्येक स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
हल
(i) दिया है, किसी अनुक्रम का n वाँ पद (an) = 3 + 4n
n = 1 रखने पर, पहला पद (a1) = 3 + 4(1) = 7
n = 2 रखने पर, दूसरा पद (a2) = 3 + 4(2) = 11
n = 3 रखने पर, तीसरा पद (a3) = 3 + 4(3) = 15
अत: अभीष्ट अनुक्रम = 7, 11, 15, ……,(3 + 4n) है।
सार्वान्तर = दूसरा पद (a2) – पहला पद (a1) = 11 – 7 = 4
अथवा तीसरा पद (a3) – दूसरा पद (a2) = 15 – 11 = 4
सार्वान्तर नियत है; अत: अनुक्रम एक A.P. है।
तब, प्रथम 15 पदों का योगफल,
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q10
अत: अनुक्रम = 7, 11, 15, …… , (3 + 4n) A.P. है तथा योगफल = 525

(ii) दिया है, अनुक्रम का n वा पद (an) = 9 – 5n
n = 1 रखने पर, पहला पद (a1) = 9 – 5(1) = 4
n = 2 रखने पर, दूसरा पद (a2) = 9 – 5(2) = -1
n = 3 रखने पर, तीसरा पद (a3) = 9 – 5(3) = -6
अत: अनुक्रम 4, -1, -6,….., (9 – 5n) है।
पदों का सार्वान्तर (d) = दूसरा पद (a2) – पहला पद (a1) = -1 – (4) = -5
अथवा तीसरा पद (a3) – दूसरा पद (a2) = -6 – (-1) = -5
चूँकि सार्वान्तर नियत है; अत: अनुक्रम एक A.P. है।
तब, प्रथम 15 पदों का योगफल,
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q10.1
अत: अनुक्रम = 4, -1, -6,……,(9 – 5n) A.P. है तथा योगफल = -465

Bihar Board Class 10 Math Solution प्रश्न 11.
यदि किसी A.P. के प्रथम n पदों का योग 4n – n2 है, तो इसका प्रथम पद (अर्थात S1) क्या है? प्रथम दो पदों का योग क्या है? दूसरा पद क्या है? इसी प्रकार, तीसरे, 10 वें और nवें पद ज्ञात कीजिए।
हल
दिया है, A.P. के प्रथम n पदों का योगफल, Sn = 4n – n2
n = 1 रखने पर, S1 = (4 × 1) – (1)2 = 3
प्रथम पद (a1) = 3
n = 2 रखने पर,
S2 = (4 × 2) – (2)2 = 8 – 4 = 4
प्रथम दो पदों का योगफल, S2 = 4
प्रथम पद (a1) = 3
दूसरा पद (a2) = S2 – S1 = 4 – 3 = 1
n = 3 रखने पर,
S3 = 4n – n2
= (4 × 3) – (3)2
= 12 – 9
= 3
तीसरा पद (a3) = S3 – S2 = 3 – 4 = -1
n = 9 रखने पर, S9 = 4n – n2 = 4 × 9 – 92 = 36 – 81 = -45
n = 10 रखने पर, S10 = 4n – n2 = 4 × 10 – 102 = 40 – 100 = -60
10 वाँ पद (a10) = S10 – S9 = -60 – (-45) = -60 + 45 = -15
Sn = 4n – n2 और Sn-1 = 4(n – 1) – (n – 1)2 [n के स्थान पर (n – 1) रखने पर]
= (n – 1) [4 – (n – 1)]
= (n – 1)[4 – n + 1]
= (n – 1) (5 – n)
= 5n – n2 – 5 + n
= 6n – n2 – 5
n वाँ पद (an) = Sn – Sn-1
= (4n – n2) – (6n – n2 – 5)
= 4n – n2 – 6n + n2 + 5
= 5 – 2n
अत: S1 = 3, प्रथम दो पदों का योग, S2 = 4, दूसरा पद, a2 = 1, तीसरा पद,(a3) = -1,
10 वाँ पद, a10 = -15 तथा n वाँ पद, an = 5 – 2n

Bihar Board Solution Class 10 Math प्रश्न 12.
ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हो।
हल
6 से विभाज्य धन पूर्णांक क्रमशः
6, 12, 18, 24, 30, …….., 40 पदों तक
पहला पद (a) = 6, सार्वान्तर (d) = 12 – 6 = 6, तथा n = 40
प्रथम n पदों का योगफल, Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
प्रथम 40 पदों का योगफल, S40 = \(\frac{40}{2}\) [(2 × 6) + (40 – 1) 6]
= 20 [12 + 39 × 6]
= 20 [12 + 234]
= 20 × 246
= 4920
अत: 6 से विभाज्य प्रथम 40 धन पूर्णांकों का योग = 4920

Bihar Board Class 10 Math Solution In Hindi प्रश्न 13.
8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
हल
8 के प्रथम 15 गुणज क्रमश:
8, 16, 24, 32, ………., 15 पदों तक
S = 8 + 16 + 24 + 32 +…….+ 15 × 8
= 8[1 + 2 + 3 + 4 +……+ 15]
= 8[\(\frac{15}{2}\) (1 + 15] [∵ Sn = \(\frac{n}{2}\) [a + l]]
= 8[\(\frac{15}{2}\) × 16]
= 8 × 120
= 960
अत: 8 के प्रथम 15 गुणजों का योगफल = 960

Class 10th Math Solution In Hindi Bihar Board प्रश्न 14.
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
हल
0 और 50 के बीच की विषम संख्याएँ क्रमश:
1, 3, 5, 7, ……….., 49
यहाँ a = 1, d = 3 – 1 = 2, तथा an = 49
an = 49
a + (n – 1)d = 49
1 + (n – 1)2 = 49
(n – 1) 2 = 48
(n – 1) = 24
n = 25
A.P.: 1, 3, 5, 7, ………. का 25 पदों तक योगफल
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q14
अतः शून्य और 50 के बीच की विषम संख्याओं का योगफल = 625

Bihar Board Class 10 Math Book Solution प्रश्न 15.
निर्माण कार्य से सम्बन्धित किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलम्ब से पूरा करने के लिए, जुर्माना लगाने का प्रावधान इस प्रकार है : पहले दिन के लिए ₹ 200, दूसरे दिन के लिए ₹ 250, तीसरे दिन के लिए ₹ 300 इत्यादि, अर्थात् प्रत्येक उत्तरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से ₹ 50 अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी
पड़ेगी, यदि वह इस कार्य में 30 दिन का विलम्ब कर देता है?
हल
यहाँ, पहले दिन के विलम्ब के लिए अर्थदण्ड = ₹ 200
दूसरे दिन के विलम्ब के लिए अर्थदण्ड = ₹ 250
तीसरे दिन के विलम्ब के लिए अर्थदण्ड = ₹ 300
………………………..
………………………..
a = 200, d = 250 – 200 = 50, तथा n = 30 दिन
30 दिन के विलम्ब के बाद अर्थदण्ड का योगफल,
S30 = \(\frac{30}{2}\) [(2 × 200) + (30 – 1) × 50]
[∵ सूत्र, Sn = \(\frac{n}{2}\) [2a + (n – 1)d] से]
= 15[400 + 29 × 50]
= 15[400 + 1450]
= 15 × 1850
= 27750
अत: ठेकेदार को जुर्माने के रूप में ₹ 27750 देने होंगे।

Class 10th Math Bihar Board प्रश्न 16.
किसी स्कूल के विद्यार्थियों को उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गई है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
हल
माना पहला पुरस्कार ₹ a है।
दूसरा पुरस्कार (a2) = (a – 20)
तीसरा पुरस्कार (a3) = ₹ (a – 20 – 20) = ₹ (a – 40)
चौथा पुरस्कार (a4) = ₹ (a – 40 – 20) = ₹ (a – 60)
पाँचवाँ पुरस्कार (a5) = ₹ (a – 60 – 20) = ₹ (a – 80)
छठा पुरस्कार (a6) = ₹ (a – 80 – 20) = ₹ (a – 100)
सातवा पुरस्कार (a7) = ₹ (a – 100 – 20) = ₹ (a – 120)
कुल पुरस्कारों की धनराशि = a + a2 + a3 + a4 + a5 + a6 + a7
= a + (a – 20) + (a – 40) + (a – 60) + (a – 80) + (a – 100) + (a – 120)
= 7a – 420
प्रश्नानुसार, यह धनराशि ₹ 700 है।
7a – 420 = 700
7a = 700 + 420
7a = 1120
a = 160
पहला पुरस्कार = ₹ 160, शेष पुरस्कार क्रम से ₹ 20 – 20 कम है।
अतः पुरस्कार ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60, ₹ 40 हैं।

Math Class 10 Bihar Board प्रश्न 17.
एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अन्दर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?
हल
प्रत्येक कक्षा में तीन अनुभाग हैं।
कक्षा I द्वारा लगाए गए कुल पेड़ = 3 × 1 = 3
कक्षा II द्वारा लगाए गए कुल पेड़ = 3 × 2 = 6
कक्षा III द्वारा लगाए गए कुल पेड़ = 3 × 3 = 9
कक्षा IV द्वारा लगाए गए कुल पेड़ = 3 × 4 = 12
………………………..
………………………..
तब, अनुक्रम A.P. : 3, 6, 9, 12, ………. बनता है।
a = 3, तथा d = 6 – 3 = 3
तब, कक्षा XII तक के कुल विद्यार्थियों द्वारा लगाए गए पेड़ों का योगफल
सूत्र, Sn = \(\frac{n}{2}\) [2a + (n – 1)d] से,
S12 = \(\frac{12}{2}\) [(2 × 3) + (12 – 1) × 3]
= 6[6 + 33]
= 6 × 39
= 234
अत: स्कूल के विद्यार्थियों द्वारा लगाए कुल पेड़ = 234

Bihar Board 10th Class Maths Book Solution In Hindi प्रश्न 18.
केन्द्र A से प्रारम्भ करते हुए, बारी-बारी से केन्द्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, ….. वाले उत्तरोत्तर अर्द्धवृत्तों को खींचकर एक सर्पिल (spiral) बनाया गया है, जैसा कि आकृति में दर्शाया गया है। तेरह क्रमागत अर्द्धवृत्तों से बने इस सर्पिल की कुल लम्बाई क्या है?(π = \(\frac{22}{7}\)) लीजिए। [संकेत : क्रमशः केन्द्रों A, B, A, B… वाले अर्धवृत्तों की लम्बाइयाँ l1, l2, l3, l4 हैं।
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q18
हल
पहले अर्द्धवृत्त की त्रिज्या, r1 = 0.5 cm
दूसरे अर्द्धवृत्त की त्रिज्या, r2 = 1.0 cm
तीसरे अर्द्धवृत्त की त्रिज्या, r3 = 1.5 cm
चौथे अर्द्धवृत्त की त्रिज्या, r4 = 2.0 cm
……………………………….
……………………………….
13 वें अर्द्धवृत्त की त्रिज्या, r13 = ?
r1 = a = 0.5 cm, d = 1.0 – 0.5 = 0.5 cm तथा n = 13
r13 = a + (n – 1) d = 0.5 + (13 – 1) × 0.5
= 0.5 + 12 × 0.5
= 0.5 + 6.0
= 6.5
अर्द्धवृत्तों की वृत्तीय परिधियाँ :
πr1, πr2, πr3, ………., πr13
13 क्रमागत अर्द्धवृत्तों से बने सर्पिल की लम्बाई
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q18.1
अत: सर्पिल की लम्बाई = 143 cm

Bihar Board 10th Math Book Solution प्रश्न 19.
200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लढे, उससे अगली पंक्ति में 19 लटे, उससे अगली पंक्ति में 18 लट्टे, इत्यादि जैसा कि चित्र में प्रदर्शित है। ये 200 लटे कितनी पंक्तियों में रखे हुए हैं तथा सबसे ऊपरी पंक्ति में कितने लढे हैं?
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q19
हल
दिया है, सबसे निचली पंक्ति में 20 लटे हैं।
अर्थात् नीचे से प्रारम्भ कर प्रथम पंक्ति में = 20 लढे
दूसरी पंक्ति में = 19 लढे
तीसरी पंक्ति में = 18 लढे
चौथी पंक्ति में = 17 लढे ……… इत्यादि
तब, एक A.P. बनती है : 20, 19, 18, 17, …..
a = 20, तथा d = 19 – 20 = -1
माना पंक्तियों की संख्या n हैं।
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q19.1
यदि n = 25, तो an = a + (n – 1)d
= 20 + (25 – 1) × (-1)
= 20 – 24
= -4
अत: n = 25 स्वीकार्य नहीं है।
तब, n = 16 से,
an = a + (n – 1) d
= 20 + (16 – 1) × -1
= 20 + (15 × (-1))
= 20 – 15
= 5
अत: कुल पंक्तियाँ = 16 और सबसे ऊपर की पंक्ति में लट्ठों की संख्या = 5

प्रश्न 20.
एक आलू दौड़ (potato race) में, प्रारम्भिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5 मीटर की दूरी पर है तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3 m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं। जैसा कि चित्र में दिखाया गया है।
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3 Q20
प्रत्येक प्रतियोगी बाल्टी से चलना प्रारम्भ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?
[संकेत : पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी = 2 × 5 + 2 × (5 + 3) है।]
हल
पहले आलू की बाल्टी से दूरी = 5 m
दूसरे आलू की बाल्टी से दूरी = (5 + 3) = 8 m
तीसरे आलू की बाल्टी से दूरी = (8 + 3) = 11 m
चौथे आलू की बाल्टी से दूरी = (11 + 3) = 14 m
इस प्रकार बाल्टी से आलुओं की दूरी A.P. में है जिसका
पहला पद (a) = 5 m तथा सार्वान्तर (d) = 3 m
एक बार बाल्टी से चलकर आलू को उठाना होता है और उसे फिर वापस बाल्टी में डालना पड़ता है।
आलू बाल्टी में डालने के लिए चली दूरियाँ :
= 2 × 5 m, 2 × 8 m, 2 × 11 m, 2 × 14 m, …….
= 10 m, 16 m, 22 m, 28 m, …………
यहाँ a = 10, d = 16 – 10 = 6, तथा n = 10
n आलुओं को उठाकर बाल्टी में डालने के लिए चली दूरी = \(\frac{n}{2}\) [2a + (n – 1)d]
10 आलुओं की रेस में चली दूरी = \(\frac{10}{2}\) [2 × 10 + (10 – 1) × 6]
= 5[20 + (9 × 6)]
= 5[20 + 54]
= 5[74]
= 370 m
अतः प्रतियोगी द्वारा चली दूरी = 370 m

Bihar Board Class 9 English Book Solutions Chapter 6 The Shehnai of Bismillah Khan

Get Updated Bihar Board Class 9th English Book Solutions in PDF Format and download them free of cost. Bihar Board Class 9 English Book Solutions Prose Chapter 6 The Shehnai of Bismillah Khan Questions and Answers provided are as per the latest exam pattern and syllabus. Access the topics of Panorama English Book Class 9 Solutions Chapter 6 The Shehnai of Bismillah Khan through the direct links available depending on the need. Clear all your queries on the Class 9 English Subject by using the Bihar Board Solutions for Chapter 6 The Shehnai of Bismillah Khan existing.

Panorama English Book Class 9 Solutions Chapter 6 The Shehnai of Bismillah Khan

If you are eager to know about the Bihar Board Solutions of Class 9 English Chapter 6 The Shehnai of Bismillah Khan Questions and Answers you will find all of them here. You can identify the knowledge gap using these Bihar Board Class 9 English Solutions PDF and plan accordingly. Don’t worry about the accuracy as they are given after extensive research by people having subject knowledge alongside from the latest English Textbooks.

Bihar Board Class 9 English The Shehnai of Bismillah Khan Text Book Questions and Answers

A. Work in small groups and discuss the following:

The Shehnai Of Bismillah Khan Class 9 Answers Bihar Board Question 1.
Have you ever heard a shehnai being played in marriage ceremonies or festivals?
Answer:
Yes, I have heard a shehnai being played in marriage ceremonies and festivals on so many occasions.

The Shehnai Of Bismillah Khan Question Answer Bihar Board Question 2.
How do you like this instrument?
Answer:
I like this instrument very much. It has magical power to charm every one.

Question Answer Of The Shehnai Of Bismillah Khan Bihar Board Question 3.
Discuss any pipe instrument which is played in your local-ity in marriage ceremonies or festivals.
Answer:
Clarinent is a pipe instrument which is played in my locality in marriage and festivals. This is a part of the band party. The man who plays on the clarinet is the master of the musical party, he heads the party.

The Shehnai Of Bismillah Khan Class 9 Solutions Bihar Board Question 4.
Do you know that it was Bismillah Khan, the great Shehnai maestro, who made this instrument a reality? Can you name some leading players of other popular musical instruments?
Answer:
I know that it was Bismillah Khan the great Shehnai maestro. Who made this instrument a reality. Pandit Ravishanker plays Sifar, Guddai Maharaj Tabla, Amjad Ali Khan SaTod. They are leading players of these popular instruments.

B.1.1. Write ‘T’ for true and ‘F’ for false statements:

  1. Bismillah Khan belongs to a family of musicians from Uttar Pradesh.
  2. Bismillah Khan’s ancestors were also great shehnai players.
  3. The flowing water of the Ganga gave inspiration to Bismillah to create ragas.
  4. He learnt shehnai from his parent and grandfather.

Answer:

  1. — F
  2. — T
  3. — T
  4. — F

B.1.2. Complete the sentences on the basis of the unit you have just studied.

  1. The pungi is a __________ instrument.
  2. The pungi became the generic name for ________ noise makers.
  3. The instrument which is so different from the pungi is called __________
  4. _______ holes were made on the body of a pipe.
  5. _________ was the Shehnai nawaj of Bhojpuri king’s court.
  6. __________ was Bismillah’s grandfather.
  7. Bismillah accompanied _________ to the Vishnu temple of Benaras.
  8. Bismillah played at the temple of ________ and at the banks of ________ as a young apprentice.

Answer:

  1. musical
  2. reeded
  3. Shehnai
  4. Seven
  5. Rasool Bux Khan
  6. Rasool bux Khan
  7. Ali Bux
  8. Balaji and Mangla Maiya, the Ganga.

B.1.3. Answer the following questions very briefly:

Shehnai Of Bismillah Khan Class 9 Solutions Bihar Board Question 1.
Who banned the playing of the pungi?
Answer:
Emperor Aurangzeb banned the playing of the pungi.

Shehnai Of Bismillah Khan Class 9 Question Answers Bihar Board Question 2.
What generic name did the pungi come to acquire?
Answer:
The pungi became the generic name for reeded the pungi.

The Shehnai Of Bismillah Khan Class 9 Questions And Answers Bihar Board Question 3.
Who revived the pungi?
Answer:
A barber of a family of professional musician revived the pungi.

Question Answer Of Chapter The Shehnai Of Bismillah Khan Bihar Board Question 4.
Where was the Shehnai played for the first time?
Answer:
The Shehnai was played for the first time in the Shah’s chamber.

Class 9 The Shehnai Of Bismillah Khan Question Answer Bihar Board Question 5.
Who played the instrument for the first time so different from the pungi?
Answer:
A barber of a family of professional musicians played the instrument for the first time so different from the pungi.

The Shehnai Of Bismillah Khan Class 9 Question Answer Bihar Board Question 6.
What is naubat called?
Answer:
The naubat is traditional ensemble of nine instruments.

The Shehnai Of Bismillah Khan Class 9 Bihar Board Question 7.
Who brought the instrument shehnai on the classical stage?
Answer:
Ustad Bismillah Khan brought the instrument Shehnai on the classical stage.

Class 9 English Chapter The Shehnai Of Bismillah Khan Question Answer Bihar Board Question 8.
Which sport did Bismillah Khan play in his childhood?
Answer:
In his childhood Bismillah Khan played gilli-danda.

Question Answer Of Shehnai Of Bismillah Khan Bihar Board Question 9.
Where did he play the sports?
Answer:
He played gilli-danda near a pond in the ancient estate of Dumraon in Bihar.

The Shehnai Of Bismillah Khan Question Answer Class 9 Bihar Board Question 10.
Where did he go to sing the Bhojpuri “Chaita”?
Answer:
He went to Bihariji temple to sing the Bhdjpuri “Chaita”.

Class 9 The Sound Of Music Solutions Bihar Board Question 11.
What is the highest civilian award in India?
Answer:
‘The Bharat Ratna’ is the highest civilian award in In-dia.

The Shehnai Of Bismillah Khan Question Answers Bihar Board Question 12.
Who was Bismillah’s father?
Answer:
Paigamber Bux was Bismillah’s father.

Bismillah Khan Class 9 Question Answer Bihar Board Question 13.
Who was Bismillah’s mau-nial uncle?
Answer:
Ali Buxwis Bismillah’s maternal uncle.

B.2.1. Complete the sentences on the basis of the unit you have just Studied:

  1. At the age of fourteen Bismillah accompanied his uncle to __________
  2. In 1938 came Bismillah’s first break in _________ in _________
  3. He sang __________ on 15th August 1947.
  4. His first trip abroad was to __________
  5. Film director Vijay Bhatt named his film as __________ after being impressed by the shehnai.
  6. National awards like the ________ and the Padma Vibhushan were conferred on him.
  7. Bismillah Khan was also referred to as __________
  8. An auditorium in Tehran named after him is called __________

Answer:

  1. The Allahabad music conference
  2. All India Radio, Lucknow
  3. Ragg Kafi
  4. Afganistan
  5. Gunj Uthi Shehnai
  6. Padma Shri, the Padma Bhushan
  7. Khansaab
  8. Tahar Musiquee Ustad Bismillah Khan.

B.2.2. Write ‘T’ for true and ‘F’ for false statements:

  1. An auditorium in Tehran was named after Bismillah Khan.
  2. Bismillah Khan was fondly called ‘Khansaab’
  3. Khan Saab was a shehnai player of international repute even then no National Awards were conferred on him.

Answer:

  1. — T
  2. — T
  3. — F

B.2.3. Answer the following questions very briefly:

  1. When was Bismillah Khan awarded India’s highest civilian award?
  2. Of which two cities was he most found of?

Answer:

  1. In 2001 Bismillah Khan was awarded India’s highest civilian award
  2. Benaras and Dumraon.

C. Long Answer Type Questions

Question 1.
Which emperor banned the playing of the pungi? Do you think that is against the right to expression?
Answer:
Emperor Aurangzeb banned the playing of the pungi. I think it is against the right to expression. But it must be thought that it was time of kingship, not ‘democracy.’ Those days a king was free to do that mind it playing Pungi was banned in the palace only not for public places.

Question 2.
Ustad Khan refused the celluloid world after two films. Was it a loss tathe cinema world or gain to Hindustani Music? Discuss.
Answer:
Ustad Bismillah Khan refused the celluloid world only after two films. It was not much loss to the cinema world because it was a great gain to Indian Hindustani music. Classical music has not much importance to the general public, who go to see a popular cinema. Ustad rejected films because it was an artificial world and it was much too glamorous. He preferred music to money. So it is clear that according to Ustad outside cinema. Natural Hindustani music exists.

Question 3.
Capture in your own words the feeling of the Ustad, when he received Bharat Ratna.
Answer:
When Ustad Bismillah Khan received the Bharat Ratna he became very happy. The covered award was resting on his chest. His eyes were glinting with more happiness. He told that “All I would like to say is. Teach your children music this is Hindustani’s rishest tradition even the West is now coming to Meant our music.”

Question 4.
‘Only in India it is possible that a devout Muslim like Khan Saheb can very naturally play the shehnai every morning at Kashi Vishwanath temple.’ What light does this statement throw on India’s cultural heritage? Discuss.
Answer:
India is a land of composite culture. There is religious tolerance in our society. Temple is no place for a muslim. But a muslim like Bismillah Khan used to play shehnai in Hindu Temple. Not only Bismillah but his uncle used to play in different Hindu temples. It makes the composite culture of India tellingly clear. Their playing in temple and getting the love and admiration of all in the bargain is a wonderful example of our rich cultural heritage that denies any sort of discrimination on the basis of religion. It embraces all.

Question 5.
Describe the incident of Ustad Khan visiting Pakistan.
Answer:
After partition of India Ustad Khan did not want to go to Pakistan. He could not leave Benaras and the Ganga, He went to Pakistan only once. He crossed the boarder justto say that he had been to Pakisten. He was there for only about an hour. He said ‘Namaskar’ to the Pakistanis and ‘Salam Alai-kum’ to the Indians. This was an exchange of language. He had a good laugh at that incident.

Question 6.
How did shehnai get its name? Describe in your own words the process how the Pungi became the shehnai.
Answer:
The musical instrument was named shehnai because it was bom in the chamber of shah or emperor. The nai or the barber who perfected it also deserved credit. So Shah and nai put together become Shehnai. Shehnai has its origin from the pungi which had an unpleasant sound. A barber decided to improve the tonal quality of this instrument. He chose a pipe.This hollow stem was longer and broader than the Pungi. He drilled seven holes in it. It now ‘produced a musical sound. The nai played it in the chamber of Emperor Aurangzeb. It became popular in course of time.

Comprehension Based Questions with Answers

1. Emperor Aurangzeb banned the playing of a musical instrument called pungi in the royal residence, for it had a shrill unpleasant sound. The pungi became the generic name for reeded noisemakers. Few had thought that it would one day be revived. A barber of a family of professional musicians, who had access to the royal palace, decided to improve the tonal quality of the pungi. He chose a pipe with a natural hollow stem that was longer and broader than the pungi, and made seven holes on the body of the pipe. When he played on it, closing and opening some of these holes, soft and melodious sounds were produced. He played the instrument before royalty and every one yvas impressed. The instrument so different, from the pungi had to be given a new name. As the story goes, since it was first played in the Shah’s chambers and was played by a nai (barber), the instrument was named the ‘shehnai’.

Questions:

  1. Name the lesson and author.
  2. Why did emperor Aurangzeb bap the playing of pungi?
  3. Who decided to improve it?
  4. What did he do to bring pungi back?
  5. How did shehnai get its name?
  6. Which word in the passage means the following, ruler.

Answers:

  1. The name of lesson is The Shehnai of Bismillah Khan and it is adapted.
  2. Emperor Aurangzeb banned the playing of pungi because of its shrill unpleasant sound.
  3. A barber decided to improve it.
  4. He improved its quality of sound.
  5. Since the new instrument was played in the shah’s chambers and was played by a nai, it was named the ‘Shehnai’.
  6. Emperor.

2. The sound of shehnai began to be considered auspieious. And for this reason it is still played in temples and is an indispensable component of any North Indian wedding. In the past, the shehnai was part of the naubat or traditional ensemble of nine instruments found at royal courts. Till recently it was used only in temples and weddings. The credit for bringing this instrument on to the classical stage goes to Ustad Bismillah Khan.
As a five-year old boy, Bismillah Khan played gilli-danda near a-pond in the ancient estate of Dumraon in Bihar. He would regularly go to the nearby Bihariji temple to sing the Bhojpuri ‘Chaita’, at the end of which he would earn a big laddu weighing 1.25 kg. a prize given by the local Maharaja. This happened 80 years ago, and the little boy has travelled far to earn the highest civilian award in India – the Bharat Ratna.
Born on 21 March 1916, Bismillah belongs to a well-known family of musicians from Bihar. His grandfather, Rasool Bux Khan, was the shehnai-nawaz of the Bhojpur king’s court. His father, Paigambar Bux, and other paternal ancestors were also shehnai players.

Questions:

  1. For what reason is it played in temples and weddings?
  2. Who was the credit man and for what?
  3. How did Bismillah earn a big laddu?
  4. When and where was Bismillah bom?
  5. Which word in the passage mean ‘group’.

Answers:

  1. Shehnai is played in the temples on the occasion of wedding in North India because the sound of shehnai is considered auspicious.
  2. Bismillah was the credit man, who brought shehnai to the classical stage.
  3. He would regularly go to the near by Bihariji temple to sing the Bhojpuri ‘Chaita’, at the end of which he would earn a big Laddu weighing 1.25 kg. a prize given by the local Maharaja.
  4. Bismillah Khan was bom on 21 March 1916, in a well known family of musicians from Bihar.
  5. Ensemble.

3. The young boy took to music early in life. At the age of three when his mother took him to his maternal uncle’s house in Benaras (now Varanasi), Bismillah was fascinated watching his uncles practise the shehnai. Soon Bismillah started accompanying his uncle, Ali Bux, to the Vishnu temple of Benaras where Bux was employed to play the shehnai. Ali Bux would play the shehnai and Bismillah would sit captivated for hours. Slowly, he started getting lesson in playing the instrument and would sit practising throughout the day. For years to come the temple of Balaji and Mangala Maiya and the banks of the Ganga became the young apprentice’s favourite haunts, where he could practise in solitude. The flowing waters of the Ganga inspired him to improvise and invent ragas that were earlier considered to be beyond the range of the shehnai.

Questions:

  1. Who was Bismillah’s first Gum in Shehnai Vadan?
  2. Where did he practice Shehnai?
  3. What did he invent?
  4. What was his motivating force?
  5. Which word in the passage means, a person who is learning a trade?

Answers:

  1. Bismillah’s maternal uncle Ali Bux was his first Guru.
  2. He practised in the temple of Balaji, Mangala Maiya and on the bank of the Ganga.
  3. He invented ragas that were earlier considered to be beyond the range of Shehnai.
  4. The flowing water of the Ganga was his motivating force.
  5. Apprentice.

4. At the age of 14, Bismillah accompanied his uncle to the Allahabad Music Conference. At the end of hlTTccital, Ustad Faiyaz Khan patted the young boy’s back and said, “Work hard and you shall make it.” With the opening of the All India Radio in Lucknow in 1938 came Bismillah’s big break. He sdoh became an often heard shehnai player on the radio. When India gained independence on 15 August 1947, Bismillah Khan became the first Indian to greet the nation with his shehnai. He poured his heart out into Ragg Kafi from the Red Fort to an audience which included Pandit Jawaharlal Nehru, who later gave his famous Tryst with Destiny’ speech.

Questions:

  1. Who patted the back of young Bismillah and what did he say?
  2. When did he get big break?
  3. On what occasion did he pour his heart?
  4. Among the audiance, who was a big personality there?

Answers:

  1. Ustad Faiyaz Khan patted the back of Bismillah and he said, “work hard and you shall make it”.
  2. Bismillah got a big break in 1938 when. AH India Radio was opened at Lucknow. He became an often heard Shehnai player, on the radio.
  3. It was the occasion qf 15th August 1947 Bismillah Khan was the first Indian to greet the nation with his Shehnai from the Red fort. He had played Ragg Kafi in which he poured his heart.
  4. Among audience a big personality was Pandit Jawahar Lai Nehru.

5. Bismillah Khan has given many memorable performances both in India and abroad. His first trip abroad was to Afganistan where King Zahir Shah was so taken in by the maestro that he gifted him priceless Persian carpets and other souvenirs. The King of Afganistan was not the only one to be fascinated with Bismillah’s music. Film director Vijay Bhatt was so impressed after hearing Bishmillah play at a festival that he named a film after the instrument called Gunj Uthi Shehnai. The film was a hit, and one of Bismillah Khan’s composition, “Dil ka khilona hai toot gaya turned out to be nationwide chartbuster! Despite this huge success in the celluloid world, Bismillah Khan’s success in film music was limited to two: Vijay Bhatt’s Gunj Uthi Shehnai and Vikram Srinivas’s Kannada venture, Sanadhi Apanna. “I just can’t come to terms with the artificiality and glamour of the film world,” he says with emphasis.

Questions:

  1. Where was his first trip?
  2. Who gave him priceless gift and what was that?
  3. Which two film^did he work in and with what result?
  4. Why did he not continue working in the films?
  5. What does ‘come to term’ imply?
  6. Which quality of his character and ideology is revealed in the above passage?
  7. Which words in the passage mean the following (a) of film (b) risk in under taking.

Answers:

  1. His first trip was to Afganistan.
  2. The king Zahir Shah gave him priceless gifts those were Persian carpets.
  3. He worked in ‘Gung UthiShehnai’ and ‘Sanadhi Apanna’. He was quite successful.
  4. He did not like the glamour and the artificial atmosphere ‘ over there.
  5. It means that he could not agree to or feel at home with the film industry.
  6. He does not give preference to money. Music is more important to him. He is true artist who knows that art can not be developed in artificial atmosphere.
  7. (a) celluloid (b) venture.

6. Awards and recognition came thick and fast. Bismillah Khan became the first Indian to be invited to perform at the prestigious Lincoln Centre Hall in the United States of America. He also took part in the World Exposition in Montreal, in the Cannes Art Festival and in the Osaka Trade Fair. So well known did he become internationally that an auditorium in Teheran was named after him — Tahar Mosiquee Ustad Bismillah Khan. National awards like the Padmashri, the Padma Bhushan and the Padma Vibushan were conferred on him. In 2001, Ustad Bismillah Khan was awarded India’s highest civilian award, the Bharat Ratna. With the coveted award resting on his chest and his eyes glinting with’rare happiness, he said, “All I would like to say is : Teach your children music, this is Hindustan’s richest tradition; even the West is now coming to leam our music.”

Questions:

  1. What does ‘thick and fast’ imply in the first sentence?
  2. Mention two places in foreign countries that he visited?
  3. How can you say that people of Tehran has a great regard for him?
  4. Name the National Awards that he got.
  5. What did he say when he got ‘Bharat Ratna’?
  6. Which word in the passage mean ‘a place where audience assemble’.

Answers:

  1. It means that big awards and great recognition came in quick succession one after the. other.
  2. They are Montreal in the Cannes and Osaka.
  3. They have named an Auditorium in Tehran after his name.
  4. He got the following National awards The Padmashri, The Padma Bhushan, the Padma Vibhushan qnd the Bharat Ratna.
  5. He said, All I would like to say is : Teach your children music, this is Hindustan’s richest tradition even the West is now coming to leam our music.
  6. Auditorium.

7. In spite of having travelled all over the world Khansaab, as he is fondly called, is exceedingly fond of Benaras and Dumraon and they remain for him the most wonderful towns of the world. A student of his once wanted him to head a shehnai school in the U.S.A., and the student promised to recreate the atmosphere of Benaras by replicating the temples there. But Khansaab asked him if he would be able to transport River Ganga as well. Later he is remembered to have said, “That is why whenever I am in a foreign country, I think of only Benaras and the holy Ganga. And while in Benaras, I miss the unique mattha of Dumraon. Shekhar Gupta: When partition happened, didn’t you and your family think of moving to Pakistan?
Bismillah Khan: God forbid! Me, leave Benaras? Never! I went to Pakistan once I crossed the border just to say I have been to Pakistan. I was there for about an hour. I said nature to the Pakistanis and salaam Walaikum to the Indians! I had a good laugh.
Ustad Bismillah Khan’s life is a perfect example of the rich, cultural heritage of India, one that effortlessly accepts that a devout Muslim like him can very naturally play the shehnai every morning at the Kashi Vishwanath temple.

Questions:

  1. What did one of his students offer him, once?
  2. How did he think he could bring in the atmosphere of Benaras in the U.S.A.
  3. What could the student not able to bring in the U.S.A. to create the same atmosphere?
  4. Which two towns in India are Ustad’s favourite? Why?
  5. Bismillah Khan is an example of a glorious tradition oi India, what is that tradition?
  6. Which words in the passage mean the following.
    (a) exact copying
    (b) make again

Answers:

  1. One of his students offered him to become the head of a Shehnai- school in the U.S.A.
  2. He thought he could bring in the same atmosphere by building in the U.S.A. the exact copies of temples of Benaras.
  3. The student could not bring the Ganga there.
  4. The favourite towns in India are-Benaras and Dunraon. Benaras is the town where he practised and invented many ragas because an expert and earned the name of ‘ Shehnai maestro. His memories and associations to these towns made them his favourite.
  5. Ustad Bismillah Khan’s life is a perfect example of the rich cultural heritage of India which accepts a devout Muslim like him naturally playing every morning in the Kashi Vishwanath temple.
  6. (a) Photo state
    (b) Repeat.

Hope you liked the article on Bihar Board Solutions of Class 9 English Chapter 6 The Shehnai of Bismillah Khan Questions and Answers and share it among your friends to make them aware. Keep in touch to avail latest information regarding different state board solutions instantly.

Bihar Board 10th Science Objective Answers Chapter 10 प्रकाश-परावर्तन तथा अपवर्तन

Bihar Board 10th Science Objective Questions and Answers

Bihar Board 10th Science Objective Answers Chapter 10 प्रकाश-परावर्तन तथा अपवर्तन

प्रश्न 1.
गोलीय दर्पण के परावर्तन पृष्ठ की वृत्ताकार सीमा रेखा का व्यास कहलाता है
(a) मुख्य फोकस
(b) वक्रता त्रिज्या
(c) प्रधान अक्ष
(d) गोलीय दर्पण का द्वारक
उत्तर:
(b) वक्रता त्रिज्या

प्रश्न 2.
दंत विशेषज्ञ किस दर्पण का उपयोग मरीजों के दाँतों का बड़ा प्रतिबिंब देखने के लिए करता है?
(a) समतल दर्पण
(b) अवतल दर्पण
(c) उत्तल दर्पण
(d) इनमें से सभी
उत्तर:
(b) अवतल दर्पण

प्रश्न 3.
यदि किसी बिम्ब का प्रतिबिम्ब का आवर्द्धन ऋणात्मक है तो उस प्रतिबिम्ब की प्रकृति क्या होगी?
(a) वास्तविक और उल्टा
(b) वास्तविक और सीधा
(c) आभासी और सीधा
(d) आभासी और उल्टा
उत्तर:
(a) वास्तविक और उल्टा

प्रश्न 4.
निम्नलिखित में से कौन उत्तल दर्पण की फोकस दूरी है जिसकी वक्रता त्रिज्या 32 cm है?
(a) +8 cm
(b) -8 cm
(c) +16 cm
(d) -16 cm
उत्तर:
(c) +16 cm

प्रश्न 5.
परावर्तन के नियम से निर्धारित होता है
(a) आपतन कोण = परावर्तन कोण
(b) परावर्तन कोण = अपवर्तन कोण
(c) आपतन कोण = विचलन कोण
(d) इनमें कोई नहीं
उत्तर:
(a) आपतन कोण = परावर्तन कोण

प्रश्न 6.
हवा (निर्वात) में प्रकाश की चाल होती है
(a) 3 × 108 m/sec
(b) 3 × 108 cm/sec
(c) 3 × 108 km/sec
(d) 3 × 108 mm/sec
उत्तर:
(a) 3 × 108 m/sec

प्रश्न 7.
प्रकाश तरंग उदाहरण है
(a) ध्वनि तरंग का
(b) विद्युत-चुंबकीय तरंग का
(c) पराबैंगनी तरंग का
(d) पराश्रव्य नरंग का
उत्तर:
(b) विद्युत-चुंबकीय तरंग का

प्रश्न 8.
प्रकाश के परावर्तन के कितने नियम हैं?
(a) एक
(b) दो
(c) तीन
(d) चार
उत्तर:
(b) दो

प्रश्न 9.
किस दर्पण में बड़ा प्रतिबिम्ब बनता है?
(a) समतल
(b) अवतल
(c) उत्तल
(d) इनमें से कोई नहीं
उत्तर:
(b) अवतल

प्रश्न 10.
गोलीय दर्पण में फोकसांतर एवं वक्रता-त्रिज्या के बीच संबंध है
(a) r = 2r
(b) f = r
(c) \(f=\frac{r}{2}\)
(d) \(r=\frac{f}{2}\)
उत्तर:
(c) \(f=\frac{r}{2}\)

प्रश्न 11.
सर्चलाइट का परावर्तक सतह होता है
(a) उत्तल
(b) अवतल
(c) समतल
(d) उत्तल और अवतल
उत्तर:
(b) अवतल

प्रश्न 12.
दाढ़ी बनाने में कौन-सा दर्पण उपयुक्त होता है?
(a) समतल
(b) उत्तल
(c) अवतल
(d) इनमें कोई नहीं
उत्तर:
(c) अवतल

प्रश्न 13.
दर्पण सूत्र है
(a) \(\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\)
(b) \(\frac{1}{f}+\frac{1}{u}=\frac{1}{v}\)
(c) \(\frac{1}{f}+\frac{1}{v}=\frac{1}{u}\)
(d) \(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\)
उत्तर:
(d) \(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\)

प्रश्न 14.
किस दर्पण में केवल आभासी प्रतिबिंब बनेगा?
(a) समतल
(b) अवतल
(c) उत्तल
(d) समतल तथा उत्तल
उत्तर:
(d) समतल तथा उत्तल

प्रश्न 15.
समतल दर्पण में प्रतिबिंब की प्रकृति क्या होती है?
(a) वास्तविक
(b) वास्तविक तथा सीधा
(c) वास्तविक और उलटा
(d) आभासी तथा बराबर
उत्तर:
(d) आभासी तथा बराबर

प्रश्न 16.
गोलीय दर्पण की फोकस दूरी उसकी वक्रता त्रिज्या की
(a) आधी होती है
(b) दुगुनी होती है।
(c) तिगुनी होती है
(d) चौथाई होती है
उत्तर:
(a) आधी होती है

प्रश्न 17.
किसी वस्तु का आवर्धित काल्पनिक प्रतिबिंब बनता है
(a) अवतल दर्पण से
(b) समतल दर्पण से
(c) उत्तल दर्पण से
(d) सभी दर्पण से
उत्तर:
(a) अवतल दर्पण से

प्रश्न 18.
एक उत्तल दर्पण में बना प्रतिबिंब हमेशा होगा
(a) वास्तविक और हासित
(b) काल्पनिक और हासित
(c) वास्तविक और आवर्धित
(d) काल्पनिक और आवर्धित
उत्तर:
(b) काल्पनिक और हासित

प्रश्न 19.
ईंट है
(a) पारदर्शी पदार्थ
(b) अपारदर्शी पदार्थ
(c) पारभासी पदार्थ
(d) कोई नहीं
उत्तर:
(b) अपारदर्शी पदार्थ

प्रश्न 20.
हमारी आँखें जो देख सकती हैं वे वस्तुएँ होती हैं
(a) दीप्त
(b) प्रदीप्त
(c) दीप्त या प्रदीप्त
(d) इनमें कोई नहीं
उत्तर:
(c) दीप्त या प्रदीप्त

प्रश्न 21.
एक मनुष्य समतल दर्पण की ओर 3 मीटर/सेकेण्ड की चाल से आ रहा है। मनुष्य को दर्पण में अपना प्रतिबिंब किस चाल से आता हुआ प्रतीत होगा?
(a) 3 मी/से
(b) 1.5 मी/से
(c) 6 मी/से
(d) 4 मी/से
उत्तर:
(c) 6 मी/से

प्रश्न 22.
संयुग्मी फोकस संभव है केवल
(a) उत्तल दर्पण में
(b) अवतल दर्पण में
(c) समतल दर्पण में
(d) साधारण काँच में
उत्तर:
(b) अवतल दर्पण में

प्रश्न 23.
एक उत्तल दर्पण की फोकस दूरी 20 सेमी है। इसकी वक्रता-त्रिज्या होगी
(a) 10 सेमी
(b) 15 सेमी
(c) 20 सेमी
(d) 40 सेमी
उत्तर:
(d) 40 सेमी

प्रश्न 24.
यदि किसी वस्तु को एक दर्पण के सामने निकट रखने पर प्रतिबिंब सीधा बने, किन्तु दूर रखने पर उल्टा प्रतिबिंब बने, तो वह दर्पण होगा
(a) समतल दर्पण
(b) अवतल दर्पण
(c) उत्तल दर्पण
(d) समतल-उत्तल दर्पण
उत्तर:
(b) अवतल दर्पण

प्रश्न 25.
किसी दर्पण के सामने आप चाहे जितनी दूरी पर खड़े हों, आपका प्रतिबिंब सीधा ही बनता है। संभवतः, दर्पण है
(a) केवल समतल
(b) केवल अवतल
(c) केवल उत्तल
(d) समतल या उत्तल
उत्तर:
(d) समतल या उत्तल

प्रश्न 26.
यदि किसी वस्तु को एक दर्पण के सम्मुख किसी भी दूरी पर रखने से उस वस्तु का प्रतिबिंब सदैव सीधा और छोटा बनता है तो वह दर्पण होगा
(a) समतल
(b) उत्तल
(c) अवतल
(d) इनमें से कोई नहीं
उत्तर:
(b) उत्तल

प्रश्न 27.
उत्तल दर्पण से प्रतिबिंब सदैव बनता है
(a) वक्रता केन्द्र तथा फोकस के बीच
(b) वक्रता केन्द्र तथा अनन्तता के बीच
(c) ध्रुव तथा फोकस के बीच
(d) कहीं भी बन सकता है।
उत्तर:
(c) ध्रुव तथा फोकस के बीच

प्रश्न 28.
किसी वस्तु को हम तभी देख पाते हैं जब वह वस्तु प्रकाश को
(a) अवशोषित करे
(b) परावर्तित करे
(c) अपवर्तित करे
(d) परावर्तित या अपवर्तित करे
उत्तर:
(b) परावर्तित करे

प्रश्न 29.
किस दर्पण में वास्तविक प्रतिबिंब नहीं बन सकता?
(a) समतल दर्पण
(b) अवतल दर्पण
(c) समतल तथा अवतल दर्पण
(d) सभी दर्पणों में
उत्तर:
(a) समतल दर्पण

प्रश्न 30.
अवतल दर्पण के फोकस से चलती किरणें परावर्तन के बाद
(a) प्रधान अक्ष के समानान्तर हो जाती हैं
(b) प्रधान अक्ष के लंबवत हो जाती हैं
(c) ध्रुव से गुजरती हैं
(d) वक्रता-केन्द्र से गुजरती हैं
उत्तर:
(a) प्रधान अक्ष के समानान्तर हो जाती हैं

प्रश्न 31.
क्या समतल दर्पण में बने प्रतिबिंब को पर्दे पर उतार सकते हैं?
(a) हाँ
(b) नहीं
(c) निश्चित तौर पर कहना कठिन है।
(d) इनमें से कोई नहीं
उत्तर:
(b) नहीं

प्रश्न 32.
प्रकाश की एक किरण किसी समतल दर्पण पर 60° का कोण बनाते हुए टकराती है तो उसका परावर्तन कोण होगा
(a) 60°
(b) 30°
(c) 45°
(d) 90°
उत्तर:
(b) 30°

प्रश्न 33.
समतल दर्पण से किसी वस्तु का प्रतिबिंब
(a) वास्तविक बनता है
(b) आभासी बनता है।
(c) बड़ा बनता है
(d) छोटा बनता है
उत्तर:
(b) आभासी बनता है।

प्रश्न 34.
किसी वस्तु का अवतल दर्पण द्वारा बना प्रतिबिंब आभासी, सीधा तथा वस्तु से बड़ा पाया गया, तो वस्तु की स्थिति कहाँ होनी चाहिए?
(a) मुख्य फोकस तथा वक्रता-केंद्र के बीच
(b) वक्रता-केंद्र पर
(c) वक्रता-केंद्र से परे
(d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच
उत्तर:
(d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच

प्रश्न 35.
निम्नलिखित में किस दर्पण द्वारा किसी वस्तु का वास्तविक प्रतिबिंब मिल सकता है?
(a) उत्तल दर्पण द्वारा
(b) समतल दर्पण द्वारा
(c) अवतल दर्पण द्वारा
(d) इनमें से कोई नहीं
उत्तर:
(c) अवतल दर्पण द्वारा

प्रश्न 36.
उत्तल दर्पण द्वारा बना प्रतिबिंब होता है।
(a) हमेशा सीधा
(b) हमेशा उलटा
(c) सीधा भी और उलटा भी
(d) इनमें सभी गलत हैं
उत्तर:
(a) हमेशा सीधा

प्रश्न 37.
अवतल दर्पण में आवर्धित काल्पनिक प्रतिबिंब बनाने के लिए वस्तु को कहाँ रखा जाता है?
(a) फोकस पर
(b) फोकस के अंदर
(c) वक्रता-केंद्र से परे
(d) वक्रता-केंद्र और फोकस के बीच
उत्तर:
(b) फोकस के अंदर

प्रश्न 38.
एक गोलीय दर्पण द्वारा बने प्रतिबिंब का आवर्धन ऋणात्मक हो, तो प्राप्त प्रतिबिंब
(a) उलटा होगा
(b) सीधा होगा
(c) सीधा भी हो सकता है और उलटा भी
(d) इनमें सभी गलत हैं।
उत्तर:
(a) उलटा होगा

प्रश्न 39.
साइड मिरर के रूप में उपयोग होता है?
(a) उत्तल लेंस
(b) अवतल लेंस
(c) दोनों
(d) इनमें से कोई नहीं
उत्तर:
(a) उत्तल लेंस

प्रश्न 40.
सोलर कुकर में व्यवहार किया जाता है।
(a) अवतल दर्पण का
(b) उत्तल दर्पण का
(c) समतल दर्पण का
(d) परावलयिक दर्पण का
उत्तर:
(a) अवतल दर्पण का

प्रश्न 41.
सर्चलाइट का परावर्तक सतह होता है
(a) उत्तल
(b) अवतल
(c) समतल
(d) उत्तल और अवतल
उत्तर:
(b) अवतल

प्रश्न 42.
प्रकाश की किरणें गमन करती हैं
(a) सीधी रेखा में
(b) टेढ़ी रेखा में
(c) किसी भी दिशा में
(d) उपर्युक्त सभी
उत्तर:
(a) सीधी रेखा में

प्रश्न 43.
प्रकाश तरंग उदाहरण है
(a) ध्वनि तरंग का
(b) विद्युत-चुंबकीय तरंग का
(c) पराबैंगनी तरंग का
(d) पराश्रव्य तरंग का
उत्तर:
(b) विद्युत-चुंबकीय तरंग का

प्रश्न 44.
काल्पनिक प्रतिबिंब हमेशा
(a) सीधा होता है
(b) औंधा होता है
(c) उलटा होता है
(d) तिरछा होता है
उत्तर:
(a) सीधा होता है

प्रश्न 45.
समतल दर्पण में प्रतिबिंब का आवर्धन होता है
(a) 1 से कम
(b) 1 से ज्यादा
(c) 1 के बराबर
(d) शून्य
उत्तर:
(c) 1 के बराबर

प्रश्न 46.
उत्तल दर्पण में परावर्तक सतह पर लंबवत गिरती किरणें फोकस पर
(a) अभिसारित होती हैं
(b) अपसारित होती हैं
(c) समानान्तर हो जाती हैं
(d) अपसारित होती लगती हैं
उत्तर:
(d) अपसारित होती लगती हैं

प्रश्न 47.
गोलीय दर्पण में परावर्तन के नियम का पालन
(a) नहीं होता है
(b) होता है
(c) दर्पण की प्रकृति के अनुसार होता है
(d) वहाँ विसरित परावर्तन होता है।
उत्तर:
(b) होता है

प्रश्न 48.
गोलीय दर्पण में दूरियों को सदा किस के सापेक्ष मापते हैं?
(a) ध्रुव के
(b) फोकस के
(c) वक्रता-केन्द्र के
(d) किसी भी नियत बिन्दु के
उत्तर:
(a) ध्रुव के

प्रश्न 49.
अनन्त पर स्थित किसी बिंब का प्रतिबिंब अवतल दर्पण के फोकस पर बनता है। उसका आवर्धन क्या होगा?
(a) m = 0
(b) m < 1
(c) m > 1
(d) m = 1
उत्तर:
(a) m = 0

प्रश्न 50.
मोटरगाड़ी के चालक के सामने लगा रहता है।
(a) समतल दर्पण
(b) उत्तल दर्पण
(c) अवतल दर्पण
(d) एक पतला लेंस
उत्तर:
(b) उत्तल दर्पण

प्रश्न 51.
किसी अवतल दर्पण द्वारा आभासी (काल्पनिक), सीधा और आवर्धित प्रतिबिंब तब बनता है जब वस्तु (बिंब) की स्थिति होती है
(a) वक्रता-केन्द्र पर
(b) वक्रता-केन्द्र से परे
(c) फोकस और वक्रता-केन्द्र के बीच
(d) दर्पण और ध्रुव और उसके फोकस के बीच
उत्तर:
(d) दर्पण और ध्रुव और उसके फोकस के बीच

प्रश्न 52.
एक अवतल दर्पण में वस्तु (बिंब) की स्थिति फोकस और ध्रुव के बीच हो, तो प्राप्त प्रतिबिंब होगा।
(a) वास्तविक और बड़ा
(b) वास्तविक और छोटा
(c) आभासी (काल्पनिक) और बड़ा
(d) आभासी और छोटा
उत्तर:
(c) आभासी (काल्पनिक) और बड़ा

प्रश्न 53.
अवतल दर्पण की फोकस-दूरी उसकी वक्रता-त्रिज्या की
(a) दुगुनी होती है
(b) आधी होती है
(c) चौथाई होती है
(d) बराबर होती है
उत्तर:
(b) आधी होती है

प्रश्न 54.
कहाँ पर स्थित होने से वस्तु का प्रतिबिंब अवतल दर्पण के फोकस पर बनता है?
(a) फोकस पर
(b) वक्रता-केन्द्र पर
(c) ध्रुव पर
(d) अनंत पर
उत्तर:
(d) अनंत पर

प्रश्न 55.
निम्नलिखित में किसके द्वारा एक बिंदु-स्रोत से समांतर किरणपुंज मिल सकता है?
(a) अवतल दर्पण
(b) उत्तल दर्पण
(c) ‘A’ एवं ‘B’ दोनों
(d) इनमें से कोई नहीं
उत्तर:
(a) अवतल दर्पण

प्रश्न 56.
वस्तु से छोटा और आभासी प्रतिबिंब इनमें किस दर्पण से प्राप्त होता
(a) समतल दर्पण से
(b) अवतल दर्पण से
(c) ‘A’ एवं ‘B’ दोनों
(d) उत्तल दर्पण से
उत्तर:
(d) उत्तल दर्पण से

प्रश्न 57.
निम्नलिखित में किस दर्पण द्वारा किसी वस्तु का आभासी प्रतिबिंब प्राप्त किया जा सकता है?
(a) केवल समतल दर्पण में
(b) केवल अवतल दर्पण में
(c) केवल उत्तल दर्पण में
(d) तीनों प्रकार के दर्पणों में
उत्तर:
(d) तीनों प्रकार के दर्पणों में

प्रश्न 58.
परावर्तन का कोण होता है?
(a) आपतित किरण और दर्पण की सतह के बीच का कोण
(b) आपतित किरण और दर्पण की सतह पर खींचे गए अभिलंब के बीच का कोण
(c) परावर्तित किरण और दर्पण की सतह के बीच का कोण
(d) परावर्तित किरण और दर्पण की सतह पर खींचे गए अभिलंब के बीच का कोण
उत्तर:
(d) परावर्तित किरण और दर्पण की सतह पर खींचे गए अभिलंब के बीच का कोण

प्रश्न 59.
किसी शब्दकोष में दिए गए छोटे अक्षरों को पढ़ते समय आप कौनसा लेंस पसंद करेंगे?
(a) 50 cm फोकस-दूरी का उत्तल लेंस
(b) 50 cm फोकस-दूरी का अवतल लेंस
(c) 5 cm फोकस-दूरी का उत्तल लेंस
(d) 5 cm फोकस-दूरी का अवतल लेंस
उत्तर:
(c) 5 cm फोकस-दूरी का उत्तल लेंस

प्रश्न 60.
कौन सा लेंस अपसारी लेंस भी कहलाता है?
(a) अवतल लेंस
(b) उत्तल लेंस
(c) अवतल एवं उत्तल लेंस दोनों
(d) इनमें से कोई नहीं
उत्तर:
(a) अवतल लेंस

प्रश्न 61.
एक उत्तल लेंस की फोकस-दूरी 20 cm है। लेंस की क्षमता होगी
(a) +0.5 डाइऑप्टर
(b) -0.5 डाइऑप्टर
(c) +5 डाइऑप्टर
(d) -5 डाइऑप्टर
उत्तर:
(c) +5 डाइऑप्टर

प्रश्न 62.
लेंस में मुख्य फोकस की संख्या कितनी होती है?
(a) दो
(b) एक
(c) तीन
(d) इनमें से कोई नहीं
उत्तर:
(a) दो

प्रश्न 63.
प्रकाश के अपवर्तन के कितने नियम हैं?
(a) 1
(b) 2
(c) 3
(d) 4
उत्तर:
(b) 2

प्रश्न 64.
किस लेंस के द्वारा सिर्फ काल्पनिक प्रतिबिंब बनता है?
(a) उत्तल
(b) अवतल
(c) बाइफोकल
(d) इनमें से कोई नहीं
उत्तर:
(b) अवतल

प्रश्न 65.
किसी माध्यम के अपवर्तनांक (µ) का मान होता है
(a) \(\frac{\sin r}{\sin i}\)
(b) \(\frac{\sin i}{\sin r}\)
(c) sin i × sin r
(d) sin i + sin r
उत्तर:
(b) \(\frac{\sin i}{\sin r}\)

प्रश्न 66.
अवतल लेंस में आवर्धन (m) बराबर होता है
(a) \(\frac{u}{v}\)
(b) uv
(c) u + v
(d) \(\frac{v}{u}\)
उत्तर:
(d) \(\frac{v}{u}\)

प्रश्न 67.
2D क्षमता वाले लेंस का फोकसांतर होता है
(a) 20 सेमी
(b) 30 सेमी
(c) 40 सेमी
(d) 50 सेमी
उत्तर:
(d) 50 सेमी

प्रश्न 68.
1 मीटर फोकस दूरी वाले उत्तल लेंस की क्षमता होगी
(a) -1D
(b) 1D
(c) 2D
(d) 1.5D
उत्तर:
(b) 1D

प्रश्न 69.
एक उत्तल लेंस होता है।
(a) सभी जगह समान मोटाई का
(b) बीच की अपेक्षा किनारों पर मोटा
(c) किनारों की अपेक्षा बीच में मोटा
(d) इनमें से कोई नहीं
उत्तर:
(c) किनारों की अपेक्षा बीच में मोटा

प्रश्न 70.
किसी बिंब का वास्तविक तथा समान आकार का प्रतिबिंब प्राप्त करने के लिए बिंब को उत्तल लेंस के सामने कहाँ रखेंगे?
(a) लेंस के मुख्य फोकस पर
(b) फोकस-दूरी की दुगुनी दूरी पर
(c) अनंत पर
(d) लेंस के प्रकाशिक केंद्र तथा मुख्य फोकस के बीच
उत्तर:
(b) फोकस-दूरी की दुगुनी दूरी पर

प्रश्न 71.
निम्न में कौन-सा पदार्थ लेंस बनाने के लिए प्रयुक्त नहीं किया जा सकता है?
(a) काँच
(b) मिट्टी
(c) जल
(d) प्लैस्टिक
उत्तर:
(b) मिट्टी

प्रश्न 72.
दो माध्यमों के सीमा-पृष्ठ पर एक प्रकाश-किरण लम्बवत् आपतित होती है तो अपवर्तन कोण होगा
(a) 0°
(b) 45°
(c) 60°
(d) 90°
उत्तर:
(a) 0°

प्रश्न 73.
यदि आपतन कोणां तथा अपवर्तन कोण हो तो कोणीय विचलन होगा
(a) i + r
(b) i – r
(c) \(\frac{\sin i}{\sin r}\)
(d) i × r
उत्तर:
(b) i – r

प्रश्न 74.
जब प्रकाश की एक किरण दो माध्यमों को अलग करनेवाली सतह पर लंबवत् पड़ती है, तो वह
(a) अभिलंब से दूर मुड़ जाती है।
(b) बिना मुड़े सीधी निकल जाती है
(c) अभिलंब की ओर मुड़ जाती है
(d) सात रंगों में टूट जाती है।
उत्तर:
(b) बिना मुड़े सीधी निकल जाती है

प्रश्न 75.
पानी से भरी बाल्टी की गहराई कम मालूम पड़ने का कारण
(a) प्रकाश का परावर्तन होता है
(b) प्रकाश का अपवर्तन होता है।
(c) प्रकाश का वर्ण-विक्षेपण होता है
(d) इनमें से कोई नहीं
उत्तर:
(b) प्रकाश का अपवर्तन होता है।

प्रश्न 76.
जब प्रकाश एक माध्यम से दूसरे माध्यम में जाता है तब अपवर्तन होता है
(a) प्रकाश की चाल में परिवर्तन होने के कारण
(b) प्रकाश की चाल में परिवर्तन नहीं होने के कारण
(c) प्रकाश के रंग में परिवर्तन होने के कारण
(d) इनमें कोई नहीं होता है।
उत्तर:
(a) प्रकाश की चाल में परिवर्तन होने के कारण

प्रश्न 77.
सघन माध्यम से विरल माध्यम में प्रवेश करने पर आपतन कोण तथा अपवर्तन कोण में क्या संबंध रहता है?
(a) दोनों कोण बराबर होते हैं
(b) आपतन कोण बड़ा होता है
(c) अपवर्तन कोण बड़ा होता है
(d) कोई निश्चित संबंध नहीं है
उत्तर:
(c) अपवर्तन कोण बड़ा होता है

प्रश्न 78.
जब प्रकाश की किरण हवा से काँच के प्रिज्म की अपवर्तन सतह से होकर प्रवेश करती हुई दूसरे अपवर्तन सतह से होकर बाहर निकलती है तब वह मुड़ जाती है
(a) प्रिज्म के शीर्ष की ओर
(b) प्रिज्म के आधार की ओर
(c) किरण के मुड़ने का कोई नियम नहीं है
(d) इनमें से कोई नहीं
उत्तर:
(b) प्रिज्म के आधार की ओर

प्रश्न 79.
किसी बिन्दु वस्तु से निकलकर किरणें किसी लेंस से अपवर्तित होकर जिस बिंद पर मिलती हैं, उसे कहते हैं
(a) फोकस
(b) वक्रता केन्द्र
(c) प्रकाश केन्द्र
(d) प्रतिबिंब बिंदु
उत्तर:
(d) प्रतिबिंब बिंदु

प्रश्न 80.
निम्नलिखित में किसका उपयोग लेंस बनाने के लिए नहीं किया जा सकता?
(a) प्लास्टिक
(b) पानी
(c) मिट्टी
(d) काँच
उत्तर:
(c) मिट्टी

प्रश्न 81.
निम्नलिखित में कौन-सी वस्तु वास्तविक प्रतिबिंब बना सकता है?
(a) काँच की समतल पट्टी (स्लैब)
(b) अवतल लेंस
(c) उत्तल लेंस
(d) इनमें से कोई नहीं
उत्तर:
(c) उत्तल लेंस

प्रश्न 82.
प्रकाश एक माध्यम से जिसका अपवर्तनांक n1, है, दूसरे माध्यम में जिसका अपवर्तनांक n2 है, जाता है। यदि आपतन का कोणां i तथा अपवर्तन का कोण r हो, तो \(\frac{\sin i}{\sin r}\) बराबर होता है
(a) n1 के
(b) n2 के
(c) \(\frac{n_{1}}{n_{2}}\) के
(d) \(\frac{n_{2}}{n_{1}}\) के
उत्तर:
(d) \(\frac{n_{2}}{n_{1}}\) के

प्रश्न 83.
सरल सूक्ष्मदर्शी में किसका उपयोग होता है?
(a) उत्तल लेंस का
(b) अवतल लेंस का
(c) उत्तल दर्पण का
(d) अवतल दर्पण का
उत्तर:
(a) उत्तल लेंस का

प्रश्न 84.
उत्तल लेंस
(a) किनारों की अपेक्षा बीच में मोटा होता है
(b) बीच की अपेक्षा किनारों पर मोटा होता है
(c) इसकी मोटाई सभी जगह समान होती है
(d) कोई सही नहीं है
उत्तर:
(a) किनारों की अपेक्षा बीच में मोटा होता है

प्रश्न 85.
किसी उत्तल लेंस के सापेक्ष कोई वस्तु (विंब) किस स्थिति पर रखी जाए कि उसका वास्तविक, उल्टा तथा बराबर (समान) आकार का प्रतिबिंब प्राप्त किया जा सके।
(a) लेंस तथा उसके फोकस के बीच
(b) फोकस पर
(c) फोकस-दूरी के दोगुनी दूरी पर
(d) अनंत पर
उत्तर:
(c) फोकस-दूरी के दोगुनी दूरी पर

प्रश्न 86.
उत्तल लेंस में जब वस्तु (बिंब) फोकस एवं लेंस के बीच रखी जाती। है तब प्रतिबिंब बनता है
(a) काल्पनिक और सीधा
(b) काल्पनिक और उल्टा
(c) वास्तविक और उल्टा
(d) वास्तविक और सीधा
उत्तर:
(a) काल्पनिक और सीधा

प्रश्न 87.
सूर्यास्त के समय क्षितिज के नीचे चले जाने पर भी सूर्य कुछ समय तक दिखाई देता है। इसका कारण है प्रकाश का
(a) अपवर्तन
(b) पूर्ण आंतरिक परावर्तन
(c) प्रकीर्णन
(d) वर्ण-विक्षेपण
उत्तर:
(a) अपवर्तन

प्रश्न 88.
यदि उत्तल लेंस के सामने वस्तु 2f पर रखी जाए, तब उसका प्रतिबिंब बनेगा
(a) अनन्त पर
(b) 2F पर
(c) F पर
(d) F तथा C के बीच
उत्तर:
(b) 2F पर

प्रश्न 89.
सरल सूक्ष्मदर्शी में किसका उपयोग होता है?
(a) उत्तल लेंस का
(b) अवतल लेंस का
(c) उत्तल दर्पण का
(d) अवतल दर्पण का
उत्तर:
(a) उत्तल लेंस का

प्रश्न 90.
किस लेंस द्वारा केवल काल्पनिक (आभासी) प्रतिबिंब बनता है?
(a) अवतल लेंस द्वारा
(b) उत्तल लेंस द्वारा
(c) बाइफोकल लेंस द्वारा
(d) इनमें से कोई नहीं
उत्तर:
(a) अवतल लेंस द्वारा

प्रश्न 91.
यदि वस्तु उत्तल लेंस के फोकस तथा फोकस-दूरी की दूनी दूरी के बीच हो, तो प्रतिबिंब
(a) काल्पनिक, सीधा तथा छोटा बनेगा
(b) काल्पनिक, उल्टा तथा बड़ा बनेगा
(c) वास्तविक, उल्टा तथा छोटा बनेगा
(d) वास्तविक, उल्टा तथा बड़ा बनेगा
उत्तर:
(d) वास्तविक, उल्टा तथा बड़ा बनेगा

प्रश्न 92.
उत्तल लेंस को _________ लेंस भी कहा जाता है।
(a) अभिसारी
(b) अपसारी
(c) बाइफोकल
(d) इनमें से कोई नहीं
उत्तर:
(a) अभिसारी

प्रश्न 93.
लेंस की क्षमता व्यक्त की जाती है
(a) फोकस-दूरी के द्वारा
(b) फोकस-दूरी के दुगुना द्वारा
(c) फोकस-दूरी के तिगुना द्वारा
(d) फोकस-दूरी के व्युत्क्रम द्वारा
उत्तर:
(d) फोकस-दूरी के व्युत्क्रम द्वारा

प्रश्न 94.
उत्तल लेंस द्वारा आवर्धित काल्पनिक प्रतिबिंब तब बनता है जब वस्तु रहती है
(a) अनंत पर
(b) फोकस पर
(c) फोकस और लेंस के बीच
(d) फोकस-दूरी एवं दुगुनी फोकस-दूरी के बीच
उत्तर:
(c) फोकस और लेंस के बीच

प्रश्न 95.
सघन माध्यम से विरल माध्यम में गमन करने पर आपतन कोण (i ≠ 0) और अपवर्तन कोण (r) में क्या संबंध होता है?
(a) i = r
(b) i > r
(c) r > i
(d) r = i = 0
उत्तर:
(c) r > i

प्रश्न 96.
प्रकाश की चाल सबसे अधिक होती है
(a) काँच में
(b) वायु में
(c) शून्य (निर्वात) में
(d) ‘a’ और ‘c’ दोनों में
उत्तर:
(c) शून्य (निर्वात) में

प्रश्न 97.
लाल और नीले वर्ण की किरणों के काँच की सतह पर वायु में आपतन कोण समान हैं तथा काँच में अपवर्तन कोण क्रमशः r1 तथा r2 हैं, तब
(a) r1 = r2
(b) r1 > r2
(c) r1 < r2
(d) इनमें कोई नहीं
उत्तर:
(c) r1 < r2

प्रश्न 98.
स्नेल के नियमानुसार होता है।
(a) \(\mu=\frac{\sin i}{\sin r}\)
(b) µ = sin i + sin r
(c) µ = sin i – sin r
(d) इनमें से कोई नहीं
उत्तर:
(a) \(\mu=\frac{\sin i}{\sin r}\)

प्रश्न 99.
आभासी प्रतिबिंब का निर्माण होता है
(a) केवल उत्तल लेंस में
(b) केवल अवतल लेंस में
(c) दोनों लेंसों में
(d) किसी लेंस में नहीं
उत्तर:
(c) दोनों लेंसों में

प्रश्न 100.
लेंस की क्षमता P बराबर होता है
(a) f
(b) v
(c) \(\frac{1}{v}\)
(d) \(\frac{1}{f}\)
उत्तर:
(d) \(\frac{1}{f}\)

प्रश्न 101.
लेंस की क्षमता का S.I. मात्रक है
(a) मीटर
(b) मीटर/सेकेण्ड
(c) न्यूटन
(d) डाइऑप्टर
उत्तर:
(d) डाइऑप्टर

प्रश्न 102.
पानी के भीतर तैरते मनुष्य को किनारे पर स्थित मिनार की ऊँचाई कैसी लगेगी?
(a) ज्यादा
(b) कम
(c) जितनी है उतनी
(d) इनमें से कोई नहीं
उत्तर:
(a) ज्यादा

प्रश्न 103.
शीशे के स्लैब से जब प्रकाश का अपवर्तन होता है तो उसमें
(a) विचलन पैदा होता है
(b) विचलन पैदा नहीं होता है
(c) पार्श्व विस्थापन होता है
(d) विचलन नहीं होता पर पाव विस्थापन होता है
उत्तर:
(d) विचलन नहीं होता पर पाव विस्थापन होता है

प्रश्न 104.
निम्नलिखित में कौन-सी वस्तु वास्तविक प्रतिबिंब बना सकता है?
(a) काँच की समतल पट्टी
(b) अवतल लेंस
(c) उत्तल लेंस
(d) इनमें से कोई नहीं
उत्तर:
(c) उत्तल लेंस

प्रश्न 105.
प्रकाश की एक किरण जब विरल माध्यम से सघन माध्यम में आती है, तब वह
(a) अभिलंब से दूर मुड़ जाती है
(b) सीधी निकल जाती है।
(c) अभिलंब की दिशा में जाती है
(d) अभिलंब की ओर मुड़ जाती है
उत्तर:
(d) अभिलंब की ओर मुड़ जाती है

प्रश्न 106.
जब प्रकाश की एक किरण एक माध्यम से दूसरे माध्यम में जाती है तो अपने पूर्व पथ से विचलित हो जाती है। इसे कहते हैं
(a) प्रकाश का परावर्तन
(b) प्रकाश का अपवर्तन
(c) प्रकाश का विक्षेपण
(d) इनमें से कोई नहीं
उत्तर:
(b) प्रकाश का अपवर्तन

प्रश्न 107.
उत्तल लेंस में जब वस्तु फोकस एवं लेंस के बीच रखी जाती है तब प्रतिबिंब बनता है
(a) काल्पनिक और सीधा
(b) काल्पनिक और उलटा
(c) वास्तविक और उलटा
(d) वास्तविक और सीधा
उत्तर:
(a) काल्पनिक और सीधा

प्रश्न 108.
लेंस का प्रत्येक छोटा भाग
(a) उत्तल दर्पण की तरह है
(b) दर्पण की तरह है
(c) प्रिज्म की तरह है
(d) लेंस की तरह है
उत्तर:
(c) प्रिज्म की तरह है

प्रश्न 109.
उत्तल लेंस के सामने एक बिंब को लेंस के फोकस और प्रकाशीय केन्द्र के बीच रखा जाता है, तो प्रतिबिब बनता है
(a) काल्पनिक और आवर्धित
(b) वास्तविक और आवर्धित
(c) वास्तविक और छोटा
(d) काल्पनिक और छोटा
उत्तर:
(a) काल्पनिक और आवर्धित

प्रश्न 110.
यदि हवा के सापेक्ष काँच का अपवर्तनांक 1.5 हो तो काँच के सापेक्ष हवा का अपवर्तनांक होगा
(a) 1.5
(b) 1.5 + 1
(c) 1.5 – 1
(d) 1/1.5
उत्तर:
(d) 1/1.5

प्रश्न 111.
20 सेमी फोकस दूरी वाले लेंस की क्षमता होगी
(a) +5 डायोप्टर
(b) -5 डायोप्टर
(c) +20 डायोप्टर
(d) -20 डायोप्टर
उत्तर:
(a) +5 डायोप्टर

प्रश्न 112.
एक उत्तल लेंस से 30 cm की दूरी पर एक वस्तु रखी गई है। लेंस से उतनी ही दूरी पर वास्तविक प्रतिबिंब प्राप्त होता है। लेंस की फोकस-दूरी है
(a) 10 cm
(b) 15 cm
(c) 20 cm
(d) 30 cm
उत्तर:
(b) 15 cm

प्रश्न 113.
एक उत्तल लेंस में 30 cm की दूरी पर एक वस्तु (बिंब) रखी गयी है। लेंस से उतनी ही दूरी पर वास्तविक प्रतिबिंब बनता है। लेंस की फोकस-दूरी है
(a) 30 cm
(b) 20 cm
(c) 15 cm
(d) 10 cm
उत्तर:
(c) 15 cm

प्रश्न 114.
एक अवतल लेंस की फोकस दूरी 20 cm है। इसकी क्षमता होगी।
(a) 2 डाइऑप्टर
(b) -2 डाइऑप्टर
(c) 5 डाइऑप्टर
(d) -5 डाइऑप्टर
उत्तर:
(d) -5 डाइऑप्टर

प्रश्न 115.
यदि वस्तु उत्तल लेंस के फोकस तथा फोकस-दूरी की दूनी दूरी के बीच हो, तो प्रतिबिंब
(a) काल्पनिक, सीधा तथा छोटा बनेगा
(b) काल्पनिक, उल्टा तथा बड़ा बनेगा
(c) वास्तविक, उल्टा तथा छोटा बनेगा
(d) वास्तविक, उल्टा तथा बड़ा बनेगा
उत्तर:
(d) वास्तविक, उल्टा तथा बड़ा बनेगा

प्रश्न 116.
जब एक उत्तल लेंस से 20 cm की दूरी पर वस्तु (बिंब) को रेखा जाता है तो उस वस्तु का एक काल्पनिक (आभासी) प्रतिबिंब बनता है। लेंस की फोकस-दूरी होनी चाहिए।
(a) 20 cm
(b) 20 cm से अधिक
(c) 40 cm से अधिक
(d) 20 cm से कम
उत्तर:
(a) 20 cm

प्रश्न 117.
एक लेंस की क्षमता +5D है। यह होगा
(a) 20 cm फोकस-दूरी का अवतल लेंस
(b) 5 m फोकस-दूरी का उत्तल लेंस
(c) 5 m फोकस-दूरी का अवतल लेंस
(d) 20 cm फोकस-दूरी का उत्तल लेंस
उत्तर:
(d) 20 cm फोकस-दूरी का उत्तल लेंस

प्रश्न 118.
किसी उत्तल लेंस की फोकस दूरी 25 सेमी है, तो उसकी क्षमता क्या होगी?
(a) 4D
(b) 3D
(c) 2D
(d) 1D
उत्तर:
(a) 4D

प्रश्न 119.
एक गोलीय दर्पण और पतले लेंस में से प्रत्येक की फोकस-दूरी +25 cm है। तब
(a) दोनों ही उत्तल है
(b) दर्पण उत्तल है, परंतु लेंस अवतल
(c) दोनों ही अवतल है
(d) दर्पण अवतल है, परंतु लेंस उत्तल
उत्तर:
(a) दोनों ही उत्तल है

प्रश्न 120.
समतल दर्पण द्वारा बना प्रतिबिम्ब होता है
(a) वास्तविक
(b) काल्पिक
(c) दोनों
(d) कोई नहीं
उत्तर:
(b) काल्पिक

प्रश्न 121.
जब प्रकाश की किरण हवा से कांच में प्रवेश करती है तो मुड़ जाती है
(a) अभिलम्ब से दूर
(b) अभिलम्ब के निकट
(c) अभिलम्ब के समानान्तर
(d) इनमें से कोई नहीं
उत्तर:
(b) अभिलम्ब के निकट

प्रश्न 122.
किसी दर्पण से आप चाहे कितनी ही दूरी पर खड़े हों, आपका प्रतिबिंब सदैव सीधा प्रतीत होता है। संभवतः दर्पण है
(a) कैवल समतल
(b) केवल अवतल
(c) केवल उत्तल
(d) या तो समतल या उत्तल
उत्तर:
(d) या तो समतल या उत्तल

प्रश्न 123.
फोटोग्राफी कैमरा का अभिदृश्यक होता है
(a) उत्तल लेंस
(b) अवतल लेंस
(c) उत्तल दर्पण
(d) अवतल दर्पण
उत्तर:
(a) उत्तल लेंस

प्रश्न 124.
साइड मिरर के रूप में प्रयुक्त होता है
(a) अवतल दर्पण
(b) उत्तल दर्पण
(c) उत्तल लेंस
(d) प्रिज्म
उत्तर:
(b) उत्तल दर्पण

प्रश्न 125.
एक अवतल दर्पण की फोकस दूरी 10 सेमी है तो उसकी वक्रता त्रिज्या होगी?
(a) 10 सेमी
(b) 20 सेमी
(c) 5 सेमी
(d) 40 सेमी
उत्तर:
(b) 20 सेमी

प्रश्न 126.
किसी माध्यम के अपवर्तनांक (µ) का मान होता है
(a) \(\frac{\sin r}{\sin i}\)
(b) \(\frac{\sin i}{\sin r}\)
(c) sin i × sin r
(d) sin i + sin r
उत्तर:
(b) \(\frac{\sin i}{\sin r}\)

प्रश्न 127.
निर्गत किरण एवं अभिलंब के बीच के कोण को कहते है
(a) आपतन कोण
(b) परावर्तन कोण
(c) निर्गत कोण
(d) इनमें से कोई नहीं
उत्तर:
(b) परावर्तन कोण

प्रश्न 128.
अवतल लेंस का आवर्धन बराबर होता है
(a) u/v
(b) uv
(c) u + v
(d) v/u
उत्तर:
(d) v/u

प्रश्न 129.
सरल सूक्ष्मदर्शी में किसका उपयोग होता है?
(a) अवतल दर्पण
(b) उत्तल दर्पण
(c) अवतल लेंस
(d) उत्तल लेंस
उत्तर:
(d) उत्तल लेंस

प्रश्न 130.
किस लेंस के द्वारा सिर्फ काल्पनिक प्रतिबिम्ब बनता है?
(a) उत्तल
(b) अवतल
(c) बाईफोकल
(d) इनमें से कोई नहीं
उत्तर:
(a) उत्तल

प्रश्न 131.
एक उत्तल लेंस होता है
(a) सभी जगह समान मोटाई का
(b) बीच की अपेक्षा किनारों पर मोटा
(c) किनारों की अपेक्षा बीच में मोटा
(d) इनमें से कोई नहीं
उत्तर:
(c) किनारों की अपेक्षा बीच में मोटा

प्रश्न 132.
किसी बिंब का वास्तविक तथा समान साइज का प्रतिबिंब प्राप्त करने के लिए बिंब को उत्तल लेंस के सामने कहाँ रखें?
(a) लेंस के मुख्य फोकस पर
(b) फोकस दूरी की दोगुनी दूरी पर
(c) अनंत पर
(d) लेंस के प्रकाशित केंद्र तथा मुख्य फोकस के बीच
उत्तर:
(b) फोकस दूरी की दोगुनी दूरी पर

प्रश्न 133.
किसी बिंब का अवतल दर्पण द्वारा बना प्रतिबिंब, आभासी, सीधा तथा बिंब से बड़ा पाया गया वस्तु की स्थिति कहाँ होनी चाहिए?
(a) मुख्य फोकस तथा वक्रता केंद्र के बीच
(b) वक्रता केंद्र पर
(c) वक्रता केंद्र से परे
(d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच
उत्तर:
(d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच

प्रश्न 134.
किसी गोलीय दर्पण तथा किसी पतले गोलीय लेंस दोनों को फोकस दूरियाँ -15 cm हैं। दर्पण तथा लेंस संभवतः हैं
(a) दोनों अवतल
(b) दोनों उत्तल
(c) दर्पण अवतल तथा लेंस उत्तल
(d) दर्पण उत्तल तथा लेंस अवतल
उत्तर:
(d) दर्पण उत्तल तथा लेंस अवतल

प्रश्न 135.
दाढ़ी बनाने में कौन दर्पण उपयुक्त है? अथवा, दाढ़ी बनाने में किस प्रकार के दर्पण का उपयोग किया जाता है?
(a) समतल
(b) उत्तल
(c) अवतल
(d) कोई नहीं
उत्तर:
(c) अवतल

प्रश्न 136.
गोलीय दर्पण में फोकसांतर एवं वक्रता त्रिज्या के बीच संबंध है
(a) r = 2f
(b) 2
(c) \(f=\frac{r}{2}\)
(d) \(r=\frac{f}{2}\)
उत्तर:
(c) \(f=\frac{r}{2}\)

प्रश्न 137.
अगर किसी अवतल दर्पण की फोकस दूरी f तथा वक्रता त्रिज्या R हो तो
(a) \(f=\frac{R}{2}\)
(b) f = 2R
(c) f = \(f=\frac{3 R}{2}\)
(d) f = ∞
उत्तर:
(a) \(f=\frac{R}{2}\)

प्रश्न 138.
अवतल दर्पण से परावर्तन के बाद किरण किस बिन्दु से गुजरेगी?
(a) C
(b) F
(c) P
(d) C और F के बीच से
उत्तर:
(b) F

प्रश्न 139.
किसी दर्पण से वस्तु को कहीं भी रखने से वस्तु के बराबर आकार का सीधा प्रतिबिम्ब बनता है तो दर्पण होगा
(a) उत्तल
(b) अवतल
(c) समतल
(d) समतल तथा उत्तल
उत्तर:
(c) समतल

प्रश्न 140.
प्रकाश के अपवर्तन के कितने नियम हैं?
(a) एक
(b) दो
(c) तीन
(d) चार
उत्तर:
(b) दो

प्रश्न 141.
प्रकाश का वर्ण विक्षेपण किस उपकरण से संभव होता है?
(a) दर्पण
(b) लेंस
(c) प्रिज्म
(d) काँच की सिल्ली
उत्तर:
(c) प्रिज्म

प्रश्न 142.
किसी गोलीय दर्पण की वक्रता त्रिज्या 50 सेमी है तो उसकी फोकस दूरी होगी
(a) 50 सेमी
(b) 40 सेमी
(c) 25 सेमी
(d) 10 सेमी
उत्तर:
(c) 25 सेमी

प्रश्न 143.
1 मीटर फोकस दूरी वाले उत्तल लेंस की क्षमता होगी
(a) -1D
(b) 1D
(c) 2D
(d) 1.5D
उत्तर:
(b) 1D

प्रश्न 144.
किसी उत्तल लेंस की फोकस दूरी हमेशा होती है?
(a) (+)Ve
(b) (-)Ve
(c) (±)Ve
(d) (\(\mp\))Ve
उत्तर:
(a) (+)Ve

प्रश्न 145.
प्रकाश का वेग न्यूनतम होता है
(a) निर्वात में
(b) जल में
(c) वायु में
(d) कांच से
उत्तर:
(d) कांच से

प्रश्न 146.
निम्न में से कौन-सा पदार्थ लेंस बनाने के लिए प्रयुक्त नहीं किया जा सकता?
(a) जल
(b) काँच
(c) प्लास्टिक
(d) मिट्टी
उत्तर:
(d) मिट्टी

प्रश्न 147.
काल्पनिक प्रतिबिम्ब होता है
(a) सीधा
(b) उल्टा
(c) दोनों
(d) कोई नहीं
उत्तर:
(a) सीधा

प्रश्न 148.
किस दर्पण से हमेशा वस्तु से छोटा प्रतिबिम्ब प्राप्त होता है?
(a) समतल
(b) उत्तल
(c) अवतल
(d) कोई नहीं
उत्तर:
(b) उत्तल

प्रश्न 149.
क्षमता वाले अवतल लेंस की फोकस दूरी होगी
(a) 20 सेमी
(b) 25 सेमी
(c) 30 सेमी
(d) 40 सेमी
उत्तर:
(b) 25 सेमी

प्रश्न 150.
किसी उत्तल लेंस का फोकसातर 50 सेमी है तो उसकी क्षमता होगी
(a) +5D
(b) -5D
(c) -2D
(d) +2D
उत्तर:
(d) +2D

प्रश्न 151.
किस दर्पण से वस्तु का बड़ा प्रतिबिम्ब बनता है?
(a) समतल
(b) अवतल
(c) उत्तल
(d) कोई नहीं
उत्तर:
(b) अवतल

प्रश्न 152.
2D क्षमता वाले लेंस का फोकसांतर होता है
(a) 20 सेमी
(b) 30 सेमी
(c) 40 सेमी
(d) 50 सेमी
उत्तर:
(d) 50 सेमी

प्रश्न 153.
प्रकाश के परावर्तन के कितने नियम हैं
(a) एक
(b) दो
(c) तीन
(d) चार
उत्तर:
(b) दो

Bihar Board Class 8 Maths Solutions Chapter 11 सीधा और प्रतिलोम समानुपात

Bihar Board Class 8 Maths Solutions Chapter 11 सीधा और प्रतिलोम समानुपात Text Book Questions and Answers.

BSEB Bihar Board Class 8 Maths Solutions Chapter 11 सीधा और प्रतिलोम समानुपात

Bihar Board Class 8 Maths सीधा और प्रतिलोम समानुपात Ex 11.1

8th Class Math Bihar Board प्रश्न 1.
निम्नलिखित तालिका में x तथा y समानुपाती (अनुक्रमानुपाती) हैं। या नहीं? ज्ञात कीजिए।
उत्तर
8th Class Math Bihar Board
Class 8th Bihar Board Math

Class 8th Bihar Board Math प्रश्न 2.
टाइपिंग की परीक्षा पास करने के लिए कम से कम 30 शब्द प्रति मिनट टाइप करने होते हैं। एक परीक्षार्थी को पास होने के लिए आधे घंटे में कम से कम कितने शब्द टाइप करने होंगे?
उत्तर
प्रति मिनट कम से कम शब्द = 30 शब्द
आधे घंटे में = 30 min
कम से कम शब्द टाइप करने होंगे = 30 × 30 = 900 शब्द

Sidha Aur Pratilom Samanupat Bihar Board प्रश्न 3.
मुकुंद के पास एक सड़क का मानचित्र है जिसके पैमाने में 1 सेमी. की दूरी 15 किमी. निरूपित करती है। गाँधी नगर से जाकिर हुसैन सर्कल तक जाने वाली सड़क यदि 75 किमी. है तो मानचित्र में उसे कितने सेमी. से निरूपित किया गया होगा?
उत्तर
1 cm = 15 km
x cm = 75 km
75 × 1 = 15 × x
x = \(\frac{75}{15}\)
x = 5 cm

Bihar Board 8th Class Math Solution प्रश्न 4.
यदि 25 मीटर कपड़े का मूल्य 337.50 रुपये हो तो,
(i) उसी प्रकार के 60 मीटर कपड़े का मूल्य क्या होगा?
(ii) 1620 रु. में इस तरह का कितनी लम्बाई का कपड़ा खरीदा जा सकता है?
उत्तर
(i) 25 m = 337.50
1 m = 337.50 = 25
1 m = 13.5
60m = 13.5 × 60 = 810
(ii) 1 m = 13.5
x m = 1620
1620 = 13.5 × x
x = \(\frac{1620}{13.5}\)
x = 120 m

बिहार बोर्ड क्लास 8 मैथ सलूशन प्रश्न 5.
मकान के एक मॉडल में उसकी ऊँचाई 5 सेमी. व क्रमशः लम्बाई व चौड़ाई 12 सेमी. व 8 सेमी. है। अब यदि वास्तविक परिस्थिति में उसकी ऊँचाई 25 फुट हो तो मॉडल में काम लिया गया पैमाना बताइए तथा वास्तविक लम्बाई व चौड़ाई ज्ञात कीजिए।
उत्तर
वास्तविक ऊँचाई = 25 फुट
मॉडल में उसकी ऊँचाई = 5 फुट
पैमाना = \(\frac{25}{5}\) = 5 cm
वास्तविक ऊँ = 5 × 5 = 25 फुट
ल० = 12 × 5 = 60 फुट
चौ० = 8 × 5 = 40 फुटः

बिहार बोर्ड क्लास 8 मैथ प्रश्न 6.
मान लीजिए 2 किग्रा. दाल में 7 × 105 क्रिस्टल हैं। तब दी गई दालों की मात्रा में कितने क्रिस्टल होंगे?
(i) 8 किग्रा.
(ii) 5 किग्रा.
उत्तर
2 kg के दाल में क्रिस्टल = 7 × 105
1 kg के दाल में क्रिस्टल = \(\frac{7 \times 10^{5}}{2}\) = 3.5 × 105
(i) 8 kg के दाल में क्रिस्टल = 8 × 3.5 × 105 =28 × 105
(ii) 5 kg के दाल में क्रिस्टल = 5 × 3.5 × 105 = 17.5 × 105

Bihar Board Class 8 Math Solution प्रश्न 7.
एक मानचित्र का पैमाना 1 : 25,000000 दिया है। दो नगरों की मानचित्र में दूरी 3 सेमी. है तो वास्तविकता में उनके बीच कितनी दूरी होगी?
उत्तर
मानचित्र में पैमाना
1 cm = 250000 m
3 cm = 3 × 25000000 = 75000000

Math Class 8 Bihar Board प्रश्न 8.
यदि एक स्कूटर 3 लीटर पेट्रोल में 96 किमी. चलता है, तो 320 किमी. चलने के लिए इसे कितने पेट्रोल की आवश्यकता होगी?
उत्तर
3 लीटर = 96 km
x लीटर = 320 km
3 × 320 = x × 96
x = \(\frac{3 \times 320}{96}\)
x = 10 liter

Bihar Board Class 8 Maths सीधा और प्रतिलोम समानुपात Ex 11.2

Class 8 Math Bihar Board प्रश्न 1.
यदि x और y व्युत्क्रमानुपाती विचरण में हों, तो आवश्यकतानुसार रिक्त स्थानों की पूर्ति कीजिए-
Sidha Aur Pratilom Samanupat Bihar Board
उत्तर
Bihar Board 8th Class Math Solution

Class 8 Maths Bihar Board प्रश्न 2.
निम्नांकित विचरण सारणी में रिक्त स्थानों की पूर्ति कीजिए-
बिहार बोर्ड क्लास 8 मैथ सलूशन
उत्तर
बिहार बोर्ड क्लास 8 मैथ

Class 8 Math Book Bihar Board प्रश्न 3.
10 मजदूर किसी काम को 2 दिन में करते हैं। उसी काम को 2 मजदूर कितने दिनों में करेंगे?
उत्तर
10 मजदूर = 2 दिन
2 मजदूर = x दिन
\(\frac {10}{2}\) = \(\frac {2}{x}\)
x = \(\frac {10}{2}\) × 2 = 10 दिन

Bihar Board Math Class 8 प्रश्न 4.
45 मजदूर एक काम को 27 दिनों में पूरा करते हैं, तो कितने मजदूर उसी काम को 15 दिनों में पूरा करेंगे?
उत्तर
45 मजदूर = 27 दिन
x मजदूर = 15 दिन
\(\frac {45}{x}\) = \(\frac {27}{15}\)
x = \(\frac {27}{15}\) × 45
x = 27 × 3
x = 81 मजदूर

Bihar Board Class 8 Math प्रश्न 5.
एक बस 30 किमी./घण्टा की चाल से 6 घण्टे में एक निश्चित दूरी तय करती है । उसी दूरी को वह बस किस चाल से केवल 4 घण्टे में तय कर लेगी?
उत्तर
30 km = 6 hours = x km/h
30 km = 4 hour
x = \(\frac{30 \times 6}{4}\) = 45 km/h

Bihar Board Class 8 Math Book Pdf प्रश्न 6.
40 घोड़े एक क्विंटल चने को 7 दिनों में खाते हैं। कितने घोड़े उतने ही चने को 28 दिनों में खायेंगे?
उत्तर
40 घोड़े = 7 दिन
x घोड़े = 28 दिन
x = \(\frac{28}{7 \times 40}\)
x = 10 दिन

Bihar Board Class 8 Math Solution In Hindi प्रश्न 7.
एक छात्रावास में 300 छात्रों के लिए 15 दिनों की राशन सामग्री है। यदि अवकाश के कारण 200 छात्र बाहर चले जाएँ तो वह सामग्री कितने दिनों तक चलेगी?
उत्तर
300 छात्र = 15 दिन
100 छात्र = x दिन
x = \(\frac{15 \times 300}{100}\) = 45 दिन

Bihar Board Class 8 Ka Math Solution प्रश्न 8.
एक छावनी में 700 सैनिकों के लिए 25 दिनों की पर्याप्त खाद्य सामग्री है। किन्तु कुछ और सैनिकों के आ जाने के कारण वह खाद्य सामग्री केवल 20 दिनों में समाप्त हो जाती है। बताइए कि बाद में छावनी में और कितने सैनिक आए?
उत्तर
700 सैनिक = 25 दिन
x सैनिक = 20 दिन
x = \(\frac{700 \times 25}{20}\) = 875 सैनिक
बाद में छावनी में (700 – 875) = 175 सैनिक आ गए।

Class 8 Math Solution Bihar Board प्रश्न 9.
एक व्यक्ति प्रतिदिन किसी पुस्तक के 8 पृष्ठों को पढ़कर उसे 15 दिनों में पूरा पढ़ लेता है। यदि वह प्रतिदिन 12 पृष्ठ पढ़े तो पूरी पुस्तक को वह कितने दिनों में पढ़ लेगा?
उत्तर
8 पृष्ठ = 75 दिन
12 पृष्ठ = x दिन
x = \(\frac{8}{12}\) × 15 = 10 दिन

Bihar Board Class 8 Math Book प्रश्न 10.
एक सैनिक शिविर में 105 सैनिकों के लिए 21 दिनों की रसद सामग्री है। यदि शिविर में 42 सैनिक और शामिल हो जाएँ, तो रसद सामग्री कितने दिनों में समाप्त हो जायेगी?
उत्तर
105 सैनिक = 21
147 सैनिक = x
x = 105 × \(\frac{21}{147}\)
x = 7 दिन

प्रश्न 11.
निम्नलिखित में से कौन-कौन सी व्युत्क्रमानुपात में विचरण करती हैं?

  1. खरीदी गई पुस्तकों की संख्या और प्रत्येक पुस्तक की कीमत।
  2. बस द्वारा तय की गई दूरी और खपत पेट्रोल की कीमत।
  3. साइकिल द्वारा किसी निश्चित दूरी को पार करने में लगा समय, और उसकी चाल।
  4. एक पुल बनाने में लगाए गए मजदूरों की संख्या और पुल बनने में लगने वाला समय।
  5. छात्रों की संख्या और प्रतिछात्र वितरित मिठाई का वजन। (यदि 40 किग्रा. मिठाई बाँटनी है)।
  6. मजदूरी और कार्य के घण्टे।
  7. वस्तुओं की संख्या और उनका कुल मूल्य।

उत्तर

  1. नहीं
  2. नहीं
  3. हाँ
  4. हाँ
  5. हाँ
  6. हाँ
  7. हाँ।

प्रश्न 12.
26 जनवरी को एक विद्यालय के 800 छात्रों में 100 ग्राम प्रति छात्र के हिसाब से मिठाई बाँटी गई। उतनी ही मिठाई यदि 1000 छात्रों में बराबर-बराबर बाँटी जाए, तो प्रत्येक छात्र को कितने ग्राम मिठाई मिलेगी?
उत्तर
800 छात्र = 100 ग्राम
1000 छात्र = x ग्राम
x = \(\frac{800 \times 100}{1000}\) = 80 ग्राम

प्रश्न 13.
जब एक नल एक घंटे में 640 लीटर पानी भरता है तो एक पानी टंकी को भरने में 10 घण्टे का समय लगता है। यदि उसी टंकी को दूसरे नल से 8 घण्टे में भरा गया हो, तो दूसरे नल में प्रतिघंटा कितना पानी भरा?
उत्तर
640 ली० = 10 घंटा
x ली० = 8 घंटा
x = \(\frac{640 \times 10}{8}\) = 800 लीटर