Bihar Board Class 11 English Book Solutions Chapter 12 Exceptional Role of Newspapers in Development

Bihar Board Solutions for Class 11 English aids you to prepare all the topics in it effectively. You need not worry about the accuracy of the Bihar Board Solutions for Class 11 Prose Chapter 12 Exceptional Role of Newspapers in Development Questions and Answers as they are given adhering to the latest exam pattern and syllabus guidelines. Enhance your subject knowledge by preparing from the Chapter wise Bihar Board Class 11th English Book Solutions and clarify your doubts on the corresponding topics.

Rainbow English Book Class 11 Solutions Chapter 12 Exceptional Role of Newspapers in Development

Kick start your preparation by using our online resource Bihar Board Class 11 English Solutions. You can even download the Bihar Board Board Solutions for Class 11 Chapter 12 Exceptional Role of Newspapers in Development Questions and Answers in Prison free of cost through the direct links available on our page. Clear your queries and understand the concept behind them in a simple manner. Simply tap on the concept you wish to prepare in the chapter and go through it.

Bihar Board Class 11 English Exceptional Role of Newspapers in Development Textual Questions and Answers

A. Work in Small groups and discuss these questions :

Question 1.
Name the newspaper which is read at your home.
Answer:
The newspapers which are read at my home are:
(i) Hindustan Times and
(ii) The Hindu.

Question 2.
What section of the newspaper do you like most ?
Answer:
The front page which consists of the main news items, the news of the state and nation, the editiorial page, business news and sports I like most to read.

Question 3.
At what age did you start reading news paper ?
Answer:
I started reading newspaper when I was seven. The Hindi newspaper Aryabhatta was the main paper which my father bought.

Question 4.
If you are asked to stop reading newspaper, will you stop it ? If not, give reasons.
Answer:
If I am asked to stop reading newspaper I can’t stop it because it been the habitual part of my life that as soon as I come from bath-room I reau the newspaper. If I don’t do so any day it appears as if I lack something. It has been my habit of daily life as the breakfast and tea.

B. 1. Answer the following questions briefly :

Question 1.
Who is delivering the speech and in what mood ? What is the occasion ?
Answer:
Shri K. f. Narayanan, the tenth president of India is deliverigng the speech in happy mood. The occasion is the Diamond Jubilee Celebration of the Indian Newspaper Society.

Question 2.
How did the Indian Newspaper Society come into existence ?
Answer:
The Indian Newspaper Society came into existence on account of the shortage of newspring arisen due to the continuation of war.

Question 3.
Who is called the father of Indian Renaissance ? Why ?
Answer:
Raja Ram Mohan Roy is called the father of Indian Renaissance (beginning). He was the soul of social circles, a brilliant conversationalist and leader in all creative activities.

Question 4.
What are the threats before the print media ?
Answer:
The print media at present is competing with the electronic media.

Question 5.
What is the matter of universal experience ?
Answer:
There is a close association between human being and the printed word. It is a matter of universal experience that when you read something, whole body (existence) react to it. It does not happen with a video or an oral description (expression).

Question 6.
“The printed word is really a soul stirring instrument”. What does Naraynan mean by this statement ?
Answer:
The printed word is undoubtedly a most inspiring instrument. Narayanan has described the importance and role of the print media. He is of the opinion that due to its (print media) inspiring ability, India has gone through the experience of a gradual multiplication of the print media.

Question 7.
What did Raja Ram Mohan Roy say abount the Press ?
Answer:
Raja Ram Mohan Roy had once expressed hid opinion about the press (and ijkrole) in these words, “the Press is the vehicle of intelligence”. He meant to say that the role of Press is to cany intelligence to the people i.e. it is helpful in transporting intelligence and wisdom from one to another place or person.

B. 2. Answer the following questions briefly :

Question 1.
What has been greatest inventions of the last two millennia ?
Answer:
The educated persons (intelligentia class) have selected the printing press as the greatest invention of the last two millenia.

Question. 2.
In what ways is the response of Indian people towards print media different front American people?
Answer:
The response of Indian people towards print media is different from American people. An audit report of the large metropolitan Newspapers of America reveals this fact where it was noticed that the tendency of the circulation of newspaper had gone down. But in India, there has been an explosion of newspapers and periodicals in our country as these newspapers I had played a dominant role in the freedom movement and in the development of India.

Question 3.
What was the experience of Mr. Mammen Mathew ?
Answer:
Mr. Mammen Mathew mentioned the experience of his own newspaper, “Malayala Manorama’ which conducted a crusade for the freedom of the press. Today his paper has one of the largest circulation in Kerala state and in India.

Question 4.
Sometimes print media also ‘trivalises’ and commercialises events, What does Narayanan mean by ‘trivialises’and commercialises ?
Answer:
There is a threat to newspaper from the electronic media. They play down and commercialise events to face (meet) the threat of the electronic media. They (newspapers) highlight some less important news and give less ; importance to important news for their wide circulation and sale. Narayanan cites an example of Khajuraho Festival and a fashion show for cats. Some of f our newspapers highlighted the less important cat show, but they did not give the same important to more important colourful Khajuraho festival. They do so to deal with the threat of electronic media. Here Narayanan has thrown light on this problem as well as threat to the newspaper.

Question 5.
What did K. R. Narayanan visit Khajuraho for ?
Answer:
Narayanan visited Khajuraho to inangurate the Khajuraho festival, which was a colourful and meaningful festival, which is celebrated as an ancient heritage of our culture.

Question 6.
What does Narayanan mean by “an irrestible tendency” ? Why do we need to ‘resist’ it ?
Answer:
Narayanan has expressed deep concern over the irresistible tendency of the press, which they shown by giving importance to less important new? > and to ignore the important one. It is bad. It has to be resisted which Mr. Mammen Mathew had described, as the preservation of our culture.

Question 7.
How have newspapers become part and parcel of our life ?
Answer:
Newspapers have become part and parcel of the lives of the people. One cannot think of a day starting without newspapers, which, according to Narayanan is evident that newspapers have become an insuperable companion of our life. ”

C. 1. Long Answer Type Questions :

Question 1.
In what way is the Press “the vehicle of intelligence ?”
Answer:
The Indian Press has had a very glorious beginning and career. Today it spreads intelligence among the masses. In the classified sense of intelligence also, it has been often providing us enough intelligence. If somebody intends to know the greatest invention of the last two centuries it is undoubtedly a reality that printing press is the greatest invention of the last two centuries. Press acts with responsibility to cultivate values and pass on the culture of our country and distribute knowledge to the people. It is there a truth that press plays a dominant role in cultivating intelligence, wisdom, aptitude and insight.

Question 2.
Describe, after Narayanan, the importance of newspapers in our life.
Answer:
Newspapers have a very powerful approach in our life. They are not just a piece of paper but they preserve the treasure of knowledge. We can . easily know the global news within a short span of time. Every morning we are able to know whaf is happening in different parts of the world through the newspaper. According to narayanan, the role of newspapers in the freedom movement and in the development of India has been exceptional. There has been an explosion of newspapers and peridicals in our country. It has become an essential part of our life. One cannot think of a day starting without a newspaper. It helps us in every walk of our life. We collect informations relating to health, science, trade, commerce, culture, arts, social activities and many other aspects of national and international level.

Question 3.
Why is freedom of press essential ?
Answer:
Freedom of press is highly essential. Press serves people and the country. It must be fair and impartial. A free and frank opinion cannot be obtained, if the press has no freedom and they are controlled by some agencies. In the democratic country like ours, press should be Jcept free from any sort of restriction. Press is aniont the four pillars of democracy.

Presscensureship means the curtailmeng of fundamental rights of the people. We cannot think of a healthy democracy without full freedom of press. Press should not work under political or any type of other pressure. The political party in power often try to influence the press, which is quite unjustified. In British rule Indian press was not free and it had to follow the instructions of the British Government. They did not have the courage to hightlight the cruelty of the government but now in our democratic country there is freedom of press.

Question 4.
Discuss the hopes of K. R. Narayanan regarding the future of the Indian Newspaper Society ?
Answer:
K. R. Narayanan, on the inaugaration of the Diamond Jubilee celebration of Indian Newspaper Society, had expressed his hope for its glorious future. He told that it was his earnest desire to express his sentiments wishing its extraordinary success in the days to come. The Indian Newspaper. Society which came into existance during war, when there was the scarcity of news-print, had become a champion of the freedom of the press in India afterward. It had a very glorious beginning. K.R. Narayanan hoped that the Indian News-paper Society would be able to achieve greater success and glory in the future and wished it every success.

Question 5.
Discuss the distinctive features of Indian Newspaper.
Answer:
The Indian Newspapers have done much for their readers. They have served the people as an essential food. One cannot think of a day starting without a newspaper. This has become part and parcel of our life. There is one problem with them. They have to face the threat of electronic media among its readers. To meet their challenge sometimes they highlight less important news and give less importance to some more important news to cover their readers and to enhance their circulation. This trend is of course not desirble and fair. But still Indian Newspapers and doing much for the welfare of the people and the nation.

C. 2. Group Discussion :

Discuss the following in groups of Pairs :
(a) The relevance of newspapers in the 21st century
(b) Growing commercialism in the newspapers
Answer:
(a) In the 21st century the relevance of newspaper is greater. The whole world has been globalised. The world is developing in science and j commerce. Every event of any country of the world affects the whole world. So, to know about world has been essential part of life. The newspaper is such a source which communicates all the news even to the remote villages where electronic media cannot reach.

(b) The newspaper has also been commercialised. The big companies or great personalities pay for advertisement. The aditor take money for that and sometimes omit some important news for money. Sometimes falls news are also published because for that news the editor is highly paid. For commercial addas the editors are paid more and money. Some activities of some party or personality are given priority in the newspaper because the party or the personality pays much money for that.

C. 3. Composition :

Write an article in 150-200 words on the Role of Media. Include in your article the competition between print media and electronic media is discharging their duties.
Answer:
Role of Media

The role of media is very significant in modem society. Media does not mean only the news media but all those sources which communicate something to us. Any type of information or source of learning are included in media. Newspaper is the print media which makes us aware with the information of all over the world. In addition to this information of all overe the world.

In addition to this information it also makes us aware with the new inventions, goods which may provide us ease through advertisements. What types of courses are available for the students and which of the institution provides us the teaching of those courses all these thing are provided through adds. Matrimonials, commercial information are the news of sports are also communicated through newspaper. In addition there are magazines, journals and books for general knowledge are also included in print media which communicate us the latest news of all over the world.

D. Word Study :
D. 1. Dictionary Use :

Ex. 1. Make sentences from the words given in Glossary and Notes.
Answer:
celebrations-The principal of our college made us aware with our duties for country on Republic Day celebrations.

Significance-The significance of print media cannot be ignored. Renaissance-Information Technology has brought renaissance in present days.

Communion-The Communion of two thoughts brought revolution in the society.

SouI-striking-The discourse of Swamiji was soul-striking.

Exposition-The exposition of the intention of Mr Shyam Lai confused the people.

Periodicals-There were a number of periodicals in the library. Crusade-We have to declare crusade against terrorisrti.

Trivialize-The importance the meeting has been trivialized.

Staple diet-The newspaper is a staple diet now a days.

Part and Parcel-Religion is the part and parcel of our life. . Cultivate-We should cultivate the morality into the students.

E. Activity :

Do a Project work on the newspapers during the movement of India Independence. Make a list of newspapers and periodicals which were published during our freedom struggle. Also, include the names of their editors and the languages they were published in.
Answer:
During the Movement of Indian Independence the newspapers were concerned. The reporters and editors had to release news items according to the choice to {he British rulers. The freedom of press was seized. If any of the reporters or editors dared to expose the truth against the government, they were punished severely. The important newspaper of those days were-The Times of India The Indian Express, The Hindus, The Blitge, The Indian Nation, The search light etc. were the important newspapers of those days.

We believe the information shared regarding Bihar Board Solutions for Class 11 English Chapter 12 Exceptional Role of Newspapers in Development Questions and Answers as far as our knowledge is concerned is true and reliable. In case of any queries or suggestions do leave us your feedback and our team will guide you at the soonest possibility. Bookmark our site to avail latest updates on several state board Solutions at your fingertips.

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

Bihar Board Class 11 Physics ठोसों के यांत्रिक गुण Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 9.1
4.7 m लम्बे व 3.0 × 10-5 m2 अनुप्रस्थ काट के स्टील के तार तथा 3.5 m लंबे व 4.0 × 10-5 m2 अनुप्रस्थ काट के ताँबे के तार पर दिए गए समान परिमाण के भारों को लटकाने पर उनकी लंबाइयों में समान वृद्धि होती है। स्टील तथा ताँबे के यंग प्रत्यास्थता गुणांकों में क्या अनुपात है।
उत्तर:
दिया है:
स्टील के तार के लिए,
तार की लम्बाई, l1 = 4.7 m
अनुप्रस्थ काट का क्षेत्रफल
a = 3.0 × 10-5 m2
माना लम्बाई में वृद्धि, ∆l1 = ∆l
ताँबे के तार के लिए, तार की लम्बाई l2 = 3.5 m
अनुप्रस्थ काट का क्षेत्रफल
a2 = 4.0 × 10-5 m2
माना लम्बाई में वृद्धि
∆l2 = ∆l; F2 = F
माना स्टील ताँबे के तार के यंग प्रत्यास्थता गुणांक Y1 व Y2 हैं।
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
समी० (i) को (ii) से भाग देने पर
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.2
नीचे चित्र में किसी दिए गए पदार्थ के लिए प्रतिबल-विकृति वक्र दर्शाया गया है। इस पदार्थ के लिए –
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
(a) यंग प्रत्यास्थता गुणांक तथा
(b) सन्निकट पराभव सामर्थ्य क्या है?
उत्तर:
(a) ग्राफ पर स्थित बिन्दु P पर विकृति,
E = 0.002 प्रतिबल, σ = 150 × 106 न्यूटन/मीटर2
सूत्र यंग प्रत्यास्थता गुणांक, Y = \(\frac{σ}{E}\) से
y = \(\frac{150 \times 10^{6}}{0.002}\)
= 7.5 × 1010 न्यूटन/मीटर2

(b) परास व सामर्थ्य = ग्राफ के उच्चतम बिन्दु के संगत प्रतिबल
= 290 × 106 न्यूटन प्रति मीटर2

प्रश्न 9.3
दो पदार्थों A और B के लिए प्रतिबल-विकृति ग्राफ चित्र में दर्शाए गए हैं। इन ग्राफों को एक ही पैमाना मानकर खींचा गया है।
(a) किस पदार्थ का यंग प्रत्यास्थता गुणांक अधिक है?
(b) दोनों पदार्थों में कौन अधिक मजबूत है?
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
उत्तर:
(a) पदार्थ A के ग्राफ का ढाल दूसरे ग्राफ की तुलना में अधिक है; अत: पदार्थ A का यंग गुणांक अधिक है।
(b) दोनों ग्राफों पर पराभव बिन्दुओं की ऊँचाई लगभग बराबर है परन्तु पदार्थ A के ग्राफ, पदार्थ B की तुलना में प्लास्टिक क्षेत्र अधिक सुस्पष्ट है; अत: पदार्थ A अधिक मजबूत है।

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.4
निम्नलिखित दो कथनों को ध्यान से पढ़िये और कारण सहित बताइये कि वे सत्य हैं या असत्य –
(a) इस्पात की अपेक्षा रबड़ का यंग गुणांक अधिक है।
(b) किसी कुण्डली का तनन उसके अपरूपण गुणांक से निर्धारित होता है।
उत्तर:
(a) असत्य, चूँकि इस्पात व रबड़ से बने एक जैसे तारों में समान विकृति उत्पन्न करने के लिए इस्पात के तार में रबड़ की अपेक्षा अधिक प्रतिबल उत्पन्न होता है। इससे स्पष्ट है कि इस्पात का यंग गुणांक रबड़ से अधिक है।
(b) सत्य, चूँकि हम किसी कुण्डली या स्प्रिंग को खींचते हैं तो न तो स्प्रिंग निर्माण में लगे तार की लम्बाई में कोई परिवर्तन होता है और न ही उसका आयतन परिवर्तित होता है। स्प्रिंग का केवल रूप बदलता है। अतः स्प्रिंग का तनन उसके अपरूपण गुणांक से निर्धारित होता है।

प्रश्न 9.5
0.25 cm व्यास के दो तार, जिनमें एक इस्पात का तथा दूसरा पीतल का है, चित्र के अनुसार भारित है। बिना भार लटकाए इस्पात तथा पीतल के तारों की लम्बाइयाँ क्रमशः 1.5 m तथा 1.0 m हैं। यदि इस्पात तथा पीतल के यंग गुणांक क्रमशः 2.0 × 10111 Pa तथा 0.9 × 1011 हों तो इस्पात तथा पीतल के तारों में विस्तार की गणना कीजिए।
उत्तर:
दिया है:
RS = RB = 0.125 cm
= 1.25 × 10-3 m
Ls = 1.5 m, LB = 1.0 m
YS = 2.0 × 1011 Pa,
YB = 0.91 × 1011 Pa
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
जहाँ S व B क्रमश: इस्पात (Steel) तथा पीतल (Brass) को प्रदर्शित करते हैं। पीतल के तार पर केवल 6.0 kg द्रव्यमान के पिंड का भार लगा है, जबकि इस्पात के तार पर (6.0 + 4.0 = 10.0 kg) का भार लगा है।
∴ FB = 6.0 kg × 9.8 Nkg-1 = 58.8 N
FS = 10.0 kg × 9.8 Nkg-1 = 98 N
प्रत्येक का अनुप्रस्थ क्षेत्रफल A = πR2
= 3.14 × (1.25 × 10-3 m)2
= 4.91 × 10-6 m2
सूत्र Y = \(\frac{FL}{A∆L}\) से
पीतल के तार हेतु,
∆LB = \(\frac{F_{B} L_{B}}{A_{B} Y_{B}}\)
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
तथा इस्पात के तार हेतु,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
= 14.96 × 10-5 m ~ 0.015 cm

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.6
ऐल्युमिनियम के किसी घन के किनारे 10 cm लम्बे हैं। इसकी एक फलक किसी ऊर्ध्वाधर दीवार से कसकर जुड़ी हुई है। इस घन के सम्मुख फलक से 100 kg का एक द्रव्यमान जोड़ दिया गया है। ऐल्युमीनियम का अपरूपण गुणांक 25 GPa है। इस फलक का ऊर्ध्वाधर विस्थापन कितना होगा?
उत्तर:
दिया है:
अपरूपण गुणांक G = 25 GPa
= 25 × 109 Nm-2
बल-आरोपित फलक का क्षेत्रफल
A = 10 cm × 10 cm
= 100 × 10-4 m2
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
आरोपित बल
F = 100 kg × 9.8 Nkg-1 = 980 N
माना फलक का ऊर्ध्व विस्थापन = ∆x
जबकि L = 10 cm = 0.1 m
∴ सूत्र G = \(\frac{(F / A)}{(\Delta x / L)}\) से
फलक का विस्थापन
∆x = \(\frac{FL}{GA}\)
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.7
मृदु इस्पात के चार समरूप खोखले बेलनाकार स्तम्भ 50,000 kg द्रव्यमान के किसी बड़े ढाँचे को आधार दिये हुए हैं। प्रत्येक स्तम्भ की भीतरी तथा बाहरी त्रिज्याएँ क्रमश: 30 तथा 60 cm हैं। भार वितरण को एकसमान मानते हुए प्रत्येक स्तम्भ की संपीडन विकृति की गणना कीजिये।
उत्तर:
दिया है:
आन्तरिक त्रिज्या (भीतरी त्रिज्या)
Rint = 30 सेमी
= 0.3 मीटर बाहरी त्रिज्या,
Rext = 60 सेमी = 0.6 मीटर
प्रत्येक स्तम्भ का अनुप्रस्थ काट का क्षेत्रफल
A = \(\pi R_{\mathrm{ext}}^{2}\) – \(\pi R_{\mathrm{int}}^{2}\)
= 3.14 [(0.6)2 – (0.3)2]
= 0.85 मीटर2
ढाँचे का सम्पूर्ण भार,
W = 50,000 × 9.8
= 4.9 × 105 न्यूटन
अतः प्रत्येक स्तम्भ पर भार,
F1 = \(\frac{1}{4}\)W =1.225 × 105 न्यूटन
हम जानते हैं कि इस्पात का यंग गुणांक,
Y = 2 × 1011 न्यूटन/मीटर2
सूत्र Y = \(\frac{FL}{A∆L}\) से
प्रत्येक स्तम्भ पर संपीडन विकृति
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
चारों स्तम्भों पर संपीडन विकृति
= (0.72 × 10-6) × 4
= 2.88 × 10-6

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.8
ताँबे का एक टुकड़ा, जिसका अनुप्रस्थ परिच्छेद 15.2 mm × 19.1 mm का है, 44,500 N बल के तनाव से खींचा जाता है, जिससे केवल प्रत्यास्थ विरूपण उत्पन्न हो। उत्पन्न विकृति की गणना कीजिये।
उत्तर:
दिया है,
Y = 1.1 × 1011 Nm-2
A = परिच्छेद क्षेत्रफल
= 15.2 mm × 19.1 mm
= 15.2 × 10-3 m × 19.1 × 10-3 m
बल F = 44500N
परिणामी = विकृति = ?
Y = प्रतिबल/विकृति या विकृति
प्रतिबल/Y = \(\frac{F}{AY}\)
या अनुदैर्ध्य विकृति
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.9
1.5 cm त्रिज्या का एक इस्पात का केबिल भार उठाने के लिए इस्तेमाल किया जाता है। यदि इस्पात के लिए अधिकतम अनुज्ञेय प्रतिबल 108 Nm-2 है तो उस अधिकतम भार की गणना कीजिए जिसे केबिल उठा सकता है।
उत्तर:
दिया है:
इस्पात के तार की त्रिज्या, r = 1.5 सेमी
= 1.5 × 10-2 मीटर
अधिकतम अनुज्ञेय प्रतिबल = 108 न्यूटन/मीटर2
तार का अनुप्रस्थ क्षेत्रफल,
A = πr2 = 3.14 × (1.5 × 10-2)2
अधिकतम भार जिससे केबिल उठा सकता है = अधिकतम बल = ?
अधिकतम बल सूत्र,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
अधिकतम बल = अधिकतम प्रतिबल × अनुप्रस्थ काट का क्षेत्रफल
= 108 × π × (1.5 × 10-2)2
= 3.14 × 2.25 × 104 न्यूटन
अधिकतम बल जिससे केबिल उठा सकता है
= 7.1 × 104 न्यूटन

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.10
15 kg द्रव्यमान की एक दृढ़ पट्टी को तीन तारों, जिनमें प्रत्येक की लंबाई 2 m है, से सममित लटकाया गया है। सिरों के दोनों तार ताँबे के हैं तथा बीच वाला लोहे का है। तारों के व्यासों के अनुपात निकालिए, प्रत्येक पर तनाव उतना ही रहना चाहिए।
उत्तर:
माना कि ताँबे व लोहे के यंग गुणांक क्रमशः y1 व y2 है।
y1 = 110 × 109 न्यूटन/मीटर2 व y2 = 190 × 109 न्यूटन/मीटर2
माना कि ताँबे व लोहे के अनुप्रस्थ काट के क्षेत्रफल क्रमश: a1 व a2 हैं तथा इनके व्यास क्रमश: a1 व a2 हैं।
सूत्र क्षेत्रफल = π(व्यास/2)2 से,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
दिया है:
L = 2 मीटर
माना प्रत्येक तार में उत्पन्न वृद्धि ∆l है तथा प्रत्येक तार में उत्पन्न तनाव F है।
सूत्र Y = प्रतिबल/विकृति से,
ताँबे के तार की विकृति = \(\frac{F / a_{1}}{Y_{1}}\)
तथा लोहे के तार की विकति = \(\frac{F / a_{2}}{Y_{2}}\)
चूँकि छड़ को सममित लटकाया गया है।
चूँकि दैनिक विकृति समान है।
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.11
एक मीटर अतानित लंबाई के इस्पात के तार के एक सिरे से 14.5 kg का द्रव्यमान बाँध कर उसे एक ऊर्ध्वाधर वृत्त में घुमाया जाता है, वृत्त की तली पर उसका कोणीय वेग 2 rev/s है। तार के अनुप्रस्थ परिच्छेद का क्षेत्रफल 0.065 cm है2। तार में विस्तार की गणना कीजिए जब द्रव्यमान अपने पथ के निम्नतम बिंदु पर है।
उत्तर:
निम्नतम बिन्दु पर द्रव्यमान के घूर्णन के कारण तार में उत्पन्न बल,
T – mg = \(\frac{m}{w^{2}}\)
जहाँ T = तार में तनाव है।
T = mg + \(\frac{m}{w^{2}}\)
= 14.5 × 9.8 + 14.5 × 1 × (4π)2
= 14.5 (9.8 + 16 × 9.87)
= 14.5 (9.8 + 157.92)
= 2431.94 N
प्रतिबल = \(\frac{T}{A}\) = \(\frac{2431.94}{65 \times 10^{7}}\)
विकृति = \(\frac{∆l}{l}\) = \(\frac{∆l}{l}\) = ∆l
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
= 0.19 सेमी।

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.12
नीचे दिये गये आँकड़ों से जल के आयतन प्रत्यास्थता गुणांक की गणना कीजिए, प्रारंभिक आयतन = 100.0L दाब में वृद्धि = 100.0 atm (1 atm = 1.013 × 105Pa), अंतिम आयतन = 100.5 L नियत ताप पर जल तथा वायु के आयतन प्रत्यास्थता गुणांकों की तुलना कीजिए। सरल शब्दों में समझाइये कि यह अनुपात इतना अधिक क्यों है?
उत्तर:
दिया है:
P = 100 वायुमण्डलीय दाब
= 100 × 1.013 × 105 Pa (∵ 1 atm = 1.013 × 1015 Pa)
प्रारम्भिक आयतन,
V1 = 100 litre = 100 × 10-3 m-3
अन्तिम आयतन,
V2 = 100.5 litre = 100.5 × 10-3 m-3
आयतन में परिवर्तन = ∆V = V2 – V1
= (100.5 – 100) × 10-3 m-3
= 0.5 × 10-3 m3
जल का आयतन गुणांक = Kw = ?
सूत्र
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
पुनः हम जानते हैं कि STP पर वायु का आयतन गुणांक
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
= 20260
यह अनुपात बहुत अधिक है। अर्थात् जल का आयतन प्रत्यास्थता वायु की आयतन प्रत्यास्थता से बहुत अधिक है। इसका कारण यह है कि समान दाब द्वारा जल के आयतन में होने वाली कमी, वायु के आयतन में होने वाली कमी की तुलना में नगण्य होती है।

प्रश्न 9.13
जल का घनत्व उस गहराई पर, जहाँ दाब 80.0 atm हो, कितना होगा? दिया गया है कि पृष्ठ पर जल का घनत्व 1.03 × 103 kgm-3, जल की संपीडता 45.8 × 10-11 Pa -1 (1 Pa = 1Nm-2)
उत्तर:
दिया है:
P = 80 atm = 80 × 1.013 × 105 Pa
\(\frac{1}{k}\) = 45.8 × 10-11 Pa-1
पृष्ठ पर जल का घनत्व,
ρ = 1.03 × 103 किग्रा प्रति मीटर3
माना दी हुई गहराई पर जल का घनत्व ρ है।
माना M द्रव्यमान के जल के द्वारा पृष्ठ व दी हुई गहराई पर आयतन क्रमश: V व V’ है।
अत: V = \(\frac{M}{ρ}\) तथा V’ = \(\frac{M}{ρ’}\)
∴ आयतन में परिवर्तन
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
पुनः हम जानते हैं कि जल का आयतन गुणांक निम्नवत्
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.14
काँच के स्लेब पर 10 atm का जलीय दाब लगाने पर उसके आयतन में भिन्नात्मक अंतर की गणना कीजिए।
उत्तर:
दिया है:
P = 10 atm = 10 × 1.013 × 105 Pa
सारणी से, काँच के गुटके के लिए,
K = 37 × 109 Nm-2
काँच के गुटके के आयतन में भिन्नात्मक अन्तर
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.15
ताँबे के एक ठोस घन का एक किनारा 10 cm का है। इस पर 7.0 × 106 Pa का जलीय दाब लगाने पर इसके आयतन में संकुचन निकालिए।
उत्तर:
दिया है:
L = 10 cm = 0.1 m
ताँबे का आयतन गुणांक
= 140 × 109 Pa
P = 7 × 106 Pa
ठोस ताँबे के घन में आयतन सम्पीडन
= ∆V = ?
V = L3 = (0.1)3 = 0.001 m3
सूत्र,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
यहाँ ऋणात्मक चिह्न से स्पष्ट होता है कि आयतन संकुचित होता है।

प्रश्न 9.16
1 लीटर जल पर दाब में कितना अन्तर किया जाए कि वह 0.10% सम्पीडित हो जाए।
उत्तर:
दिया है:
V = 1 लीटर
∆V = -0.10% of V
= – \(\frac{0.10}{100}\) × 1 = – \(\frac{1}{1000}\) लीटर
माना ∆p = 1 लीटर जल संकुचित करने के लिए आवश्यक
दाब
पानी का आयतन प्रसार गुणांक
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

Bihar Board Class 11 Physics ठोसों के यांत्रिक गुण Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 9.17
हीरे के एकल क्रिस्टलों से बनी निहाइयों, जिनकी आकृति चित्र में दिखाई गयी है, का उपयोग अति उच्च दाब के अंतर्गत द्रव्यों के व्यवहार की जाँच के लिए किया जाता है। निहाई के संकीर्ण सिरों पर सपाट फलकों का व्यास 0.50 mm है। यदि निहाई के चौड़े सिरों पर 50,000 N का बल लगा हो तो उसकी नोंक पर दाब ज्ञात कीजिए।
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
उत्तर:
दिया है:
आरोपित बल, F = 5 × 104 न्यूटन
व्यास, D = 5 × 10-4 मीटर
त्रिज्या, r = \(\frac{D}{2}\) = 2.5 × 10-4 m
क्षेत्रफल, A = πr2
= \(\frac{22}{7}\) × (2.5 × 10-4)2
नोंक पर दाब, P = ?
सूत्र P = \(\frac{F}{A}\) से,
P = \(\frac{5 \times 10^{4}}{\frac{22}{7} \times\left(2.5 \times 10^{-4}\right)^{2}}\)
= 0.255 × 1012 Pa
= 2.55 × 1011 Pa

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.18
1.05 m लंबाई तथा नगण्य द्रव्यमान की एक छड़ को बराबर लंबाई के दो तारों, एक इस्पात का (तार A) तथा दूसरा ऐल्युमीनियम का तार (तार B) द्वारा सिरों से लटका दिया गया है, जैसा कि चित्र में दिखाया गया है। A तथा B के तारों के अनुप्रस्थ परिच्छेद के क्षेत्रफल क्रमशः 1.0 mm2 और 2.0 mm2 हैं। छड़ के किसी बिन्दु से एक द्रव्यमान m को लटका दिया जाए ताकि इस्पात तथा एल्युमीनियम के तारों में (a) समान प्रतिबल तथा
(b) समान विकृति उत्पन्न हो।
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
उत्तर:
माना कि स्टील तथा एल्युमीनियम के दो तारों क्रमश: A व B की लम्बाई L है।
माना कि A तथा B के अनुप्रस्थ क्षेत्रफल क्रमश: a1 व a2 हैं।
a1 = 1 मिमी2 = (10-3)2 = 10-6 मीटर2
a2 = 2 मिमी2 = 2 × 10-6 मीटर2
सारणी से, स्टील के लिए,
Y1 = 2 × 1011 न्यूटन मीटर-2
एल्युमीनियम के लिए,
Y2 = 7 × 1019 न्यूटन मीटर-2
माना तारों के निचले सिरों पर लगाए गए बल F1 व F2 हैं।
(a) A तथा B पर प्रतिबल क्रमश: F1/a1 व F1/a2 हैं। जब दोनों प्रतिबल बराबर हैं, तब
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
माना कि दोनों छड़ों से x व y दूरी पर लटकाए गए भार mg द्वारा आरोपित बल F1 व F2 हैं। तब
F1x = F2y
या \(\frac{F_{1}}{F_{2}}=\frac{y}{x}\) = \(\frac{y}{x}\) …………….. (ii)
समी० (i) व (ii) से,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
अतः द्रव्यमान m को A (स्टील तार.) से 0.7 मीटर या B(Al) से 0.35 मीटर की दूरी पर लटकाना चाहिए।
सूत्र y = प्रतिबल/विकृति से,
विकृति = प्रतिबल/Y
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
इसी प्रकार समीकरण (ii) से,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
y तथा a के मानों को रखने पर,
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
अतः द्रव्यमान m को तार A से 0.43 मीटर दूर लटकाना चाहिए।

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.19
मृदु इस्पात के एक तार, जिसकी लंबाई 1.0 m तथा अनुप्रस्थ परिच्छेद का क्षेत्रफल 0.50 × 10-2 cm है, को दो खम्भों के बीच क्षैतिज दिशा में प्रत्यास्थ सीमा के अंदर ही तनित किया जाता है। तार के मध्य बिंदु से 100 g का एक द्रव्यमान लटका दिया जाता है। मध्य बिंदु पर अवनमन की गणना कीजिए।
उत्तर:
दिया है:
l = 1 मीटर
क्षेत्रफल:
A = 0.5 × 10-2 cm2
= 0.5 × 10-2 × (10-2 m2
= 0.5 × 10-6 m2
द्रव्यमान:
m = 100 g = 0.1 kg
भार W = mg = 0.1 × 9.8 N
माना तार की त्रिज्या r है।
A = πr2 = 0.5 × 10-6 m2
r2 = \(\frac{0.5 \times 10^{-6}}{\pi}\) m2
स्टील के लिए, y = 2 × 1011 Pa
अवनमन δ = ? = ?
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
= 0.051 m
= 0.01 m

प्रश्न 9.20
धातु के दो पहियों के सिरों को चार रिवेट से आपस में जोड़ दिया गया है। प्रत्येक रिवेट का व्यास 6 mm है। यदि रिवेट पर अपरूपण प्रतिबल 6.9 × 107 Pa से अधिक नहीं बढ़ना हो तो रिवेट की हुई पट्टी द्वारा आरोपित तनाव का अधिकतम मान कितना होगा? मान लीजिए कि प्रत्येक रिवेट एक चौड़ाई भार वहन करता है।
उत्तर:
माना रिवेट पर w भार लगाया जाता है।
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
प्रत्येक रिवेट पर आरोपित बल = \(\frac{ω}{4}\)
प्रत्येक रिवेट पर अधिकतम अपरूपण प्रतिबल
= 6.9 × 107 Pa
माना अपरूपण बल प्रत्येक रिवेट के A क्षेत्रफल पर लगाया जाता है।
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
= \(\frac{W/4}{A}\) = \(\frac{W}{4A}\)
माना रिवेट पट्टी द्वारा लगाया गया अधिकतम तनाव Wmax है।
अत: \(\frac{W_{\max }}{4 A}\) = 6.9 × 107
या Wmax = 4A = 6.9 × 107
दिया है:
प्रत्येक रिवेट का व्यास
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण

Bihar Board Class 11 Physics Solutions Chapter 9 ठोसों के यांत्रिक गुण

प्रश्न 9.21
प्रशांत महासागर में स्थित मैरिना नामक खाई एक स्थान पर पानी की सतह से 11 km नीचे चली जाती है और उस खाई में नीचे तक 0.32 m3 आयतन का इस्पात का एक गोला गिराया जाता है, तो गोले के आयतन में परिवर्तन की गणना करें।खाई के तल पर जल का दाब 1.1 × 108 Pa है और इस्पात का आयतन गुणांक 160 GPa है।
उत्तर:
दिया है:
h = 11 km = 11 × 103 m
जल का घनत्व, ρ = 103 kgm-3
खाई के तल पर जल के 11 किमी स्तम्भ द्वारा लगाया गया दाब
ρ = hpg
= 11 × 103 × 103 × 10 Pa
V = 0.32 m3
∆V = ?
जल का आयतन गुणांक = K
= 2.2 × 104
= 2.2 × 104 × 105 Pa
= 2.2 × 109 Pa (∵ 1 atm = 105 Pa)
सूत्र
Bihar Board Class 11 Physics Chapter 9 ठोसों के यांत्रिक गुण
= 0.016 m3

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

Bihar Board Class 11 Physics मात्रक एवं मापन Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 2.1
रिक्त स्थान भरिए –
(a) किसी 1 cm भुजा वाले घन का आयतन ………… m3 के बराबर है।
(b) किसी 2 cm त्रिज्या व 10 cm ऊँचाई वाले सिलिंडर का पृष्ठ क्षेत्रफल ……… (mm)2 के बराबर है।
(c) कोई गाड़ी 18 km/h की चाल से चल रही है तो यह 1 s में ………. m चलती है।
(d) सीसे का आपेक्षिक घनत्व 11.3 है। इसका घनत्व – g cm-3 या ………. kg m-3 है।
उत्तर:
(a) घन का आयतन = (भुजा)3 = (1 सेमी)3
= (\(\frac{1}{100}\) मी)3 [∴ 1 सेमी = \(\frac{1}{100}\) मी]

(b) सिलिंडर का पृष्ठ क्षेत्रफल
= वक्र पृष्ठ का क्षे० × वृत्तीय सिरों का क्षे०
= 2πr (h + r)
= 2 × 3.14 × 2 सेमी (10 सेमी + 2 सेमी)
= 2 × 3.14 × 2 × 12 वर्ग सेमी
= 150.72 सेमी2 = 150.72 × (10)2 वर्ग मिम
= 1.5 × 104 वर्ग मिमी

(c) गाड़ी की चाल = 18 किमी/घण्टा
= 18 × \(\frac{5}{18}\) मी/सेकण्ड = 5 मीटर/सेकण्ड
∴ 1 सेकण्ड में चली दूरी = चाल × समय
= 5 मी/सेकण्ड × 1 सेकण्ड = 5 मीटर

(d) सीसे का घनत्व
= सीसे का आपेक्षिक घनत्व × जल का घनत्व
= 11.3 × 1 ग्राम/सेमी3
= 11.3 ग्राम/सेमी3
= 11.3 (\(\frac{1}{1000}\) किग्रा)/\(\frac{1}{100}\) मीटर)3
= 11.13 × 1014 किग्रा प्रति मीटर3

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.2
रिक्त स्थानों को मात्रकों के उचित परिवर्तन द्वारा भरिए –
(a) 1 kg m2s-2 = ………. g cm2s-2
(b) 1 m = …… ly
(c) 3.0 ms-2 = ………. Kmh-2
(d) G = 6.67 × 10-11 Nm (kg)-2 = ……… (cm)3s-2g-1
उत्तर:
(a) 1 kg m2 = 1kg × 1 m2s-2
= (100 gm) × (100 cm)2 × 18-2
= 107 gm cm2s-2
1 ly (light year) = 9.46 × 1015 मीटर

(b) ∵ 1 मीटर = \(\frac { 1 }{ 9.46\times 10^{ 15 } } \)
= 1.06 × 10-16 ly

(c) 3 m-2 = 3m × 1s-2
= \(\frac{\left(\frac{3}{100}\right) \mathrm{km}}{\left(\frac{1}{60 \times 60} \mathrm{h}\right)^{2}}\)
= 3.9 × 104 km h-2

(d) G = 6.67 × 10-11 Nm2 (kg)-2
= 6.67 × 10-11 N – m2 × (\(\frac{1}{kg}\))2
= 6.67 × 10-11 (kg ms-2) × \(\frac{1}{kg}\)
= 6.67 × 10-11 × m3s-2 × \(\frac{1}{kg}\)
= 6.67 × 10-11 × \(\frac{1}{1000gm}\) × (100)3 × s-2
= 6.67 × 10-8 (cm)3 s-2 g-1

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.3
ऊष्मा (परागमन में ऊर्जा) का मात्रक कैलोरी है और यह लगभग 4.2 J के बराबर है। जहाँ 1 J = 1kg m2s-2 मान लीजिए कि हम मात्रकों की कोई ऐसी प्रणाली उपयोग करते हैं जिससे द्रव्यमान का मात्रक αkg के बराबर है, लंबाई का मात्रक βm के बराबर है, समय का मात्रक γs के बराबर है। यह प्रदर्शित कीजिए कि नए मात्रकों के पदों में कैलोरी का परिमाण 4.2 α-1 β-1
γ2 है।
उत्तर:
1 कैलोरी = 4.2 जूल = 4.2 किग्रा-मीटर2 प्रति सेकण्ड।
हम जानते हैं कि ऊर्जा का विमीय सूत्र = [ML2T2]
माना कि दो अलग-अलग मापन पद्धतियों के द्रव्यमान के मात्रक M1 व M2 लम्बाई के मात्रक L1 व L2 एवम् समय के मात्रक T1 व T2 है।
प्रश्नानुसार M1 = 1 किग्रा
L1 = 1 मीटर
T1 = 1 सेकण्ड, तथा M2 = α किग्रा
L2 = β मीटर
T2 = γ सेकण्ड
इस प्रकार
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
अर्थात् दूसरी मापन पद्धति में 1 कैलोरी का मान 4.2 α-1β-2γ+2

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.4
इस कथन की स्पष्ट व्याख्या कीजिए:
तुलना के मानक का विशेष उल्लेख किए बिना “किसी विमीय राशि को ‘बड़ा’ या ‘छोटा’ कहना अर्थहीन है।” इसे ध्यान में रखते हुए नीचे दिए गए कथनों को जहाँ कहीं भी आवश्यक हो, दूसरे शब्दों में व्यक्त कीजिए:
(a) परमाणु बहुत छोटे पिण्ड होते हैं।
(b) जेट वायुयान अत्यधिक गति से चलता है।
(c) बृहस्पति का द्रव्यमान बहुत ही अधिक है।
(d) इस कमरे के अंदर वायु में अणुओं की संख्या बहुत अधिक है।
(e) इलेक्ट्रॉन, प्रोटॉन से बहुत भारी होता है।
(f) ध्वनि की गति प्रकाश की गति से बहुत ही कम होती है।
उत्तर:
दिया गया कथन सत्य है। सामान्यतः हम कहते हैं कि परमाणु बहुत छोटा पिण्ड है। लेकिन इलेक्ट्रॉन परमाणु से भी छोटा कण है। तब यह भी कह सकते हैं कि इलेक्ट्रॉन की अपेक्षा परमाणु एक बड़ा पिण्ड है। जबकि टेनिस गेंद की तुलना में परमाणु बहुत छोटा पिण्ड है। इस प्रकार हम देखते हैं कि परमाणु को किसी एक वस्तु की अपेक्षा बहुत छोटा कह सकते है जबकि इलेक्ट्रॉन की तुलना में बड़ा पिण्ड का संकेत है।
(a) आलपिन की नोक की तुलना में परमाणु बहुत छोटे पिण्ड होते हैं।
(b) रेलगाड़ी की तुलना में जेट वायुयान अत्यधिक गति से चलता है।
(c) बृहस्पति का द्रव्यमान पृथ्वी की तुलना में बहुत अधिक होता है।
(d) इस कमरे के अन्दर वायु में अणुओं की संख्या वायु के एक ग्राम अणु में उपस्थित अणुओं से काफी अधिक है।
(e) यह कथन सही है।
(f) यह कथन सही है।

प्रश्न 2.5
लंबाई का कोई ऐसा नया मात्रक चुना गया है जिसके अनुसार निर्वात में प्रकाश की चाल 1 है। लम्बाई के नए मात्रक के पदों में सूर्य तथा पृथ्वी के बीच की दूरी कितनी है, प्रकाश इस दूरी को तय करने में 8 min और 20 s लगाता है।
उत्तर:
प्रश्नानुसार प्रकाश की चाल = 1 मात्रक प्रति सेकण्ड
प्रकाश द्वारा लिया गया समय, t = 8 मिनट 20 सेकण्ड
= 8 × 60 + 20 = 500 सेकण्ड
∴ सूर्य एवम् पृथ्वी के मध्य दूरी
= प्रकाश की चाल × लिया गया समय
= 1 मात्रक प्रति सेकण्ड × 500 सेकण्ड
= 500 मात्रक

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.6
लंबाई मापने के लिए निम्नलिखित में से कौन-सा सबसे परिशुद्ध यंत्र है:
(a) एक वर्नियर कैलीपर्स जिसके वर्नियर पैमाने पर 20 विभाजन हैं।
(b) एक स्क्रूगेज जिसका चूड़ी अंतराल 1 mm और वृत्तीय पैमाने पर 100 विभाजन है।
(c) कोई प्रकाशिक यंत्र जो प्रकाश की तरंग दैर्ध्य की सीमा के अंदर लंबाई माप सकता है।
उत्तर:
(a) वर्नियर कैलीपर्स का अल्पतमांक
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 0.005 सेमी

(b) स्क्रूगेज की अल्पतमांक
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 0.001 सेमी

(c) चूँकि प्रकाशिक यन्त्र द्वारा प्रकाश की तरंग दैर्ध्य की सीमा के अन्दर लम्बाई मापी जा सकती है। अतः इसकी अल्पतमांक
= 10-7 मीटर
= 10-5 सेमी
अर्थात् प्रकाशिक यन्त्र की अल्पतमांक सबसे कम है। इस कारण यह सर्वाधिक परिशुद्ध यन्त्र है।

प्रश्न 2.7
कोई छात्र 100 आवर्धन के एक सूक्ष्मदर्शी के द्वारा देखकर मनुष्य के बाल की मोटाई मापता है। वह 20 बार प्रेक्षण करता है और उसे ज्ञात होता है कि सूक्ष्मदर्शी के दृश्य क्षेत्र में बाल की औसत मोटाई 3.5 mm है। बाल की मोटाई का अनुमान क्या है?
उत्तर:
हम जानते हैं कि, सूक्ष्मदर्शी की आवर्धन क्षमता
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
अतः बाल की अनुमानित मोटाई = 0.035 मिमी।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.8
निम्नलिखित के उत्तर दीजिए:
(a) आपको एक धागा और मीटर पैमाना दिया जाता है। आप धागे के व्यास का अनुमान किस प्रकार लगाएंगे?
(b) एक स्क्रूगेज का चूड़ी अंतराल 1.0 mm है और उसके वृत्तीय पैमाने पर 200 विभाजन हैं। क्या आप यह सोचते हैं कि वृत्तीय पैमाने पर विभाजनों की संख्या स्वेच्छा से बढ़ा देने पर स्क्रूगेज की यथार्थता में वृद्धि करना संभव है?
(c) वर्नियर कैलीपर्स द्वारा पीतल की किसी पतली छड़ का माध्य व्यास मापा जाना है। केवल 5 मापनों के समुच्चय की तुलना में व्यास के 100 मापनों के समुच्चय के द्वारा अधिक विश्वसनीय अनुमान प्राप्त होने की संभावना क्यों हैं?
उत्तर:
(a) एक बेलनाकार छड़ लेकर, इसके ऊपर धागे को सटाकर लपेटते हैं। धागे के फेरों द्वारा घेरी गई छड़ की लम्बाई का मीटर पैमाने द्वारा माप लेते हैं। माना लपेटे गए फेरों की संख्या 20 है।
अतः धागे का व्यास = \(\frac{l}{20}\)
20 इस प्रकार धागे का व्यास ज्ञात हो सकता है।

(b) हम जानते हैं कि स्क्रूगेज का अल्पतमांक
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

प्रश्नानुसार स्क्रूगेज पर बने विभाजनों (भागों) की संख्या बढ़ा देने से, स्क्रूगेज का अल्पतमांक घटेगा अर्थात् यथार्थता बढ़ेगी।

(c) हम जानते हैं कि, प्रेक्षणों की माध्य निरपेक्ष त्रुटि,
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
उपरोक्त सूत्र के अनुसार प्रेक्षणों की संख्या बढ़ाने से माध्य निरपेक्ष त्रुटि घटेगी। अर्थात् अधिक प्रेक्षणों द्वारा प्राप्त, छड़ का माध्य व्यास अधिक विश्वसनीय होगा।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.9
किसी मकान का फोटोग्राफ 35 mm स्लाइड पर 1.75 cm2 क्षेत्र घेरता है। स्लाइड को किसी स्क्रीन पर प्रक्षेपित किया जाता है और स्क्रीन पर मकान का क्षेत्रफल 1.55 m2 है। प्रक्षेपित्र-परदा व्यवस्था का रेखीय आवर्धन क्या हैं?
उत्तर:
दिया है:
स्लाइड पर मकान का क्षेत्रफल = 1.75 वर्ग
सेमी स्क्रीन पर मकान का क्षेत्रफल = 1.55 वर्ग मीटर
= 1.55 × (100 सेमी)2
= 1.55 × 10000 सेमी2
= 15500 सेमी2
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= \(\sqrt{8857}\) = 94.1

प्रश्न 2.10
निम्नलिखित में सार्थक अंकों की संख्या लिखिए:
(a) 0.007 m2
(b) 2.64 × 1024 kg
(c) 0.2370 g cm-3
(d) 6.320 J
(e) 6.032 Nm-2
(f) 0.0006032 m2
उत्तर:
(a) 1
(b) 3
(c) 4
(d) 4
(e) 4
(f) 4

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.11
धातु की किसी आयताकार शीट की लंबाई, चौड़ाई व मोटाई क्रमशः 4.234 m, 1.005 m व 2.01 cm है। उचित सार्थक अंकों तक इस शीट का क्षेत्रफल व आयतन ज्ञात कीजिए।
उत्तर:
दिया है:
लम्बाई a = 4.234
मीटर चौड़ाई b = 1.005 मीटर
मोटाई c = 2.01 सेंटीमीटर
शीट का पृष्ठ क्षेत्रफल = 2 (ab + bc + ca)
= 2[4.234 × 1.005 + 1.005 × 2.01 + 2.01 × 4.234]
= 8.7209478 मी2
= 8.72 मीटर2
चूँकि मोटाई में न्यूनतम सार्थक अंक (i.e., 3) है।
शीट का आयतन = a × b × c
= 4.234 × 1.005 × 0.0201 मी3
= 0.0855 मीटर3

प्रश्न 2.12
पंसारी की तुला द्वारा मापे गए डिब्बे का द्रव्यमान 2.300 kg है। सोने के दो टुकड़े जिनका द्रव्यमान 20.15 g व 20.17 g है, डिब्बे में रखे जाते हैं।
(a) डिब्बे का कुल द्रव्यमान कितना है
(b) उचित सार्थक अंकों तक टुकड़ों के द्रव्यमानों में कितना अंतर हैं?
उत्तर:
(a) दिया है: डिब्बे का द्रव्यमान m = 2.300 किग्रा
पहले टुकड़े का द्रव्यमान m1 = 20.15 ग्राम
= 0.02015 किग्रा
दूसरे टुकड़े का द्रव्यमान m2 = 20.17 ग्राम = 0.02017 किग्रा
∴ टुकड़े रखने के बाद डिब्बे का कुल द्रव्यमान
M = m + m1 + m2
= 2.300 + 0.02015 + 0.02017
= 2.34032 किग्रा
चूँकि डिब्बे के द्रव्यमान में न्यूनतम सार्थक अंक 4 है। अतः डिब्बे के कुल द्रव्यमान का अधिकतम चार सार्थक अंकों में पूर्णांक करना चाहिए।
∴कुल द्रव्यमान = 2.340 किग्रा

(b) द्रव्यमानों में अन्तर
∆m = m2 – m1
= 20.17 – 20.15
= 0.02 ग्राम
चूँकि अधिकतम सार्थक अंक 4 हैं। अतः इनके अन्तर का दशमलव के दूसरे स्थान तक अर्थात् 0.02 ग्राम होगा।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.13
कोई भौतिक राशि P, चार प्रेक्षण-योग्य राशियों a, b, c तथा d से इस प्रकार संबंधित हैं:
P = \(\frac{a^{3} b^{2}}{(\sqrt{c} d)}\)
a, b, c तथा d के मापने में प्रतिशत त्रुटियाँ क्रमशः 1%, 3%,4% तथा 2% हैं। राशि P में प्रतिशत त्रुटि कितनी है? यदि उपर्युक्त संबंध का उपयोग करके P का परिकलित मान 3.763 आता है, तो आप परिणाम का किस मान तक निकटन करेंगे?
उत्तर:
दिया है:
P = \(\frac{a^{3} b^{2}}{(\sqrt{c} d)}\)
P के मान में % त्रुटि
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 3 × 1% + 2 × 3% + \(\frac{1}{2}\) × 4% + 2%
= 3% + 6% + 2% + 2%
= 13%
∴ \(\frac{∆P}{P}\) = 13
∴ ∆P = \(\frac{13×P}{100}\) = \(\frac{13×3.763}{100}\)
= 0.4891
= 0.489 (उचित सार्थक अंक तीन तक)
अतः P के मान में त्रुटि 0.489 है। इससे स्पष्ट है कि P के मान में दशमलव के पहले स्थान पर स्थित अंक ही संदिग्ध है। अर्थात् P के मान को दशमलव के दूसरे स्थान तक लिखना कार्य है। अत: P के मान का दशमलव के पहले स्थान तक ही पूर्णांकन करना होगा।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.14
किसी पुस्तक में, जिसमें छपाई की अनेक त्रुटियाँ हैं,आवर्त गति कर रहे किसी कण के विस्थापन के चार भिन्न सूत्र दिए गए हैं:
(a) y = a sin 2πt/T
(b) y = a sin vt
(c) y = (a/T) sin t/a
(d) y = (a\(\sqrt{2}\)) (sin 2πt/T + cos 2πt/T)
(a = कण का अधिकतम विस्थापन, v = कण की चाल, T = गति का आवर्त काल)। विमीय आधारों पर गलत सूत्रों को निकाल दीजिए।
उत्तर:
किसी भी त्रिकोणमितीय फलन का कोण एक विमाहीन राशि होती है।
(a) सही है।
(b) ∵ vt विमाहीन नहीं है। अतः यह सूत्र गलत है।
(c) ∵ t/ a विमाहीन नहीं है। अतः यह सूत्र गलत है।
(d) सही है।
∴ P का निकटतम मान = 3.763 = 3.8

प्रश्न 2.15
भौतिकी का एक प्रसिद्ध संबंध किसी कण के ‘चल द्रव्यमान (moving mass) m, ‘विराम द्रव्यमान (rest mass)’ m0, इसकी चाल और प्रकाश की चाल के बीच है। (यह संबंध सबसे पहले अल्बर्ट आइंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छात्र इस संबंध को लगभग सही याद करता है लेकिन स्थिरांक c को लगाना भूल जाता है। वह लिखता है:
m = \(\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}\) अनुमान लगाइए कि c कहाँ लगेगा?
उत्तर:
दिया है:
m = \(\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}\)
(1 – v2)1/2 = \(\frac{m_{0}}{m}\)
यहाँ दायाँ पक्ष विमाहीन है जबकि बायाँ पक्ष विमापूर्ण है। अतः सूत्र के सही होने के लिए बायाँ पक्ष भी विमाहीन होना है। अर्थात् (1 – v2)1/2 के स्थान पर (1 – v2/c2)1/2 होना चाहिए।
अर्थात् सही सूत्र m = \(\frac{m_{0}}{\left(1-v^{2} / c^{2}\right)^{1 / 2}}\) होगा।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.16
परमाण्विक पैमाने पर लम्बाई का सुविधाजनक मात्रक एंगस्ट्रम है और इसे Å : 1Å = 10-10 m द्वारा निर्दिष्ट किया जाता है। हाइड्रोजन के परमाणु का आमाप लगभग 0.5 Å है। हाइड्रोजन परमाणुओं के एक मोल का m3 में कुल आण्विक आयतन कितना होगा?
उत्तर:
हाइड्रोजन के एक अणु में दो परमाणु होते हैं।
∴ एक हाइड्रोजन अणु की त्रिज्या (r) = 1 हाइड्रोजन परमाणु का आमाप
= 0.5 Å
= 0.5 × 10-10 मीटर
∴ एक हाइड्रोजन अणु का आयतन
= \(\frac{4}{3}\) πr3 = \(\frac{4}{3}\) × 3.14 × 10.5 × 10-10 मी3
= 5.23 × 10-31 मीटर3
∴ 1 मोल हाइड्रोजन गैस में अणुओं की संख्या
= 6.023 × 1023
∴ 1 मोल हाइड्रोजन गैस में आण्विक आयतन = अणुओं की संख्या × एक अणु का आ०
= 6.023 × 1023 × 5.23 × 10-31 मीटर
= 3.15 × 10-7 मीटर

प्रश्न 2.17
किसी आदर्श गैस का एक मोल (ग्राम अणुक)मानक ताप व दाब पर 22.4L आयतन (ग्राम अणुक आयतन) घेरता है। हाइड्रोजन के ग्राम अणुक आयतन तथा उसके एक मोल के परमाण्विक आयतन का अनुपात क्या है? (हाइड्रोजन के अणु की आमाप लगभग 1Å मानिए)। यह अनुपात इतना अधिक क्यों है?
उत्तर:
∵ 1 मोल हाइड्रोजन गैस का NTP पर आयतन = 22.4 लीटर
= 22.4 × 10-3 मीटर-3
जबकि 1 मोल हाइड्रोजन गैस का NTP पर परमाण्विक आयतन = 3.15 × 10-7 मीटर3
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 7.11 × 104
इस अनुपात का मान अधिक होने का कारण है कि गैस का आयतन उसमें उपस्थित अणुओं के वास्तविक आयतन की अपेक्षा बहुत अधिक होता है। अर्थात् गैस के अणुओं के मध्य बहुत अधिक खाली स्थान होता है।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.18
इस सामान्य प्रेक्षण की स्पष्ट व्याख्या कीजिए:
यदि आप तीव्र गति से गतिमान किसी रेलगाड़ी की खिड़की से बाहर देखें तो समीप के पेड़, मकान आदि रेलगाड़ी की गति की विपरीत दिशा में तेजी से गति करते प्रतीत होते हैं, परन्तु दूरस्थ पिण्ड (पहाड़ियाँ, चंद्रमा, तारे आदि) स्थिर प्रतीत होते हैं। (वास्तव में, क्योंकि आपको ज्ञात है कि आप चल रहे हैं, इसलिए, ये दूरस्थ वस्तुएँ आपको अपने साथ चलती हुई प्रतीत होती हैं)।
उत्तर:
किसी वस्तु का हमारे सापेक्ष गति करते हुए प्रतीत होना, हमारे सापेक्ष वस्तु के कोणीय वेग पर निर्भर करता है। जबकि गाड़ी से यात्रा करते समय सभी वस्तुएँ समान वेग से हमारे पीछे की ओर गतिमान रहती है लेकिन समीप स्थित वस्तुओं का हमारे सापेक्ष कोणीय वेग ज्यादा होता है। अर्थात् वे वस्तुएँ तीव्र गति से पीछे की ओर जाती हुई प्रतीत होती हैं जबकि दूर स्थित वस्तुएँ हमारे सापेक्ष, कम कोणीय वेग से चलती हैं। इस प्रकार वे हमें लगभग स्थिर नजर आती हैं।

प्रश्न 2.19
समीपी तारों की दूरियाँ ज्ञात करने के लिए अनुभाग 2.3.1 में दिए गए’लंबन’ के सिद्धांत का प्रयोग किया जाता है। सूर्य के परितः अपनी कक्षा में छः महीनों के अंतराल पर पृथ्वी की अपनी दो स्थानों को मिलाने वाली, आधार रेखा AB है। अर्थात् आधार रेखा पृथ्वी की कक्षा के व्यास = 3 × 1011 m के लगभग बराबर है। लेकिन, चूँकि निकटतम तारे भी इतने अधिक दूर हैं कि इतनी लंबी आधार रेखा होने पर भी वे चाप के केवल 1” (सेकंड, चाप का) की कोटि का लंबन प्रदर्शित करते हैं। खगोलीय पैमाने पर लंबाई का सुविधाजनक मात्रक पारसेक है। यह किसी पिण्ड की वह दूरी है जो पृथ्वी से सूर्य तक की दूरी के बराबर आधार रेखा के दो विपरीत किनारों से चाप के 1” का लंबन प्रदर्शित करती है। मीटरों में एक पारसेक कितना होता है?
उत्तर:
दिए गए चित्र में S सूर्य तथा E पृथ्वी है। पृथ्वी बिन्दु P से 1 पारसेक की दूरी पर है। पृथ्वी की कक्षा की त्रिज्या
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 1.5 × 1011 मीटर
प्रश्नानुसार रेखाखण्ड SE, बिन्दु P पर 1” पर 1” का कोण अन्तरित करता है।
इस प्रकार,
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.20
हमारे सौर परिवार से निकटतम तारा 4.29 प्रकाश वर्ष दूर है। पारसेक में यह दूरी कितनी है? यह तारा (एल्फा सेंटौरी नामक) तब कितना लंबन प्रदर्शित करेगा जब इसे सूर्य के परितः अपनी कक्षा में पृथ्वी के दो स्थानों से जो छः महीने के अन्तराल पर है, देखा जाएगा?
उत्तर:
तारे की सौर परिवार से दूरी = 4.29 प्रकाश वर्ष
= 4.29 × 9.46 × 1015 मीटर
[∴ 1 प्रकाश वर्ष = 9.46 × 1015 मीटर]
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 1.32 पारसेक
अभीष्ट लम्बन = 2Q
= 2 × तारे की सौर परिवार से दूरी
= 1.32 × 2
= 2.64 सेकण्ड चाप का।

प्रश्न 2.21
भौतिक राशियों का परिशुद्ध मापन विज्ञान की आवश्यकताएँ हैं। उदाहरण के लिए, किसी शत्रु के लड़ाकू जहाज की चाल सुनिश्चित करने के लिए बहुत ही छोटे समय-अंतरालों पर इसकी स्थिति का पता लगाने की कोई यथार्थ विधि होनी चाहिए। द्वितीय विश्व युद्ध में रेडार की खोज के पीछे वास्तविक प्रयोजन यही था। आधुनिक विज्ञान के उन भिन्न उदाहरणों को सोचिए जिनमें लंबाई, समय द्रव्यमान आदि के परिशुद्ध मापन की आवश्यकता होती है। अन्य जिस किसी विषय में भी आप बता सकते हैं, परिशुद्धता की मात्रात्मक धारणा दीजिए।
उत्तर:
द्रव्यमान का मापन:
द्रव्यमान स्पेक्ट्रम लेखी द्वारा परमाणुओं के द्रव्यमान का परिशुद्ध मापन किया जाता है।

लम्बाई का मापन:
विभिन्न यौगिकों के क्रिस्टलों में परमाणुओं के मध्य की दूरी का मापन करने के लिए लम्बाई के परिशुद्ध मापन की आवश्यकता होती है।

समय का मापन:
फोको विधि से किसी माध्यम में प्रकाश की चाल निकालने के प्रयोग में समय के परिशुद्ध मापन की आवश्यकता होती है।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.22
जिस प्रकार विज्ञान में परिशुद्ध मापन आवश्यक है, उसी प्रकार अल्पविकसित विचारों तथा सामान्य प्रेक्षणों को उपयोग करने वाली राशियों के स्थूल आंकलन कर सकना भी उतना ही महत्त्वपूर्ण है। उन उपायों को सोचिए जिनके द्वारा आप निम्नलिखित का अनुमान लगा सकते हैं: (जहाँ अनुमान लगाना कठिन है वहाँ राशि की उपरिसीमा पता लगाने का प्रयास कीजिए)।
(a) मानसून की अवधि में भारत के ऊपर वर्षाधारी मेघों का कुल द्रव्यमान।
(b) किसी हाथी का द्रव्यमान।
(c) किसी तूफान की अवधि में वायु की चाल।
(d) आपके सिर के बालों की संख्या।
(e) आपकी कक्षा के कमरे में वायु के अणुओं की संख्या।
उत्तर:
(a) भारत में कुल वर्षा का द्रव्यमान = बादल का द्रव्यमान
= औसत वर्षा × भारत का क्षेत्रफल × जल का घनत्व
= 10 सेमी × 3.3 × 1012 मीटर2 × 10 किग्रा मीटर-3
= 3.3 × 1014 किग्रा

(b) हाथी का द्रव्यमान लीवर के सिद्धान्त द्वारा निकाला जा सकता है। यह लगभग 3000 किग्रा होता है।

(c) किसी तूफान की अवधि में वायु द्वारा उत्पन्न दाब को मापकर, वायु की चाल ज्ञात की जा सकती है। तूफान की चाल लगभग 80 किमी प्रति घण्टा होती है। यह चाल 300 किमी प्रति घण्टा से अधिक भी हो सकती है।

(d) मनुष्य के बालों की संख्या
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
हम जानते हैं: बाल की मोटाई t = 5 × 10-3 सेमी
तथा मनुष्य के सिर की औसत त्रिज्या = 8 सेमी
∴ बालों की संख्या
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

(e) वायु के 1 मोल का NTP पर आयतन = 22.4 लीटर
= 22.4 × 10-3 मीटर3
माना कक्षा के कमरे का आयतन = V
= 5 × 4 × 3 (माना)
= 60 मी3
∴ कक्षा के कमरे में गैस अणुओं की संख्या
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.23
सूर्य एक ऊष्म प्लाज्मा (आयनीकृत पदार्थ) है। जिसके आंतरिक क्रोड का ताप 107 K से अधिक और बाह्य पृष्ठ का ताप लगभग 6000 K है। इतने अधिक ताप पर कोई भी पदार्थ ठोस या तरल प्रावस्था में नहीं रह सकता। आपको सूर्य का द्रव्यमान घनत्व किस परिसर में होने की आशा है? क्या यह ठोसों, तरलों या गैसों के घनत्वों के परिसर में है? क्या आपका अनुमान सही है, इसकी जाँच आप निम्नलिखित आंकड़ों के आधार पर कर सकते हैं : सूर्य का द्रव्यमान = 2.0 × 1030 kg; सूर्य की त्रिज्या = 7.0 × 108 ml
उत्तर:
दिया है:
M = 2 × 1030 किग्रा
R = 7.0 × 108 मीटर
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
सूर्य का घनत्व – सूर्य का द्रव्यमान
= 1.4 × 103 किग्रा/घनमीटर
सूर्य का द्रव्यमान द्रवों/ठोस के घनत्व परिसर में होता है। यह गैसों के घनत्वों के परिसर में नहीं होता है। सूर्य की भीतरी पर्तों के कारण बाहरी पर्तों पर अंतर्मुखी गुरुत्वाकर्षण बल के कारण ही गर्म प्लाज्मा का इतना अधिक घनत्व हो जाता है।

प्रश्न 2.24
जब बृहस्पति ग्रह पृथ्वी से 8247 लाख किलोमीटर दूर होता है, तो इसके व्यास की कोणीय माप 35.72” की चाप है। बृहस्पति का व्यास परिकलित कीजिए।
उत्तर:
दिया है:
पृथ्वी से बृहस्पति की दूरी = d
= 824.7 × 106 किमी
θ = 35.72″
= 35.72 × 4.85 × 10-6
रेडियन बृहस्पति का व्यास, D = ?
सूत्र कोण,
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 35.72 × 4.85 × 10-6 × 824.7 × 106
= 1.429 × 105 किमी।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.25
वर्षा के समय में कोई व्यक्ति चाल के साथ तेजी से चला जा रहा है। उसे अपने छाते को टेढ़ा करके ऊर्ध्व के साथ e कोण बनाना पड़ता है। कोई विद्यार्थी कोण eav के बीच निम्नलिखित संबंध व्युत्पन्न करता है:
tan θ = v और वह इस संबंध के औचित्य की सीमा पता लगाता है: जैसी कि आशा की जाती है यदि v → 0 तो θ → (हम यह मान रहे हैं कि तेज हवा नहीं चल रही है और किसी खड़े व्यक्ति के लिए वर्षा ऊर्ध्वाधरतः पड़ रही है। क्या आप सोचते हैं कि यह संबंध सही हो सकता है?यदि ऐसा नहीं हो तो सही संबंध का अनुमान लगाइए।
उत्तर:
दिया है:
tan θ = v
यह सम्बन्ध असत्य है क्योंकि इस सम्बन्ध में बायाँ पक्ष | विमाहीन है जबकि दाएँ पक्ष की विमा [LT-1] है। अतः दाएँ पक्ष में वर्षा की बूंदों के वेग से भाग देना चाहिए।
∴ सही सम्बन्ध tan θ = \(\frac{v}{u}\) होगा।

प्रश्न 2.26
यह दावा किया जाता है कि यदि बिना किसी बाधा के 100 वर्षों तक दो सीज़ियम घड़ियों को चलने दिया जाए, तो उनके समयों में केवल 0.02 s का अंतर हो सकता है। मानक सीज़ियम घड़ी द्वारा 1s के समय अंतराल को मापने में यथार्थता के लिए इसका क्या अभिप्राय है?
उत्तर:
कुल समय = 100 वर्ष
= 100 × 365 × 24 × 60 × 60 सेकण्ड
समय में अन्तर = 0.2 सेकण्ड
∴ 1 सेकण्ड के मापन में त्रुटि
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.27
एक सोडियम परमाणु का आमाप लगभग 2.5 Å मानते हुए उसके माध्य द्रव्यमान घनत्व का अनुमान लगाइए। (सोडियम के परमाण्वीय द्रव्यमान तथा आवोगाद्रो संख्या के ज्ञात मान का प्रयोग कीजिए।) इस घनत्व की क्रिस्टलीय प्रावस्था में सोडियम के घनत्व 970 kg m-3 के साथ तुलना कीजिए। क्या इन दोनों घनत्वों के परिमाण की कोटि समान है? यदि हाँ, तो क्यों?
उत्तर:
दिया है: सोडियम परमाणु की त्रिज्या (आमाप)
= 2.5 Å = 2.5 × 10-10 मीटर
सोडियम का ग्राम परमाणु भार = 23 ग्राम
= 23 × 10-3 किग्रा
एक ग्राम परमाणु में परमाणुओं की संख्या
= N = 6.023 × 1023
सोडियम के एक परमाणु का द्रव्यमान
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
सोडियम परमाणु का द्रव्यमान घनत्व
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

प्रश्न 2.28
नाभिकीय पैमाने पर लंबाई का सुविधाजनक मात्रक फर्मी है: (1f = 10-15 m)। नाभिकीय आमाप लगभग निम्नलिखित आनुभविक संबंध का पालन करते हैं:
r = r0A1/3
जहाँ r नाभिक की त्रिज्या, A इसकी द्रव्यमान संख्या और r0 कोई स्थिरांक है जो लगभग 1.2f के बराबर है। यह प्रदर्शित कीजिए कि इस नियम का अर्थ है कि विभिन्न नाभिकों के लिए नाभिकीय द्रव्यमान घनत्व लगभग स्थिर है। सोडियम नाभिक के द्रव्यमान घनत्व का आंकलन कीजिए।
उत्तर:
दिया है:
नाभिक की त्रिज्या
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
परन्तु सोडियम परमाणु का माध्य घनत्व
= 5.84 × 102 किग्रा प्रति मीटर2 [प्रश्न सं० 2.27 से]
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 1015
उपरोक्त परिणाम से स्पष्ट है कि सोडियम नाभिक का घनत्व उसके परमाणु के घनत्व से लगभग 1015 गुना अधिक है। इस प्रकार हम कह सकते हैं कि परमाणु का अधिकांश भाग खोखला है। एवम् उसका अधिकांश द्रव्यमान उसके नाभिक में ही निहित है।
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 584 किग्रा/मीटर3

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.29
लेसर (LASER), प्रकाश के अत्यधिक तीव्र एकवर्णी तथा एकदिश किरण-पुंज का स्त्रोत है। लेसर के इन गुणों का लंबी दूरियाँ मापने में उपयोग किया जाता है। लेसर को प्रकाश के स्त्रोत के रूप में उपयोग करते हुए पहले ही चंद्रमा की पृथ्वी से दूरी परिशुद्धता के साथ ज्ञात की जा चुकी है। कोई लेसर प्रकाश किरण-पुंज चंद्रमा के पृष्ठ से परावर्तित होकर 2.56s में वापस आ जाता है। पृथ्वी के परितः चंद्रमा की कक्षा की त्रिज्या कितनी है?
उत्तर:
दिया है: लेसर प्रकाश द्वारा लिया गया समय,
t = 2.56 सेकण्ड
माना चन्द्रमा की कक्षा की त्रिज्या = r
अतः लेसर प्रकाश द्वारा चली दूरी = 2r
प्रकाश की चाल, c = 3 × 108 मीटर/सेकण्ड
सूत्र,
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन

प्रश्न 2.30
जल के नीचे वस्तुओं को ढूँढ़ने व उनके स्थान का पता लगाने के लिए सोनार (SONAR) में पराश्रव्य तरंगों का प्रयोग होता है। कोई पनडुब्बी सोनार से सुसज्जित है। इसके द्वारा जनित अन्वेषी तरंग और शत्रु की पनडुब्बी से परावर्तित इसकी प्रतिध्वनि की प्राप्ति के बीच काल विलंब 77.0s है। शत्रु की पनडुब्बी कितनी दूर है? (जल में ध्वनि की चाल = 1450 ms-1)
उत्तर:
दिया है:
ध्वनि द्वारा लिया गया समय = 77 सेकण्ड
जल में ध्वनि की चाल = 1450 मीटर/सेकण्ड
माना पनडुब्बी की दूरी = x
∴ ध्वनि तरंगों द्वारा चली गई दूरी = 2x
सूत्र चाल = दूरी से,
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
= 55825 मीटर
= 55.83 × 103 मीटर
= 55.83 किमी

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.31
हमारे विश्व में आधुनिक खगोलविदों द्वारा खोजे गए सर्वाधिक दूरस्थ पिण्ड इतनी दूर हैं कि उनके द्वारा उत्सर्जित प्रकाश को पृथ्वी तक पहुँचने में अरबों वर्ष लगते हैं। इन पिंडों (जिन्हें क्वासर (Quasar) कहा जाता है) के कई रहस्यमय लक्षण हैं जिनकी अभी तक संतोषजनक व्याख्या नहीं की जा सकी है। किसी ऐसे क्वासर की km में दूरी ज्ञात कीजिए जिससे उत्सर्जित प्रकाश को हम तक पहुँचने में 300 करोड़ वर्ष लगते हों।
उत्तर:
लिया गया समय, t = 3 × 109
वर्ष = 3 × 109 × 365 × 24 × 60 × 60
= 2.84 × 1022 किमी

प्रश्न 2.32
यह एक विख्यात तथ्य है कि पूर्ण सूर्यग्रहण की अवधि में चंद्रमा की चक्रिका सूर्य की चक्रिका को पूरी तरक ढक लेती है। इस तथ्य और उदाहरण 2.3 और 2.4 से एकत्र सूचनाओं के आधार पर चंद्रमा का लगभग व्यास ज्ञात कीजिए।
उत्तर:
दिया है:
चन्द्रमा की पृथ्वी से दूरी
(a) = 3.84 × 108 मीटर
माना चन्द्रमा का व्यास = 2r
सूत्र कोणीय व्यास = \(\frac{d}{a}\) से,
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
प्रश्नानुसार पूर्ण सूर्य ग्रहण की अवधि में चन्द्रमा की चक्रिका सूर्य की चक्रिका को पूरा ढक लेती हैं।
∴ चन्द्रमा का कोणीय व्यास = सूर्य का कोणीय व्यास
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
अत: चन्द्रमा का व्यास 3573 किमी है।

Bihar Board Class 11 Physics Solutions Chapter 2 मात्रक एवं मापन

प्रश्न 2.33
इस शताब्दी के एक महान भौतिकविद (पी० ए० एम० डिरैक) प्रकृति के मूल स्थिरांकों (नियतांकों) के आंकिक मानों के साथ क्रीड़ा में आनंद लेते थे। इससे उन्होंने एक बहुत ही रोचक प्रेक्षण किया। परमाण्वीय भौतिकी के मूल नियतांकों (जैसे इलेक्ट्रॉन का द्रव्यमान, प्रोटॉन का द्रव्यमान तथा गुरुत्वीय नियतांक G) से उन्हें पता लगा कि वे एक ऐसी संख्या पर पहुंच गए हैं जिसकी विमा समय की विमा है। साथ ही, यह एक बहुत ही बड़ी संख्या थी और इसका परिमाण विश्व की वर्तमान आकलित आयु (~1500 करोड़ वर्ष) के करीब है। इस पुस्तक में दी गई मूल नियतांकों की सारणी के आधार पर यह देखने का प्रयास कीजिए कि क्या आप भी यह संख्या (या और कोई अन्य रोचक संख्या जिसे आप सोच सकते हैं) बना सकते हैं? यदि विश्व की आयु तथा इस संख्या में समानता महत्वपूर्ण है, तो मूल नियतांकों की स्थिरता किस प्रकार प्रभावित होगी?
उत्तर:
Bihar Board Class 11 Physics Chapter 2 मात्रक एवं मापन
अर्थात् x की विमा समय की विमा के समान ही है।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

Bihar Board Class 11 Physics द्रव्य के तापीय गुण Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 11.1
निऑन तथा CO2 के त्रिक बिन्दु क्रमश: 24.57 K तथा 216.55 K हैं। इन तापों को सेल्सियस तथा फारेनहाइट मापक्रमों में व्यक्त कीजिए।
उत्तर:
दिया है:
निऑन का त्रिक बिन्दु, T1 = 24.57 K CO2 का त्रिक बिन्दु, T2 = 216.55 K
हम जानते हैं कि केल्विन सेल्यिस व फारेनहाइट पैमाने में निम्नवत् सम्बन्ध है –
\(\frac{C-O}{100-O}\) = \(\frac{F-32}{212-32}\)
= \(\frac{T-273.15}{100}\)
सेल्सियस पैमाने पर,
\(\frac{C-O}{100-O}\) = \(\frac{T-273.15}{100}\)
या C – T = 273.15
Ne के लिए
1 C = 24.57 – 273.15
= -248.58°C CO2 के लिए
2 C = 216.55 – 273.15 = -55.6°C
फारेनहाइट पैमाने पर,
\(\frac{F-32}{180}\) = \(\frac{T-273.14}{100}\)
Ne के लिए,
F1 = (T1 – 273.15) × \(\frac{9}{5}\) + 32
= (24.57 – 273.15) × \(\frac{9}{5}\) + 32
= -248.58 × \(\frac{9}{5}\) + 32
= -415.26°F
CO2 के लिए,
F2 = (T2 – 273.15) × \(\frac{9}{5}\) + 32
= (216.55 – 273.15) \(\frac{9}{5}\) + 32
= -56.6 × \(\frac{9}{5}\) + 32 = -69.88°F

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.2
दो परम ताप मापक्रमों A तथा B पर जल के त्रिक बिन्दु को 200 A तथा 350 B द्वारा परिभाषित किया गया है। TA तथा TB में क्या सम्बन्ध है?
उत्तर:
माना दोनों का शून्य, परम शून्य ताप से सम्पाती है। प्रश्नानुसार, प्रथम पैमाने पर परम शून्य से जल के त्रिक बिन्दु तक के तापों को 200 भागों में एवम् दूसरे पैमाने पर 350 भागों में विभाजित किया गया है।
∴ 200A – OA = 350B – OB
= 273.16K – 0K
∴200A = 350B = 273.16K
∴ 1A = \(\frac{273.16}{200}\) K व 1B = \(\frac{273.16}{350}\)
माना कि इन पैमानों पर किसी वस्तु का ताप क्रमश: TA व TB है।
TA = \(\frac{T×273.16}{200}\) K
तथा 1B = \(\frac{T×273.16}{350}\) K
\(\frac{T_{A}}{T_{B}}\) = \(\frac{350}{200}\) = \(\frac{7}{4}\)
TA : TB = 7 : 4
या TA = \(\frac{7}{4}\) TB

प्रश्न 11.3
किसी तापमापी का ओम में विद्युत प्रतिरोध ताप के साथ निम्नलिखित, सन्निकट नियम के अनुसार परिवर्तित होता है –
R = R0 [1 + α (T – T0)]
यदि तापमापी का जल के त्रिक बिन्दु 273.16 K पर प्रतिरोध 101.6 Ω तथा लैड के सामान्य संगलन बिन्दु (600.5 K) पर प्रतिरोध 165.5 Ω है तो वह ताप ज्ञात कीजिए जिस पर तापमापी का प्रतिरोध 123.4 Ω है।
उत्तर:
दिया है:
T1 = 273.16 K पर R1 = 101.612 व T2 = 600.5 K पर R2 = 165.5 माना T0 पर R0 प्रतिरोध है।
तथा T3 ताप पर प्रतिरोध R3 = 123.452 है।
हम जानते हैं कि –
R = R0 [1 + 5 × 10-3 (T – T0)] ……………. (i)
101.6 = R0 [1 + 5 × 10-3(273.16 – T0)] ………………. (ii)
तथा 165.5 = R0 [1 + 5 × 10-3(600.5 – T0)] ………………. (iii)
समी० (iii) को (ii) से भाग देने पर,
\(\frac{165.5}{101.6}\) = \(\frac{1+5 \times 10^{-3}\left(600.5-T_{0}\right)}{1+5 \times 10^{-3}\left(273.16-T_{0}\right)}\)
या 1 + 5 × 10-3(600.5 – T0) = 1.629 [1 + 5 × 10-3 (273.16 – T0)
या 1.629 [1 + 1.366 – 0.005 T0)
= 1 + 3.003 – 0.005 T0
या 3.854 – 008T0 = 4.003 – 0.005T0
या 0.003T0 = -49.67 K
समी० (ii) से,
R0 = \(\frac{101.6}{1+0.005(273.16+49.67)}\)
= \(\frac{101.16}{2.614}\) = 38.87 Ω
123.4 = 38.87 [1 + 0.05) T – (-49.67)]
या T + 49.67 = \(\frac{123.34}{38.87}\) – 1) \(\frac{1}{0.005}\)
या T = 434.94 – 49.67 = 385 K

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.4
निम्नलिखित के उत्तर दीजिए –
(a) आधुनिक तापमिति में जल का त्रिक बिन्दु एक मानक नियत बिन्दु है, क्यों? हिम के गलनांक तथा जल के क्वथनांक को मानक नियत-बिन्दु मानने में (जैसा कि मूल सेल्सियस मापक्रम में किया गया था।) क्या दोष है?

(b) जैसा कि ऊपर वर्णन किया जा चुका है कि मूल सेल्सियस मापक्रम में दो नियत बिन्दु थे जिनको क्रमशः 0°C तथा 100°C संख्याएँ निर्धारित की गई थीं। परम ताप मापक्रम पर दो में से एक नियत बिन्दु जल का त्रिक बिन्दु लिया गया है जिसे केल्विन परम ताप मापक्रम पर संख्या 273.16 K निर्धारित की गई है। इस मापक्रम (केल्विन परम ताप) पर अन्य नियत बिन्दु क्या है?

(c) परम ताप (केल्विन मापक्रम) T तथा सेल्सियस मापक्रम पर तापत्र tC में संबंध इस प्रकार है –
tC = T – 273.15 इस संबंध में हमने 273.15 लिखा है 273.16 क्यों नहीं लिखा?
(d) उस परमताप मापक्रम पर, जिसके एकांक अंतराल का आमाप फारेनहाइट के एकांक अंतराल की आमाप के बराबर है, जल के त्रिक बिन्दु का ताप क्या होगा?
उत्तर:
(a) चूँकि जल का त्रिक बिन्दु (273.16 K) एक अद्वितीय बिन्दु है जबकि हिम का गलनांक व जल का क्वथनांक नियत नहीं है। ये दाब परिवर्तित करने पर बदल जाते हैं।

(b) केल्विन मापक्रम पर, 0°C दूसरा नियत बिन्दु परमशून्य ताप है। इस ताप पर सभी गैसों का दाब शून्य हो जाता है।

(c) सेल्सियस पैमाने पर, 0°C ताप सामान्य दाब पर बर्फ का गलनांक है। इसके संगत केल्विन ताप 273.15 K है। अतः प्रत्येक परम ताप (273.16 K), संगत सेल्सियस ताप के 273.15 K ऊँचा है। अतः उक्त सम्बन्ध में 273.15 का प्रयोग किया गया है।

(d) चूँकि 32°F = 273.15 K
तथा 212°F = 373.15 K
∴(212 – 32)°F = (373.15 – 273.15) K
या 180°F = 100K
∴ 1°F = \(\frac{100}{180}\) K
केल्विन मापक्रम में जल के त्रिक बिन्दु का ताप T = 273.16 K
माना नए परमताप पैमाने पर त्रिक बिन्दु का ताप T’ F है।
T’F – 0 F = 273.16 K – 0 K
T’ × \(\frac{100}{180}\) K = 273.16 K
या T = \(\frac{273.16×180}{100}\) = 491.69
अतः नए पैमाने पर त्रिक बिन्दु के ताप का आंकिक मान 491.69 है।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.5
दो आदर्श गैस तापमापियों A तथा B में क्रमश: ऑक्सीजन तथा हाइड्रोजन प्रयोग की गई है। इनके प्रेक्षण निम्नलिखित हैं –
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
(a) तापमापियों A तथा B के द्वारा लिए गए पाठ्यांकों के अनुसार सल्फर के सामान्य गलनांक के परमताप क्या हैं?
(b) आपके विचार से तापमापियों A तथा B के उत्तरों में थोड़ा अंतर होने का क्या कारण है? (दोनों तापमापियों में कोई दोष नहीं है)। दो पाठ्यांकों के बीच की विसंगति को कम करने के लिए इस प्रयोग में और क्या प्रावधान आवश्यक हैं?
उत्तर:
(a) माना सल्फर का गलनांक T है।
हम जानते हैं कि जल का त्रिक बिन्दु
Ttr = 273.16 K
थर्मामीटर A के लिए
Ptr = 1.250 × 105 Pa,
P = 1.797 × 105 Pa, T = ?
सूत्र \(\frac{T}{T_{\mathrm{tr}}}=\frac{P}{P_{\mathrm{tr}}}\) से
TA = \(\frac{P}{P_{\mathrm{tr}}}\) × Ttr
= \(\frac{1.797 \times 10^{5}}{1.250 \times 10^{5}}\) × 273.16
= 392.69 K
थर्मामीटर B के लिए,
Ptr = 0.200 × 105 Pa
P = 0.287 × 105 Pa
TB = Ttr × \(\frac{P}{P_{\mathrm{tr}}}\)
= 273.16 × \(\frac{0.287 \times 10^{5}}{0.200 \times 10^{5}}\)
या TB = 391.98 K

(b) दोनों तापमापियों के पाठ्यांकों में अन्तर होने का यह कारण है कि प्रयोग की गई गैसें आदर्श नहीं हैं। विसंगति को दूर करने के लिए पाठ्यांक कम दाब पर लेने चाहिए जिससे गैसें आदर्श गैस की भाँति व्यवहार करे।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.6
किसी 1 m लंबे स्टील के फीते का यथार्थ अंशांकन 27.0°C पर किया गया है। किसी तप्त दिन जब ताप 45°C था तब इस फीते से किसी स्टील की छड़ की लंबाई 63.0 cm मापी गई। उस दिन स्टील की छड़ की वास्तविक लंबाई क्या थी? जिस दिन ताप 27.0°C होगा उस दिन इसी छड़ की लंबाई क्या होगी? स्टील का रेखीय प्रसार गुणांक = 1.20 × 10-5 K-1
उत्तर:
दिया है:
T1 = 27°C पर फीते की लम्बाई, L = 100 सेमी
तथा T2 = 45°C पर फीते द्वारा मापी गई छड़ की ल० l = 63 सेमी।
स्टील का रेखीय प्रसार गुणांक,
α = 1.2 × 10-5 प्रति K
हम जानते हैं कि α = \(\frac{∆L}{L×∆T}\)
L × ∆T × α
= 1000 × (45 – 27) × 1.2 × 10-5
= 0.0216 सेमी
100 सेमी लम्बाई में वृद्धिं = 0.0216 सेमी
1 सेमी लम्बाई में वृद्धि = (0.0216/100) सेमी
63 सेमी लम्बाई में वद्धि = \(\frac{0.0216×63}{100}\)
= 0.0136 सेमी
अत: 45°C ताप पर स्टील की छड़ की वास्तविक लम्बाई
= 63 + 0.0136 सेमी।
= 63.0136 सेमी।
तथा जिस दिन ताप 27°C है उस दिन पुन: स्टील की छड़ की लम्बाई 63.0136 सेमी होगी।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.7
किसी बड़े स्टील के पहिए को उसी पदार्थ की किसी धुरी पर ठीक बैठाना है। 27°C पर धुरी का बाहरी व्यास 8.70 cm तथा पहिए के केंद्रीय छिद्र का व्यास 8.69 cm है। सूखी बर्फ द्वारा धुरी को ठंडा किया गया है। धुरी के किस ताप पर पहिया धुरी पर चढ़ेगा? यह मानिए कि आवश्यक ताप परिसर में स्टील का रैखिक प्रसार गुणांक नियत रहता है –
α स्टील = 1.2 × 10-5 K-1
उत्तर:
माना कि T1 व T2 पर स्टील की रैखिक माप क्रमश: l1 व l2 है।
दिया है: αsteel = 1.20 × 10-5 K-1
l1 = 8.70 cm
l2 = 8.69 cm
T1 = 27°C = 273 + 27 = 300 K
T2 = ?
स्टील की शॉफ्ट को ठण्डा करने पर, लम्बाई निम्नवत् होती है –
l2 = l1 [1 + α(T2 – T1)] …………… (1)
शॉफ्ट को T2 ताप पर ठण्डा करने पर l2 = 8.69 सेमी०, तब पहिया शॉफ्ट पर फिसल सकेगा।
अतः समी० (1) से,
8.69 = 8.70 [1 + 1.20 × T-5(T2 – 300)]
या T2 – 300 = \(\frac{8.69-8.70}{8.70 \times 1.20 \times 10^{-5}}\)
= -95.78 K
या T2 = 300 – 95.78 = 204.22 K
या = 204.22 – 273.15 = -68.93°C
= -68.93°C
या T2 = -69°C

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.8
ताँबे की चादर में एक छिद्र किया गया है। 27.0°C पर छिद्र का व्यास 4.24 cm है। इस धातु की चादर को 227°C तक तप्त करने पर छिद्र के व्यास में क्या परिवर्तन होगा? ताँबे का रेखीय प्रसार गुणांक = 1.70 × 10-5 K-1
उत्तर:
दिया है:
t1 = 27°C
t2 = 227°C
∆t = 227 – 27 = 200°C
ताँबे के लिए रेखीय प्रसार गुणांक
α = 1.7 × 10-5°C-1
27°C पर छिद्र का व्यास, d1 = 4.24 सेमी
माना कि 227°C पर छिद्र का व्यास = d2
∆d = d2 – d1 = ?
ताँबे के लिए क्षेत्रीय प्रसार गुणांक
β = 2a = 2 × 1.7 × 10-5
= 3.4 × 10-5°C-1
माना छिद्र का पृष्ठ क्षेत्रफल 27°C व 227°C पर क्रमश: S1 व S2 है।
S1 = \(\frac{\pi d_{1}^{2}}{4}\) = \(\frac{π}{4}\) × (4.24)2
= 4.4947 π सेमी2
S2 = S1 (1 + β ∆t)
= 4.49π (1 + 3.40 × 10-5 × 200)
या S2 = 4.49π × 1.00668
= 4.525 πcm2
या \(\frac{\pi d_{2}^{2}}{4}\) = 4.25π
या d2 = \(\sqrt{4.525×4}\) = 4.525 cm
∆d = d2 – d1 = 4.2544 cm
= 0.0144 cm
या ∆d = 1.44 × 10-2 सेमी

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.9
27°C पर 1.8 cm लंबे किसी ताँबे के तार को दो दृढ़ टेकों के बीच अल्प तनाव रखकर थोड़ा कसा गया है। यदि तार को -39°C ताप पर शीतित करें तो तार में कितना तनाव उत्पन्न हो जाएगा? तार का व्यास 2.0 mm है। पीतल का रेखीय प्रसार गुणांक = 2.0 × 10-5K-1 पीतल का यंग प्रत्यास्थता गुणांक = 0.91 × 1011Pa
उत्तर:
दिया है:
l1 = 1.8 m, t1 = 27°C, t2 = -39°C
∆t = t2 – t1
= – 39 – 27
= -66°C t2°C पर लम्बाई = l2
पीतल के लिए α = 2 × 10-50 K-1
Y = 0.91 × 1011 Pa
तार का व्यास
d = 2.0 mm
= 2.0 × 10-3 m
माना तार का अनुप्रस्थ परिच्छेद a है।
a = \(\frac{\pi d^{2}}{4}\) = \(\frac{π}{4}\) × (2.0 × 10-3)2
= 3.142 × 10-6 m2
माना तार में उत्पन्न तनाव F है।
अतः सूत्र Y = \(\frac{F/a}{∆l/L}\) से
F = \(\frac{Y a \Delta l}{l_{1}}\) ………………. (i)
परन्तु l = l1 α ∆t
= 1.8 × 2 × 10-5 × (-66)
= -0.00237 m
= -0.0024 m
ऋणात्मक चिह्न प्रदर्शित करता है कि समी० (i) में Y, a, ∆l तथा l1 का मान रखने पर लम्बाई घटती है।
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
= 381N
= 3.81 × 102 N

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.10
50 cm लंबी तथा 3.00 mm व्यास की किसी पीतल की छड़ को उसी लंबाई तथा व्यास की किसी स्टील की छड़ से जोड़ा गया है। यदि ये मूल लंबाइयाँ 40°C पर हैं, तो 250°C पर संयुक्त छड़ की लंबाई में क्या परिवर्तन होगा? क्या संधि पर कोई तापीय प्रतिबल उत्पन्न होगा? छड़ के सिरों को प्रसार के लिए मुक्त रखा गया है। (पीतल तथा स्टील के रेखीय प्रसार गुणांक क्रमशः = 2.0 × 10-5 K-1, स्टील = 1.2 × 10-5 K-1 हैं।)
उत्तर:
पीतल की छड़ के लिए,
α = 2.0 × 10-5 K-1, l1 = 50 cm, t1 = 40°C
t2 = 250°C
∆t = t2 – t1
= 250 – 40 = 210°C
माना t2°C पर लम्बाई l2 है। अतः
l2 = l1(1 + α ∆t)
= 50 (1 + 2 × 10-5 × 210)
= 50.21 cm
∆l brass = l2 – l1
= 50.21 – 50
= 0.21 cm
स्टील की छड़ के लिए,
t1 = 40°C, t2 = 250°C, α = 1.2 × 10-5 K-1,
l1 = 50.0 cm
∆t’ = t2 – t1
= 250 – 40 = 210°C
माना 250°C पर स्टील छड़ की ल० l2 है
अतः l2 = l1 (1 + α ∆t’)
= 50 (1 + 1.2 × 10-5 × 210)
= 50.126 cm
250°C पर संयुक्त छड़ की लम्बाई 250°C = l2 + l2
= 50.21 + 50.126
= 100.336 cm व 40°C पर संयुक्त छड़ की लम्बाई
= l1 + l1 = 50 + 50
= 100 cm
संयुक्त छड़ की लम्बाई में परिवर्तन
= 100.336 – 100
= 0.336 cm
= 0.34 cm
अतः सन्धि पर कोई तापीय प्रतिबल उत्पन्न नहीं होता है।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.11
ग्लिसरीन का आयतन प्रसार गुणांक 4.9 × 10-5 K-1 है। ताप में 30°C की वृद्धि होने पर इसके घनत्व में क्या आंशिक परिवर्तन होगा?
उत्तर:
दिया है:
V = 4.9 × 10-5 K-1
ताप में वृद्धि ∆t = 30°C
माना 0°C पर ग्लिसरीन का प्रा० आयतन V0 है।
माना 30°C पर ग्लिसरीन का आयतन V1 है।
तब V1 = v0 (1 + r ∆t)
= V0(1 + 49 × 10-5 × 30)
= V0(1 + 0.01470)
= 1.01470 V0
या \(\frac{V_{0}}{V_{1}}\) = \(\frac{1}{1.01470}\) ……………….. (i)
अतः प्रारम्भिक घनत्व, P0 = \(\frac{m}{V_{0}}\)
तथा अन्तिम घनत्व, P1 = \(\frac{m}{V_{t}}\)
जहाँ m ग्लिसरीन का द्रव्यमान है।
\(\frac{\Delta \rho}{\rho_{0}}\) = घनत्व में भिन्नात्मक परिवर्तन
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
यहाँ गुणात्मक चिह्न प्रदर्शित करता है कि ताप में वृद्धि से घनत्व घटता है।
\(\frac{\Delta \rho}{\rho_{0}}\) = 0.0145 = 1.45 × 10-2
= -1.5 × 10-2

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.12
8.0 kg द्रव्यमान के किसी एल्युमीनियम के छोटे ब्लॉक में छिद्र करने के लिए किसी 10 W की बरमी का उपयोग किया गया है। 2.5 मिनट में ब्लॉक के ताप में कितनी वृद्धि हो जाएगी। यह मानिए कि 50% शक्ति तो स्वयं बरमी को गर्म करने में खर्च हो जाती है अथवा परिवेश में लुप्त हो जाती है। एल्युमीनियम की विशिष्ट ऊष्मा धारिता = 0.91Jg-1 K-1 है।
उत्तर:
दिया है:
m = 8 kg
शक्ति, P = 10 KW = 10 × 103 J/S
समय t = 2.5 मिनट = 150 सेकण्ड
विशिष्ट ऊष्मा धारिता S = 0.91 Jg-1 K-1
= 910 Jkg-1 K-1
2.5 मिनट में बमों द्वारा कम की गई ऊर्जा, E = Pt
= (10 × 103) × 150
= 1.5 × 106 जूल
माना सम्पूर्ण ऊर्जा ऊष्मा में परिवर्तित हो जाती है जिसका 50% बर्मे द्वारा अवशोषित हो जाता है।
अतः ब्लॉक द्वारा शोषित ऊष्मा,
θ = E का 50%
= 1.5 × 106 × \(\frac{50}{100}\)
= 1.5 × 106 जूल
माना शोषित ऊष्मा से ब्लॉक के ताप में वृद्धि ∆T है।
सूत्र θ = ms ∆T से,
∆T = \(\frac{θ}{ms}\) = \(\frac{0.75 \times 10^{-6}}{8 \times 910}\)
= 103°C

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.13
2.5 kg द्रव्यमान के ताँबे के गुटके को किसी भट्टी में 500°C तक तप्त करने के पश्चात् किसी बड़े हिम-ब्लॉक पर रख दिया जाता है। गलित हो सकने वाली हिम की अधिकतम मात्रा क्या है? ताँबे की विशिष्ट ऊष्मा धारिता = 0.39Jg-1 K-1; बर्फ की संगलन ऊष्मा = 335 Jg-1
उत्तर:
दिया है:
m = 2.5 kg
T1 = 500°C विशिष्ट ऊष्मा धारिता,
S = 0.39 Jg-1 K-1 = 390 Jkg-1 K-1
बर्फ की संगलन ऊष्मा,
Lf = 335 Jg-1
= 335 × 103 Jkg-1
प्रश्नानुसार, निकाय का अन्तिम ताप T2 = 0°C
∆T = T1 – T2
= 500°C या 500 K
सूत्र θ = ms ∆T से
गुट के द्वारा दी गई ऊष्मा,
θ = 2.5 × 390 × 500
= 48.75 × 107 J
माना कि बर्फ का m’ द्रव्यमान इस ऊष्मा को शोषित कर गल जाता है।
Q = m’Lf
m’ = \(\frac{\theta}{L_{f}}\)
= \(\frac{48.75 \times 10^{4}}{335 \times 10^{3}}\) = 1.45 kg

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.14
किसी धातु की विशिष्ट ऊष्मा धारिता के प्रयोग में 0.20 kg के धातु के गुटके को 150°C पर तप्त करके, किसी ताँबे के ऊष्मामापी (जल तुल्यांक 30.025 kg), जिसमें 27°C का 150 cm3 जल भरा है, में गिराया जाता है। अंतिम ताप 40°C है। धातु की विशिष्ट ऊष्मा धारिता परिकलित कीजिए। यदि परिवेश में क्षय ऊष्मा उपेक्षणीय न मानकर परिकलन किया जाता है, तब क्या आपका उत्तर धातु की विशिष्ट ऊष्मा धारिता के वास्तविक मान से अधिक मान दर्शाएगा अथवा कम?
उत्तर:
दिया है:
गुटके का द्रव्यमान m = 0.20 kg
ऊष्मामापी का जल तुल्यांक m1 = 0.025 kg
भरे जल का द्रव्यमान m2 = 150 gm = 0.15 kg
गुटके का प्रारम्भिक ताप Ti = 150°C
ऊष्मामापी तथा जल का प्रारम्भिक ताप T’i = 27°C
मिश्रण का ताप, Tf = 40°C
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
माना धातु की विशिष्ट ऊष्मा धारिता Sm है।
गुटके द्वारा दी गई ऊष्मा,
Q = ms(Ti – Tf)
तथा ऊष्मामापी व जल द्वारा ली गई ऊष्मा
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
परन्तु दी गई ऊष्मा = ली गई ऊष्मा
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
यदि हम परिवेश में ऊष्मा क्षय को नगण्य न मानकर परिकलित करें, तब उपरोक्त मान वास्तविक विशिष्ट ऊष्मा धारिता से कम मान दर्शाएगा।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.15
कुछ सामान्य गैसों के कक्ष ताप पर मोलर विशिष्ट ऊष्मा धारिताओं के प्रेक्षण नीचे दिए गए हैं –
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
इन गैसों की मापी गई मोलर विशिष्ट ऊष्मा धारिताएँ एक परमाणुक गैसों की मोलर विशिष्ट ऊष्मा धारिताओं से सुस्पष्ट रूप से भिन्न हैं। प्रतीकात्मक रूप में किसी एक परमाणुक गैस की मोलर विशिष्ट ऊष्मा धारिता 2.92 cal/mol K होती है। इस अंतर का स्पष्टीकरण कीजिए। क्लोरीन के लिए कुछ अधिक मान (शेष की अपेक्षा) होने से आप क्या निष्कर्ष निकालते हैं?
उत्तर:
एक परमाणुक गैसों के अणुओं में सिर्फ स्थानान्तरीय गतिज ऊर्जा होती है परन्तु द्विपरमाणुक गैसों के अणुओं में स्थानान्तरीय गतिज ऊर्जा के अतिरिक्त घूर्णी गतिज ऊर्जा भी होती है। इसका कारण यह है कि द्विपरमाणुक गैसों के अणु अन्तराण्विक अक्ष के लम्बवत् दो अक्षों के परितः भी घूर्णन कर सकते हैं।

किसी गैस को ऊष्मा देने पर यह ऊष्मा अणुओं की सभी प्रकार की भुजाओं में समान वृद्धियाँ करती हैं। चूँकि द्विपरमाणुक गैसों के अणुओं की ऊर्जा के प्रकार अधिक होते हैं इसलिए इनकी मोलर विशिष्ट ऊष्मा धारिताएँ भी अधिक होती हैं। क्लोरीन की मोलर विशिष्ट ऊष्मा धारिता का अधिक मान यह व्यक्त करता है कि इसके अणु स्थानान्तरीय व घूर्णनी गतिज ऊर्जा के अतिरिक्त काम्पनिक गतिज ऊर्जा भी रखते हैं।

प्रश्न 11.16
101°F ताप ज्वर से पीड़ित किसी बच्चे को एन्टीपायरिन ( ज्वर कम करने की दवा) दी गई जिसके कारण उसके शरीर से पसीने के वाष्पन की दर में वृद्धि हो गई। यदि 20 मिनट में ज्वर 98°F तक गिर जाता है तो दवा द्वारा होने वाले अतिरिक्त वाष्पन की औसत दर क्या है? यह मानिए कि ऊष्मा ह्रास का एकमात्र उपाय वाष्पन ही है। बच्चे का द्रव्यमान 30 kg है। मानव शरीर की विशिष्ट ऊष्मा धारिता जल की विशिष्ट ऊष्मा धारिता के लगभग बराबर है तथा उस ताप पर जल के वाष्पन की गुप्त ऊष्मा 580 cal g-1 है।
उत्तर:
दिया है:
बच्चे का द्रव्यमान, m = 30 kg
ताप में गिरावट, ∆T = T1 – T2
= 101°F – 98°F
= 3°F = 3 × \(\frac{5}{9}\)°C
या ∆T = \(\frac{5}{3}\)°C
मानव शरीर की विशिष्ट ऊष्मा
C = 4.2 × 103 Jkg-1C-1
वाष्पन की गुप्त ऊष्मा = 580 cal g-1
= 580 × 4.2 × 103 Jkg-1C-1
माना 20 मिनट में बच्चे के शरीर से m ग्राम पसीना उत्सर्जित होता है।
माना आवश्यक ऊष्मा Q है।
अतः Q = m’L
= m × 580 × 4.2 × 103 J ……………. (i)
माना पसीने के उत्सर्जन के रूप में ऊष्मा Q का ह्रास होता है।
अतः Q = mCAT
= 30 × 4.2 × 103 × 51
= 2.10 × 105 J ………………. (ii)
समी० (i) व (ii) से,
m’ × 580 × 4.2 × 103
= 2.1 x 105
या m’ = \(\frac{2.1 \times 10^{5}}{580 \times 4.2 \times 10^{3}}\)
= \(\frac{10}{116}\) = 0.0862 kg
पसीने के उत्सर्जित होने की दर
= \(\frac{m’}{t}\) = \(\frac{0.0862}{20}\)
= 0.00431 kg min-1 = 4.31 g min-1

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.17
थर्मोकोल का बना ‘हिम बॉक्स’ विशेषकर गर्मियों में कम मात्रा के पके भोजन के भंडारण का सस्ता तथा दक्ष साधन है। 30 cm भुजा के किसी हिम बॉक्स की मोटाई 5.0 cm है। यदि इस बॉक्स में 4.0 kg हिम रखा है तो 6 h के पश्चात् बचे हिम की मात्रा का आंकलन कीजिए। बाहरी ताप 45°C है तथा थर्मोकोल की ऊष्मा चालकता 0.01 Js-1 m-1 K-1 है। (हिम की संगलन ऊष्मा = 335 × 103 Jkg-1)
उत्तर:
दिया है:
घन के छह पृष्ठों का क्षेत्रफल
= 6 × 30 × 30 cm2
= 6 × 900 × 10-4 m2
दूरी, d = 5.0 cm = 5.0 × 10-2 m
बर्फ का कुल द्रव्यमान, M = 4 kg
समय t = 6 h = 6 × 60 × 60s
बक्से के बाहर का ताप = Q1 = 45°C
बक्से के भीतर का ताप = Q2 = 0°C
∆θ = θ1 – θ1 = 45 – 0
= 45°C
संगलन की ऊष्मा,
L = 335 × 103 Jkg-1
थर्माकोल की ऊष्मीय चालकता गुणांक
= K = 0.01 Js-1 m-10 K-1
माना बर्फ का m kg द्रव्यमान गलता है
अतः 0°C पर गलन के लिए आवश्यक ऊष्मा,
Q = mL ……………. (i)
पुनः Q = KA \(\frac{∆θ}{d}\) t ……………… (ii)
समी० (i) व (ii) से,
m = \(\frac{KA}{L}\) \(\frac{∆θ}{d}\) t
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
= 0.313 kg
बॉक्स में शेष बची हिम का द्रव्यमान = M – m
= 4 – 0.313
= 3.687
= 3.7 किग्रा

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.18
किसी पीतल के बॉयलर की पेंदी का क्षेत्रफल 0.15 m2 तथा मोटाई 1.0 cm है। किसी गैस स्टोव पर रखने पर इसमें 6.0 kg/min की दर से जल उबलता है। बॉयलर के संपर्क की ज्वाला के भाग का ताप आकलित कीजिए। पीतल की ऊष्मा चालकता = 109 Js-1 m-1 K-1; जल की वाष्पन ऊष्मा = 2256 × 103 Jkg-1 है।
उत्तर:
दिया है:
K = 109 Js-1 m-1 K-1
A = 0.15 m2
d = 1.0 cm = 10-2 m θ2 = 100°C
माना बॉयलर के स्टोव के सम्पर्क वाले हिस्से का ताप θ1 है।
अत: Q = \(\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d}\)
Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण
जल के, वाष्पीकरण की ऊष्मा,
L = 2256 × 103 Jkg-1
बॉयलर में जल के उबलने की दर,
M = 6.0 kg min-1
= \(\frac{6.0}{60}\) = 0.1 kg-1 s
जल द्वारा प्रति सेकण्ड अवशोषित ऊष्मा, Q = ML
या Q = 0.1 × 2256 × 103 Js-1
समी० (i) व (ii) से
1635 (θ1 – 100) = 2256 × 102
या θ1 – 100 = \(\frac{2256×100}{1635}\) = 138
θ1 = 100 + 138 = 238°C

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.19
स्पष्ट कीजिए कि क्यों –
(a) अधिक परावर्तकता वाले पिंड अल्प उत्सर्जक होते हैं।
(b) कँपकँपी वाले दिन लकड़ी की ट्रे की अपेक्षा पीतल का गिलास कहीं अधिक शीतल प्रतीत होता है।
(c) कोई प्रकाशिक उत्तापमापी ( उच्च तापों को मापने की युक्ति), जिसका अंशांकन किसी आदर्श कृष्णिका के विकिरणों के लिए किया गया है,खुले में रखे किसी लाल तप्त लोहे के टुकड़े का ताप काफी कम मापता है, परन्तु जब उसी लोहे के टुकड़े को भट्टी में रखते हैं, तो वह ताप का सही मान मापता है।
(d) बिना वातावरण के पृथ्वी अशरणीय शीतल हो जाएगी।
(e) भाप के परिचालन पर आधारित तापन निकाय तप्त जल के परिचालन पर आधारित निकायों की अपेक्षा भवनों को उष्ण बनाने में अधिक दक्ष होते हैं।
उत्तर:
(a) चूँकि उच्च परावर्तकता वाले पिंड अपने ऊपर गिरने वाले अधिकांश विकिरण को परावर्तित कर देते हैं। अतः वे अल्प अवशोषक होते हैं। इसी कारण वे अल्प उत्सर्जक भी होते हैं।

(b) लकड़ी की ट्रे ऊष्मा की कुचालक होती है तथा पीतल का गिलास ऊष्मा का सुचालक होता है। कँपकँपी वाले दिन दोनों ही समान ताप पर होंगे। लेकिन स्पर्श करने पर गिलास हमारे हाथ से तेजी से ऊष्मा लेता है जबकि लकड़ी की ट्रे बहुत कम ऊष्मा लेती है। अतः गिलास ट्रे की तुलना में अधिक ठण्डा लगता है।

(c) चूँकि खुले में रखे तप्त लोहे का गोला तीव्रता से ऊष्मा खोता है तथा कम ऊष्माधारिता के कारण तीव्रता से ठण्डा होता जाता है। इस प्रकार उत्तापमापी को पर्याप्त विकिरण ऊर्जा लगातार नहीं मिल पाती है। जबकि भट्टी में रखने पर, गोले का ताप स्थिर बना रहता है तथा यह नियत दर से विकिरण उत्सर्जित करता है।

(d) चूँकि वायु ऊष्मा की कुचालक है। अतः पृथ्वी के चारों ओर का वायुमण्डल एक कम्बल की तरह व्यवहार करता है तथा पृथ्वी से उत्सर्जित होने वाले ऊष्मीय विकिरणों को वापस पृथ्वी की ओर को परावर्तित करता है। वायुमण्डल की अनुपस्थिति में, पृथ्वी से उत्सर्जित होने वाले ऊष्मीय विकिरण सीधे सुदूर अन्तरिक्ष में चले जाते हैं। एवम् पृथ्वी अशरणीय शीतल हो जाएगी।

(e) चूँकि 1 g जलवाष्प, 100°C के 1 g जल की तुलना में 540 cal अतिरिक्त ऊष्मा रखती है। अतः स्पष्ट है कि जलवाष्प आधारित तापन निकाय, तप्त जल आधारित तापन निकाय से ज्यादा दक्ष है।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.20
किसी पिंड का ताप 5 मिनट में 80°C से 50°C हो जाता है। यदि परिवेश का ताप 20°C है, तो उस समय का परिकलन कीजिए जिसमें उसका ताप 60°C से 30°C हो जाएगा।
उत्तर:
80°C व 50°C का माध्य ताप 65°C है।
अतः परिवेश ताप से अन्तर = (65 – 20) = 45°C
सूत्र ताप में कमी/समयान्तराल = K (तापान्तर) से …………… (i)
60°C व 30° C का माध्य ताप 45°C है।
इसका परिवेश ताप से अन्तर (45 – 20) = 25°C
या t = \(\frac{30}{6}\) × \(\frac{45}{25}\) = 9 मिनट
अतः पिंड के ताप को 60°C से 30°C तक गिरने में 9 मिनट लगते हैं।

Bihar Board Class 11 Physics द्रव्य के तापीय गुण Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 11.21
CO2 के P – T प्रावस्था आरेख पर आधारित निम्नलिखित प्रश्नों के उत्तर दीजिए
(a) किस ताप व दाब पर CO2 की ठोस, द्रव तथा वाष्प प्रावस्थाएँ साम्य में सहवर्ती हो सकती हैं?
(b) CO2 के गलनांक तथा क्वथनांक पर दाब में कमी का क्या प्रभाव पड़ता है?
(c) CO2 के लिए क्रांतिक ताप तथा दाब क्या हैं? इनका क्या महत्व है?
(d)

  • -70°C ताप व 1 atm दाब
  • -60°Cताप व 10atm दाब
  • 15°C ताप व 56 atm दाब पर CO2 ठोस, द्रव अथवा गैस में से किस अवस्था में होती है?

उत्तर:
(a) -56.6°C ताप व 5.11 वायुमण्डलीय दाब पर।
(b) दाब में कमी होने पर दोनों घटते हैं।
(c) CO2 के लिए क्रान्तिक ताप 31.1°C व क्रान्तिक दाब 73 वायुमण्डलीय दाब है।
(d)

  • – 70°C ताप व 1 atm दाब पर वाष्प या गैसीय अवस्था में।
  • – 60°C ताप व 10 atm दाब पर ठोस अवस्था में।
  • 15°C ताप व 56 atm दाब पर द्रव अवस्था में।

Bihar Board Class 11 Physics Solutions Chapter 11 द्रव्य के तापीय गुण

प्रश्न 11.22
CO2 के P – T प्रावस्था आरेख पर आधारित निम्नलिखित प्रश्नों के उत्तर दीजिए –
(a) 1 atm दाब तथा – 60°Cताप पर CO2 का समतापी संपीडन किया जाता है? क्या यह द्रव प्रावस्था में जाएगी?
(b) क्या होता है जब 4atm दाब व CO2 का दाब नियत रखकर कक्ष ताप पर शीतन किया जाता है?
(c) 10 atm दाब तथा -65°C ताप पर किसी दिए गए द्रव्यमान की ठोस CO2 को दाब नियत रखकर कक्ष ताप तक तप्त करते समय होने वाले गुणात्मक परिवर्तनों का वर्णन कीजिए।
(d) CO2 को 70°C तक तप्त तथा समतापी संपीडित किया जाता है। आप प्रेक्षण के लिए इसके किन गुणों में अंतर की अपेक्षा करते हैं?
उत्तर:
(a) समतापी सम्पीडनं से तात्पर्य है कि गैस को – 60°C ताप पर दाब अक्ष के समान्तर ऊपर को ले जाया जाता है। इसके लिए हम (- 60°C) ताप पर दाब अक्ष के समान्तर रेखा खींचते हैं। यह रेखा गैसीय क्षेत्र से सीधे ठोस क्षेत्र में प्रवेश कर जाती है तथा द्रव क्षेत्र से नहीं जाती है। अर्थात् गैस बिना द्रवित हुए ठोस में परिवर्तित हो जाती है।

(b) यहाँ पर 4 atm दाब पर ताप अक्ष के समान्तर रेखा खींचते हैं। हम देखते हैं कि यहाँ रेखा वाष्प क्षेत्र से सीधे ठोस क्षेत्रों में प्रवेश करती है। इसका तात्पर्य है कि गैस, बिना द्रवित हुए ठोस अवस्था में संघनित होगी।

(c) यहाँ हम 10 atm दाब व – 65°C ताप से प्रारम्भ कर ताप अक्ष के समान्तर रेखा खींचते हैं। यह रेखा ठोस क्षेत्र से द्रव क्षेत्र तथा बाद में वाष्प क्षेत्र में प्रवेश करती है। इसका तात्पर्य यह है कि इस ताप व दाब पर गैस ठोस अवस्था में होगी। गर्म करने पर यह गैस धीरे-धीरे द्रवास्था में आ जाएगी व पुनः गर्म करने पर गैसीय अवस्था में आ जाएगी।

(d) चूँकि 70°C ताप गैस के क्रान्ति ताप से अधिक है। अतः इसे समतापी सम्पीडन से द्रवित नहीं किया जा सकता है। इस प्रकार चिर स्थायी गैसों की भाँति दाब बढ़ाते जाने पर इसका आयतन कम होता जाएगा।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

Bihar Board Class 11 Physics समतल में गति Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 4.1
निम्नलिखित भौतिक राशियों में से बतलाइए कि कौन-सी सदिश है और कौन-सी अदिश:
आयतन, द्रव्यमान, चाल, त्वरण, घनत्व, मोल संख्या, वेग, कोणीय आवृत्ति, विस्थापन, कोणीय वेग।
उत्तर:
त्वरण, वेग, विस्थापन तथा कोणीय वेग, सदिश राशियाँ हैं जबकि आयतन, द्रव्यमान, चाल, घनत्व, मोल संख्या तथा कोणीय आवृत्ति अदिश राशि हैं।

प्रश्न 4.2
निम्नांकित सूची में से दो अदिश राशियों को छाँटिए –
बल, कोणीय संवेग, कार्य, धारा, रैखिक संवेग, विद्युत क्षेत्र, औसत वेग, चुंबकीय आघूर्ण, आपेक्षिक वेग।
उत्तर:
कार्य तथा धारा अदिश राशियाँ हैं।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.3
निम्नलिखित सूची में से एकमात्र सदिश राशि को छाँटिए –
ताप, दाब, आवेग, समय, शक्ति, पूरी पथ-लंबाई, ऊर्जा, गुरुत्वीय विभव, घर्षण गुणांक, आवेश।
उत्तर:
आवेश एक मात्र अदिश राशि है।

प्रश्न 4.4
कारण सहित बताइए कि अदिश तथा सदिश राशियों के साथ क्या निम्नलिखित बीजगणितीय संक्रियाएँ अर्थपूर्ण हैं?

  1. दो अदिशों को जोड़ना
  2. एक ही विमाओं के एक सदिश व एक अदिश को जोड़ना
  3. एक सदिश को एक अदिश से गुणा करना
  4. दो अदिशों का गुणन
  5. दो सदिशों को जोड़ना
  6. एक सदिश के घटक को उसी सदिश से जोड़ना।

उत्तर:

  1. नहीं, क्योंकि दो अदिशों का जोड़ तभी अर्थपूर्ण होगा जबकि दोनों समान भौतिक राशि को व्यक्त करते हैं।
  2. नहीं, क्योंकि सदिश को केवल सदिश के साथ एवम् अदिश को केवल अदिश के साथ ही जोड़ा जा सकता है।
  3. अर्थपूर्ण है।
  4. अर्थपूर्ण है।
  5. नहीं, क्योंकि यह केवल तभी अर्थपूर्ण होगा जबकि दोनों एक ही भौतिक राशि को व्यक्त करते हैं।
  6. अर्थपूर्ण है।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.5
निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए और कारण सहित बताइए कि यह सत्य है या असत्य:

  1. किसी सदिश का परिमाण सदैव एक अदिश होता है
  2. किसी सदिश का प्रत्येक घटक सदैव अदिश होता है
  3. किसी कण द्वारा चली गई पथ की कुल लंबाई सदैव विस्थापन सदिश के परिमाण के बराबर होती है
  4. किसी कण की औसत चाल (पथ तय करने में लगे समय द्वारा विभाजित कुल पथ-लंबाई) समय के समान-अंतराल में कण के औसत वेग के परिमाण से अधिक या उसके बराबर होती है।
  5. उन तीन सदिशों का योग जो एक समतल में नहीं हैं, कभी भी शून्य सदिश नहीं होता।

उत्तर:

  1. सत्य, चूँकि किसी भी सदिश राशि का परिमाण एक धनात्मक संख्या है, जिसमें दिशा नहीं होती है। इसलिए यह एक अदिश राशि है।
  2. असत्य, चूँकि किसी सदिश का प्रत्येक घटक एक सदिश राशि होता है।
  3. असत्य, जैसे-किसी चक्रीय क्रम में प्रतिचक्र विस्थापन शून्य होता है।
  4. सत्य, चूँकि औसत्त चाल पूर्ण पथ की लम्बाई पर जबकि औसत वेग कुल विस्थापन पर निर्भर करता है तथा पूर्ण पथ की लम्बाई विस्थापन के बराबर अथवा अधिक होती है।
  5. सत्य, चूँकि तीनों सदिश एक समतल में नहीं हैं।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.6
निम्नलिखित असमिकाओं की ज्यामिति या किसी अन्य विधि द्वारा स्थापना कीजिए:
(a) |a + b| ≤ |a| + |b|
(b) |a + b| ≥ |a| – |b|
(c) |a – b| ≤ |a| + |b|
(d) |a – b| ≥ |a| – |b|
इनमें समिका (समता) का चिह्न कब लागू होता है?
उत्तर:
माना \(\overrightarrow{O A}\) = \(\vec{a}\) ⇒ OA = a
तथा \(\overrightarrow{A B}\) = \(\vec{b}\) ⇒ AB = b

(a) सदिश योग के त्रिभुज नियम से,
\(\vec{a}\) + \(\vec{b}\) = \(\overrightarrow{O A}\) + \(\overrightarrow{A B}\) = \(\overrightarrow{O B}\)
तथा (\(\vec{a}\) + \(\vec{b}\)) = OB
परन्तु ∆OAB में, OB ≤ OA + AB

(b) |\(\vec{a}\) + \(\vec{b}\)| ≤ |\(\vec{a}\)| + |\(\vec{b}\)|
चूँकि किसी त्रिभुज में प्रत्येक भुजा शेष दो भुजाओं के अन्तर से बड़ी होती है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
∴ OB ≥ OA – OB
या |\(\vec{a}\) + \(\vec{b}\)| ≥ |\(\vec{a}\)| – |\(\vec{b}\)| ……………. (1)
अतः समीकरण (1) तथा (2) से,
|\(\vec{a}\) + \(\vec{b}\)| ≥ ||\(\vec{a}\) – \(\vec{b}\)|| ……………. (2)
Bihar Board Class 11 Physics Chapter 4 समतल में गति

(c) चित्र – 2 से, AB’ = AB
परन्तु \(\overrightarrow{A B}^{\prime}\) = – \(\vec{b}\), \(\vec{AB}\) = \(\vec{b}\)
∴ |-\(\vec{b}\)| = |\(\vec{b}\)| = AB
सदिश योग के त्रिभुज निमय से,
\(\vec{a}\) – \(\vec{b}\) = \(\vec{a}\) + (-\(\vec{b}\))
= \(\overrightarrow{O A}\) + \(\overrightarrow{A B}^{\prime}\) = \(\overrightarrow{O B}^{\prime}\)
= |\(\vec{a}\) – \(\vec{b}\)| = OB’
∆OAB’ (चित्र – 2) में,
OB’ ≤ OA + AB’
∴ |\(\vec{a}\) – \(\vec{b}\)| ≤ |\(\vec{a}\)| + |\(\vec{-b}\)|
अर्थात् |\(\vec{a}\) – \(\vec{b}\)| ≤ |\(\vec{a}\)| + |\(\vec{-b}\)|

(d) चूँकि किसी त्रिभुज में प्रत्येक भुजा शेष दो भुजाओं के अन्तर से बड़ी होती हैं।
∴ OB’ ≥ OA – AB’
⇒ |\(\vec{a}\) – \(\vec{b}\)| – |\(\vec{a}\)| – |\(\vec{b’}\)| …………. (3)
इसी प्रकार
OB’ – AB’ – OA
⇒ |\(\vec{a}\) – \(\vec{b}\)| ≥ ||\(\vec{b}\)| – |\(\vec{a}\)|| …………….. (4)
समीकरण (3) तथा (4) से,
[\(\vec{a}\) – \(\vec{b}\)] ≥ ||\(\vec{a}\)| – |\(\vec{b}\)||
उपरोक्त समस्त असमिका में समिका तभी लागू होगी जबकि \(\vec{a}\) व \(\vec{b}\) समदिश होंगे।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.7
दिया है a + b + c + d = 0, नीचे दिए गए कथनों में से कौन – सा सही है:
(a) a, b, c तथा d में से प्रत्येक शून्य सदिश है।
(b) (a + c) का परिमाण (b + d) के परिमाण के बराबर है।
(c) a का परिमाण b, c तथा d के परिमाणों के योग से कभी भी अधिक नहीं हो सकता।
(d) यदि a तथा d संरेखीय नहीं हैं तो b + c अवश्य ही a तथाd के समतल में होगा, और यह a तथाd के अनुदिश होगा यदि वे संरेखीय हैं।
उत्तर:
(a) यह कथन सही नहीं है।

(b) दिया है:
Bihar Board Class 11 Physics Chapter 4 समतल में गति
अतः कथन (b) सत्य है।

(c) दिया है:
Bihar Board Class 11 Physics Chapter 4 समतल में गति
अतः कथन (c) सत्य है।

(d) दिया है:
Bihar Board Class 11 Physics Chapter 4 समतल में गति

चूँकि \(\bar{a}\) व \(\bar{d}\) संरेखीय नहीं हैं
अतः \(\vec{a}\) + \(\vec{d}\), \(\vec{a}\) व \(\vec{d}\) के समतल में होगा। इसलिए (\(\vec{b}\) + \(\vec{c}\)) भी aव के समतल होगा।
अतः कथन (d) सही है।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.8
तीन लड़कियाँ 200 m त्रिज्या वाली वृत्तीय बर्फीली सतह पर स्केटिंग कर रही हैं। वे सतह के किनारे के बिंदु P से स्केटिंग शुरू करती हैं तथा P के व्यासीय विपरीत बिंदु पर विभिन्न पथों से होकर पहुँचती हैं जैसा कि (चित्र) में दिखाया गया है। प्रत्येक लड़की के विस्थापन सदिश का परिमाण कितना है? किस लड़की के लिए यह वास्तव में स्केट किए गए पथ की लंबाई के बराबर है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
उत्तर:
प्रत्येक लड़की का विस्थापन सदिश = PQ
विस्थापन सदिश \(\overrightarrow{P Q}\) का परिमाण = 2 × त्रिज्या
= 2 × 200
= 400 मीटर
दिए गए चित्र से स्पष्ट है कि लड़की B द्वारा तय किए गए पथ की लम्बाई 400 मीटर है। अतः इस लड़की के लिए, विस्थापन सदिश का परिमाण वास्तव में स्केट किए गए पथ की लम्बाई के समान है।

प्रश्न 4.9
कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र O से चलना शुरू करता है तथा पार्क के किनारे P पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ QO के रास्ते (जैसा (चित्र) में दिखाया गया है) केंद्र पर वापस आ जाता है। पार्क की त्रिज्या 1 km है। यदि पूरे चक्कर में 10 मिनट लगते हों तो साइकिल सवार का –
(a) कुल विस्थापन
(b) औसत वेग, तथा
(c) औसत चाल क्या होगी?
Bihar Board Class 11 Physics Chapter 4 समतल में गति
उत्तर:
(a) कुल विस्थापन = 0 [∵ साइकिल सवार वापस प्रारम्भिक बिन्दु O पर लौट आता है।]

(b)
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= \(\frac{0}{10/60}\) = 0

(c)
Bihar Board Class 11 Physics Chapter 4 समतल में गति
अतः कुल चली दूरी = त्रिज्या OP + \(\hat{P Q}\) + त्रिज्या OPQ
= 1 + \(\frac{1}{4}\) × 2 × π × 1 + 1
= 1 + \(\frac{1}{2}\) × 3.14 + 1
= 1 + 1.57 + 1
= 3.57 किमी
कुल लिया समय = 10 मिनट = \(\frac{10}{60}\) घण्टा
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 3.57 × 60
= 214.20 किमी/घण्टा

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.10
किसी खुले मैदान में कोई मोटर चालक एक ऐसा रास्ता अपनाता है जो प्रत्येक 500 m के बाद उसके बाई ओर 60° के कोण पर मुड़ जाता है। किसी दिए मोड़ से शुरू होकर मोटर चालक का तीसरे, छठे व आठवें मोड़ पर विस्थापन बताइए। प्रत्येक स्थिति में मोटर चालक द्वारा इन मोड़ों पर तय की गई कुल पथ-लंबाई के साथ विस्थापन के परिमाण की तुलना कीजिए।
उत्तर:
मोटर चालक चित्रानुसार, समषट्भुज ABCDEF के अनुदिश चलेगा।
Bihar Board Class 11 Physics Chapter 4 समतल में गति

1. माना कि मोटर चालक समषट्भुज के शीर्ष A से चलकर, शीर्ष D पर तीसरा मोड़ लेता है।
दिया है: समषट्भुज की भुजा = 500 मीटर
चित्रानुसार
तीसरे मोड़ पर विस्थापन AD = 2BC = 2 × 500 = 1000 मीटर
पथ की लम्बाई
= AB + BC + CD = 500 + 500 + 500
= 1500 मीटर
∴ विस्थापन : पथ की लम्बाई = \(\frac{1000}{1500}\) = 2 : 3

2. मोटर चालक द्वारा लिए गए छठे मोड़ पर विस्थापन = शून्य
[∵ चालक वापस A पर पहुँच जाता है।]
पथ की लम्बाई = 6 × भुजा की ल०
= 6 × 500
= 3000 मीटर
∴ विस्थापन पथ की लम्बाई = \(\frac{0}{3000}\) = 0

3. मोटर चालक आठवाँ मोड़ C पर लेगा।
∴ विस्थापन
Bihar Board Class 11 Physics Chapter 4 समतल में गति
कुल पथ की लम्बाई = 8 × AB = 4000 मीटर
∴ विस्थापन : पथ की लम्बाई
= \(\frac{500 \sqrt{3}}{4000}\) = \(=\frac{\sqrt{3}}{8}\) = \(\sqrt{3}\) : 8
= 0.22

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.11
कोई यात्री किसी नए शहर में आया है और वह स्टेशन से किसी सीधी सड़क पर स्थित किसी होटल तक जो 10km दूर है, जाना चाहता है। कोई बेईमान टैक्सी चालक 23 km के चक्करदार रास्ते से उसे ले जाता है और 28 मिनट में होटल में पहुँचता है।
(a) टैक्सी की औसत चाल, और
(b) औसत वेग का परिमाण क्या होगा? क्या वे बराबर हैं?
उत्तर:
दिया है:
कुल चली दूरी = 23 किमी
लगा समय = 28 मिनट = 2 घण्टा = \(\frac{28}{60}\) घण्टा
टैक्सी का विस्थापन = 10 किमी

(a)
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= \(\frac{23}{28/60}\)
= 49.3 किमी प्रति घण्टा

(b)
Bihar Board Class 11 Physics Chapter 4 समतल में गति
नहीं, चूँकि केवल सीधे पथों के लिए ही परिमाण में माध्य चाल, माध्य वेग के समान होती है।

प्रश्न 4.12
वर्षा का पानी 30 ms-1 की चाल से ऊर्ध्वाधर नीचे गिर रहा है। कोई महिला उत्तर से दक्षिण की ओर 10 ms-1 की चाल से साइकिल चला रही है। उसे अपना छाता किस दिशा में रखना चाहिए?
उत्तर:
दिया है:
वर्षा की चाल \(\vec{v} r\) = 30 मीटर/सेकण्ड
तथा महिला की चाल \(\vec{v} w\) = 10 मीटर/सेकण्ड
महिला को स्वयं को वर्षा से बचाने के लिए छाते को वर्षा तथा महिला के सापेक्ष वेग \(\vec{v} w\) की दिशा में रखना चाहिए।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
माना सापेक्ष वेग \(\vec{v}\) rw ऊर्ध्वाधर से θ कोण बनाता है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 0.33
∴ θ = 18.26

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.13
कोई व्यक्ति स्थिर पानी में 4.0 km/h की चाल से तैर सकता है। उसे 1.0 km चौड़ी नदी को पार करने में कितना समय लगेगा यदि नदी 3.0 km/h की स्थिर चाल से बह रही हो और वह नदी के बहाव के लंब तैर रहा हो। जब वह नदी के दूसरे किनारे पर पहुँचता है तो वह नदी के बहाव की ओर कितनी दूर पहुँचेगा?
उत्तर:
दिया है:
व्यक्ति की चाल = 4 किमी प्रति घण्टा
Bihar Board Class 11 Physics Chapter 4 समतल में गति
चली दूरी = 1 किमी
नदी की चाल = 3 किमी/घण्टा
माना नदी को पार करने में लिया गया समय = t
सूत्र,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
समय t = \(\frac{1}{4}\) घण्टा = 15 मिनट
अत: व्यक्ति द्वारा 15 मिनट में चली दूरी = 3 × \(\frac{1}{4}\)
\(\frac{3}{4}\) किमी
\(\frac{3}{4}\) × 1000
= 750 मीटर

प्रश्न 4.14
किसी बंदरगाह में 72 km/h की चाल से हवा चल रही है और बंदरगाह में खड़ी किसी नौका के ऊपर लगा झंडा N – E दिशा में लहरा रहा है। यदि वह नौका उत्तर की ओर 51 km/h चाल से गति करना प्रारंभ कर दे तो नौका पर लगा झंडा किस दिशा में लहराएगा?
उत्तर:
दिया है:
वायु का वेग \(\vec{v}_{a}\) = 72 किमी प्रति घण्टा N – E दिशा में तथा नौका का वेग \(\vec{v}_{b}\) = 51 किमी प्रति घण्टा उत्तर दिशा में।
नौका का वायु के सापेक्ष वेग,
\(\vec{v}_{a}\) = \(\vec{v}_{a}\) – \(\vec{v}_{b}\)
= 72 – 51
= 21 किमी/घण्टा
यह सापेक्ष वेग, वायु वेग (\(\vec{v}_{a}\)) तथा नौका के विपरीत दिशा को (-\(\vec{v}_{b}\)) के परिणाम के बराबर होगा एवम् झण्डा वेग \(\vec{v}_{ab}\), को दिशा में लहराएगा।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
माना कि सापेक्ष वेग (\(\vec{v}\) ab) वेग \(\vec{v}\) a से θ कोण बनाता है तथा वेगों \(\vec{v}\) a व \(\vec{v}\) b के बीच 135° का कोण है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 1.0035
∴ θ = 45.1°
अतः सापेक्ष वेग \(\bar{v}\) ab द्वारा पूर्व दिशा में बनाया गया कोण,
= θ – 45°
= 45.1 – 45
= 0.1
अर्थात् झण्डा लगभग पूर्व दिशा में ही लहराएगा।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.15
किसी लंबे हाल की छत 25 m ऊँची है। वह अधिकतम क्षैतिज दूरी कितनी होगी जिसमें 40 ms-1 की चाल से फेंकी गई कोई गेंद छत से टकराए बिना गुजर जाए?
उत्तर:
दिया है:
अधिकतम ऊँचाई Hmax = 25 मीटर
तथा वेग, V0 = 40 मीटर/सेकण्ड
माना कि गेंद को प्रक्षेप्य कोण θ से फेंका जाता है। तब सूत्र,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
∴ θ = 33.6°
∴ अधिकतम परास,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 150.5 मीटर

प्रश्न 4.16
क्रिकेट का कोई खिलाड़ी किसी गेंद को 100 m की अधिकतम क्षैतिज दूरी तक फेंक सकता है। वह खिलाड़ी उसी गेंद को जमीन से ऊपर कितनी ऊँचाई तक फेंक सकता है।
उत्तर:
दिया है:
अधिकतम परास Rmax = 100 मीटर
सूत्र, Rmax = \(\frac{u_{0}^{2}}{g}\) से
\(u_{0}^{2}\) = Rmax × g
= 100 × 9.8
= 980
∴ u0 = 1980
= 14 – 15 मीटर/सेकण्ड
अत: व्यक्ति गेंद का अधिकतम वेग 14\(\sqrt{5}\) मीटर/सेकण्ड से फेंक सकता है। अतः गेंद को अधिकतम ऊँचाई तक फेंकने के लिए उसे ऊर्ध्वाधरत ऊपर की ओर फेंकना होगा।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 50 मीटर

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.17
80 cm लंबे धागे के एक सिरे पर एक पत्थर बाँधा गया है और इसे किसी एकसमान चाल के साथ किसी क्षैतिज वृत्त में घुमाया जाता है। यदि पत्थर 25 s में 14 चक्कर लगाता है तो पत्थर के त्वरण का परिमाण और उसकी दिशा क्या होगी?
उत्तर:
दिया है:
त्रिज्या R = 80 सेमी = 0.8 मीटर
चक्कर n = 14
समय t = 25
सूत्र आवर्तकाल T = \(\frac{t}{n}\) = \(\frac{25}{14}\) सेकण्ड
पत्थर की रेखीय चाल v = \(\frac{2πR}{T}\)
= \(\frac{2×22/7×0.8}{25/14}\)
= 2.8 मीटर/सेकण्ड
तथा पत्थर का त्वरण
ac = \(\frac{v^{2}}{R}=\frac{(2.8)^{2}}{(0.8)}\)
= 9.8 मीटर/सेकण्ड2
पत्थर के त्वरण की दिशा केन्द्र की ओर होगी।

प्रश्न 4.18
कोई वायुयान 900 km h-1 की एकसमान चाल से उड़ रहा है और 1.00 km त्रिज्या का कोई क्षैतिज लूप बनाता है। इसके अभिकेन्द्र त्वरण की गुरुत्वीय त्वरण के साथ तुलना कीजिए।
उत्तर:
दिया है:
वायुयान की चाल, v = 900 किमी प्रति घण्टा
त्रिज्या, R = 1 किमी
सूत्र त्वरण, ac = \(\frac{v^{2}}{R}\) = \(\frac{900×900}{1}\)
= 81 × 104 किमी/घण्टा2
\(\frac{81 \times 10^{4} \times 1000}{(60 \times 60)^{2}}\) = 62.5 मीटर/सेकण्ड2
गुरुत्वीय त्वरण g = 9.8 मीटर/सेकण्ड2
∴ \(\frac{a_{c}}{g}\) = \(\frac{62.5}{9.8}\)
= 6.38
अत: अभिकेन्द्र त्वरण, गुरुत्वीय त्वरण का 6.38 गुना है।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.19
नीचे दिए गए कथनों को ध्यानपूर्वक पढ़िए और कारण देकर बताइए कि वे सत्य हैं या असत्य:

  1. वृत्तीय गति में किसी कण का नेट त्वरण हमेशा वृत्त की त्रिज्या के अनुदिश केंद्र की ओर होता है।
  2. किस बिंदु पर किसी कण का वेग सदिश सदैव उस बिंदु पर कण के पथ की स्पर्श रेखा के अनुदिश होता है।
  3. किसी कण का एक समान वृत्तीय गति में एक चक्र में लिया गया औसत त्वरण सदिश एक शून्य सदिश होता है।

उत्तर:

  1. असत्य
  2. सत्य
  3. सत्य।

प्रश्न 4.20
किसी कण की स्थिति सदिश निम्नलिखित है:
\(\vec{r}\) = (3.0t\(\hat{i}\) – 2.0t2\(\hat{j}\) + 4.0\(\hat{k}\)) m
समय t सेकण्ड में है तथा सभी गुणांकों के मात्रक इस प्रकार से हैं कि में मीटर में व्यक्त हो जाए।
(a) कण का v तथा a निकालिए।
(b) t = 2.0 s पर कण के वेग का परिमाण तथा दिशा कितनी होगी?
उत्तर:
दिया है:
Bihar Board Class 11 Physics Chapter 4 समतल में गति

(b)
Bihar Board Class 11 Physics Chapter 4 समतल में गति
माना वेग की दिशा x – अक्ष से धन दिशा में θ कोण पर है।
∴ tan θ = \(\frac{v_{y}}{v_{x}}\) = \(\frac{-8}{3}\)
θ = – tan-1 (2.67)
= -69.4

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.21
कोई कण t = 0 क्षण पर मूल बिंदु से 10\(\hat{j}\) ms-1 के वेग से चलना प्रारंभ करता है तथा x – y समतल में एकसमान त्वरण (8.0\(\hat{i}\) + 2.0\(\hat{j}\)) ms-2 से गति करता है।
(a) किस क्षण कण का निर्देशांक 16 m होगा? इसी समय इसका y – निर्देशांक कितना होगा?
(b) इस क्षण कण की चाल कितनी होगी?
उत्तर:
दिया है:
\(\overrightarrow{r_{0}}\) = 0\(\hat{i}\) + o\(\hat{j}\)
वेग \(\overrightarrow{v_{0}}\) = 10\(\hat{j}\) मीटर/सेकण्ड2
त्वरण \(\vec{a}\) = (8\(\hat{i}\) + 2\(\hat{j}\)) मीटर/सेकण्डर2
अतः t समय पर कण का स्थिति सदिश,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
समी० \(\vec{r}\) = x\(\hat{i}\) + y\(\hat{j}\) से तुलना करने पर,
x = 4t2,
y = 10t + t2

(a) x = 16 मीटर रखने पर,
16 = 4t2
t = \(\sqrt{16/4}\) = 2
∴ y = 10 × 2 + 22
= 20 × 4
= 24 मीटर
अतः t = 2 सेकण्ड पर, y निर्देशांक 24 मीटर होगा।

(b) vx = \(\frac{dx}{dt}\) = 8t
तथा vy = \(\frac{dy}{dt}\) = 10 + 22
∴ (vx)t=2 = 8 × 2 = 16 मीटर/सेकण्ड
तथा (vy)t=2 = 10 + 2 × 2 = 14 मीटर/सेकण्ड
∴ इस क्षण कण की चाल,
Bihar Board Class 11 Physics Chapter 4 समतल में गति

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.22
\(\hat{i}\) व \(\hat{j}\) क्रमश: x – व y – अक्षों के अनुदिश एकांक सदिश हैं। सदिशों \(\hat{i}\) + \(\hat{j}\) तथा \(\hat{i}\) – \(\hat{j}\) का परिमाण तथा दिशा क्या होगी? सदिश A = 2\(\hat{i}\) + 3\(\hat{j}\) के \(\hat{i}\) + \(\hat{j}\) के दिशाओं के अनुदिश घटक निकालिए। आप ग्राफी विधि का उपयोग कर सकते हैं।
उत्तर:
चूँकि \(\hat{i}\) तथा \(\hat{j}\) परस्पर लम्ब एकांक सदिश है। अतः इनके बीच का कोण 90° है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
इसी प्रकार
Bihar Board Class 11 Physics Chapter 4 समतल में गति
सदिश \(\vec{A}\) का सदिश \(\vec{B}\) की दिशा में घटक,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
इसी प्रकार सदिश \(\vec{A}\) का सदिश \(\vec{B}\) की दिशा में घटक,
Bihar Board Class 11 Physics Chapter 4 समतल में गति

प्रश्न 4.23
किसी दिकस्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन-सा सत्य है?
Bihar Board Class 11 Physics Chapter 4 समतल में गति
यहाँ ‘औसत’ का आशय समय अंतराल t2 व t1 से संबंधित भौतिक राशि के औसत मान से है।
उत्तर:

  1. सत्य
  2. सत्य
  3. असत्य
  4. असत्य
  5. सत्य।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.24
निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए तथा कारण एवं उदाहरण सहित बताइए कि क्या यह सत्य है या असत्य:
अदिश वह राशि है जो –

  1. किसी प्रक्रिया में संरक्षित रहती है,
  2. कभी ऋणात्मक नहीं होती,
  3. विमाहीन होती है,
  4. किसी स्थान पर एक बिंदु से दूसरे बिंदु के बीच नहीं बदलती,
  5. उन सभी दर्शकों के लिए एक ही मान रखती है चाहे अक्षों से उनके अभिविन्यास भिन्न-भिन्न क्यों न हों।

उत्तर:

  1. असत्य, चूँकि किसी अदिश का किसी प्रक्रिया से संरक्षित रहना आवश्यक नहीं है। जैसे ऊपर की ओर फेंके गए पिण्ड की गतिज ऊर्जा पूरी यात्रा में बदलती रहती है।
  2. असत्य, चूँकि अदिश राशि, धनात्मक शून्य या ऋणात्मक कुछ भी मान ग्रहण कर सकती है। जैसे ताप अदिश राशि है जिसका चिह्न कुछ भी हो सकता है।
  3. असत्य, जैसे किसी वस्तु की चाल अदिश राशि है जिसकी विमा [LT-1] है।
  4. असत्य, जैसे ताप एक अदिश राशि है जोकि किसी छड़ में ऊष्मा के एकविमीय प्रवाह की दिशा में बदलता रहता है।
  5. सत्य, चूँकि अदिश राशि दिशाहीन होती है। इसलिए यह प्रत्येक विन्यास में स्थित दर्शक के लिए समान मान रखती है। जैसे किसी वस्तु की चाल प्रत्येक दर्शक के लिए समान होगी।

प्रश्न 4.25
कोई वायुयान पृथ्वी से 3400 m की ऊँचाई पर उड़ रहा है। यदि पृथ्वी पर किसी अवलोकन बिंदु पर वायुयान की 10.05 से दूरी की स्थितियाँ 30° का कोण बनाती है तो वायुयान की चाल क्या होगी?
Bihar Board Class 11 Physics Chapter 4 समतल में गति
उत्तर:
दिया है:
P से Q तक चलने में लगा समय, t = 10 सेकण्ड
सूत्र,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
लम्ब, PQ = OP × tan 30
= 3400 × \(\frac{1}{\sqrt{3}}\) मीटर
= 1963 मीटर
माना वायुयान की चाल v मीटर/सेकण्ड है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 196.3 मीटर/सेकण्ड

Bihar Board Class 11 Physics समतल में गति Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 4.26
किसी सदिश में परिमाण व दिशा दोनों होते हैं। क्या दिक्स्थान में इसकी कोई स्थिति होती है? क्या यह समय के साथ परिवर्तित हो सकता है। क्या दिक्स्थान में भिन्न स्थानों पर दो बराबर सदिशों a व b का समान भौतिक प्रभाव अवश्य पड़ेगा? अपने उत्तर के समर्थन में उदाहरण दीजिए।
उत्तर:
सभी सदिशों की स्थिति नहीं होती है। किसी बिन्दु के स्थिति सदिश के समान कुछ सदिशों की स्थिति होती है जबकि वेग सदिश की कोई स्थिति नहीं होती है। हाँ, सदिश समय के साथ परिवर्तित हो सकता है। उदाहरण के लिए, गतिमान कण की स्थिति सदिश। दिक्स्थान में भिन्न स्थानों पर दो बराबर सदिशों के \(\vec{a}\) तथा \(\vec{b}\) का समान भौतिक प्रभाव अवश्य पड़े, यह आवश्यक नहीं है। जैसे दो भिन्न-भिन्न बिन्दुओं पर लगे बराबर बल अलग-अलग आघूर्ण उत्पन्न करेंगे।

प्रश्न 4.27
किसी सदिश में परिमाण व दिशा दोनों होते हैं। क्या इसका यह अर्थ है कि कोई राशि जिसका परिमाण व दिशा हो, वह अवश्य ही सदिश होगी? किसी वस्तु के घूर्णन की व्याख्या घूर्णन-अक्ष की दिशा और अक्ष के परितः घूर्णन-कोण द्वारा की जा सकती है। क्या इसका यह अर्थ है कि कोई भी घूर्णन एक सदिश है?
उत्तर:
किसी राशि में परिमाण तथा दिशा होने पर उसका सदिश होना आवश्यक नहीं है। जैसे – प्रत्येक घूर्णन कोण सदिश राशि नहीं हो सकता जबकि सूक्ष्म घूर्णन कोण सदिश राशि माना जा सकता है।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.28
क्या आप निम्नलिखित के साथ कोई सदिश संबद्ध कर सकते हैं:

  1. किसी लूप में मोड़ी गई तार की लंबाई
  2. किसी समतल क्षेत्र
  3. किसी गोले के साथ? व्याख्या कीजिए।

उत्तर:

  1. नहीं, चूँकि वृत्तीय लूप में मोड़े गए तार की कोई निश्चित दिशा नहीं है।
  2. दिए गए समतल पर एक निश्चित अभिलम्ब खींचा जा सकता है। इसलिए समतल क्षेत्र के साथ एक सदिश सम्बद्ध किया जा सकता है जिसकी दिशा समतल पर अभिलम्ब के अनुदिश हो सकती है।
  3. नहीं, चूँकि किसी गोले का आयतन किसी विशेष दिशा के साथ सम्बद्ध नहीं कर सकते हैं।

प्रश्न 4.29
कोई गोली क्षैतिज से 30° के कोण पर दागी गई है और वह धरातल पर 3.0 km दूर गिरती है। इसके प्रक्षेप्य के कोण का समायोजन करके क्या 5.0 km दूर स्थित किसी लक्ष्य का भेद किया जा सकता है? गोली की नालमुख चाल को नियत तथा वायु के प्रतिरोध को नगण्य मानिए।
उत्तर:
दिया है:
θ1 = 30°
(R11 = 3 किमी = 3000 मीटर
Bihar Board Class 11 Physics Chapter 4 समतल में गति
जहाँ θ2 प्रक्षेपण कोण पर दागने पर परास R2 है।
Bihar Board Class 11 Physics Chapter 4 समतल में गति
परन्तु sin θ का मान 1 से अधिक नहीं हो सकता है।
अर्थात् प्रक्षेप्य कोण θ2 का कोई वास्तविक मान सम्भव नहीं है जिससे कि गोली 5 किमी दूर स्थित लक्ष्य को भेद सकें।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.30
कोई लड़ाकू जहाज 1.5 km की ऊँचाई पर 720 km/h की चाल से क्षैतिज दिशा में उड़ रहा है और किसी वायुयान भेदी तोप के ठीक ऊपर से गुजरता है। ऊर्ध्वाधर से तोप की नाल का क्या कोण हो जिससे 600 ms-1 की चाल से दागा गया गोला वायुयान पर वार कर सके। वायुयान के चालक को किस न्यूनतम ऊँचाई पर जहाज को उड़ाना चाहिए जिससे गोला लगने से बच सके। (g = 10 ms-2) उत्तर:
दिया है:
वायुयान की ऊँचाई = 1.5 किमी
= 1500 मीटर
वायुयान की चाल = 720 किमी/घण्टा
= 720 × \(\frac{5}{18}\) = 200 मीटर/सेकण्ड
गोली की चाल v0 = 600 मीटर/सेकण्ड
माना कि जिस क्षण वायुयान तोप के ठीक ऊपर है, उस क्षण ऊर्ध्वाधर से θ कोण पर तोप से गोला दागा जाता है। जोकि t सेकण्ड पश्चात् वायुयान से टकराता है।
अतः क्षैतिज से गोले का प्रक्षेपण कोण, ø = 90 – θ होगा।
यहाँ गोले के वेग के घटक,
v0x = v0 cos ø = 600 sin θ
तथा v0y = v0 sin θ = 600 cos ø
t समय पश्चात् गोले की ऊँचाई,
y = v0yt – \(\frac{1}{2}\) gt2
= 600 cos θ.t – \(\frac{1}{2}\) × 9.8t2 ……………… (1)
समय पश्चात् क्षैतिज दूरी,
x = v0xt = 600 sin θ.t ……………….. (2)
वायुयान के लिए,
x0 = 0
y = 500 मीटर
vox = 200 मीटर/सेकण्ड
ax = 0
voy = 0
t सेकण्ड पश्चात् वायुयान की स्थिति,
x = voxt ⇒ x = 200t …………….. (3)
तथा y = yo ⇒ y = 1500 ……………….. (4)
गोला वायुयान को तभी लगेगा जबकि समी० (1) तथा (4) से प्राप्त y के मान एवम् समी० (2) व (3) से प्राप्त x के मान पृथक् – 2 बराबर हो।
समी० (1) तथा (4) से,
1500 = 600 cos θt = 4.9t2 ………………… (5)
समी० (2) तथा (3) से,
600 sin θt = 200t = sin θ = \(\frac{1}{3}\)
θ = 19.5°
अत: तोप की नाल ऊर्ध्वाधर से 19.5° का कोण बनाएगा। जब तोप की नाल को ऊर्ध्वाधरत: ऊपर की ओर रखते हुए गोला दागा जाता है तो वह अधिकतम ऊँचाई तय करता है।
∴ Hmax = \(\frac{v_{0}^{2}}{2 g}\)
= \(\frac{(600)^{2}}{2 \times 10}\) = 1800 मीटर
= 18 किमी
अतः वायुयान की न्यूनतम ऊँचाई 18 किमी होगी।

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.31
एक साइकिल सवार 27 km/h की चाल से साइकिल चला रहा है। जैसे ही सड़क पर वह 80 m त्रिज्या के वृत्तीय मोड़ पर पहुँचता है, वह ब्रेक लगाता है और अपनी चाल को 0.5 m/s2 की एकसमान दर से कम कर लेता है। वृत्तीय मोड़ पर साइकिल सवार के नेट त्वरण का परिमाण और उसकी दिशा निकालिए।
उत्तर:
दिया है:
साइकिल सवार की चाल,
v = 27 किमी/घण्टा
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 27 × \(\frac{5}{18}\) = \(\frac{15}{12}\) मीटर/सेकण्ड
त्रिज्या = 80 मीटर
मंदन, aT = 0.5 मीटर/सेकण्ड2
अभिकेन्द्र त्वरण, ac = \(\frac{v^{2}}{R}\)
= \(\frac{(15 / 2)^{2}}{80}\) = 0.703 मीटर/सेकण्ड2
अतः सवार का नेट त्वरण,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
= 0.86 मीटर/सेकण्ड2
माना परिणामी त्वरण स्पर्श रेखीय दिशा से θ कोण पर है।
∴ tan θ = \(\frac{a_{c}}{a_{T}}\) = \(\frac{0.7}{0.5}\) = 1.4
∴ θ = tan-1 (1.4) = 54.5°

Bihar Board Class 11 Physics Solutions Chapter 4 समतल में गति

प्रश्न 4.32
(a) सिद्ध कीजिए कि किसी प्रक्षेप्य के x – अक्ष तथा उसके वेग के बीच के कोण को समय के फलन के रूप में निम्न प्रकार से व्यक्त कर सकते हैं –
θ (t) = tan-1 \(\left(\frac{v_{o y}-g t}{v_{o x}}\right)\)
(b) सिद्ध कीजिए कि मूल बिंदु से फेंके गए प्रक्षेप्य कोण का मान θ0 = tan-1 \(\left(\frac{4 h_{m}}{R}\right)\) होगा। यहाँ प्रयुक्त प्रतीकों के अर्थ सामान्य हैं।
उत्तर:
(a) माना कि कोई प्रक्षेप्य मूल बिन्दु (0, 0) से इस प्रकार फेंकते हैं कि उसके वेग x – अक्ष एवम् y – अक्षों की दिशाओं में विभाजित घटक क्रमश: v0x व v0y हैं।

माना कि t समय पश्चात् प्रक्षेप्य का स्थिति सदिश, \(\vec{r}\) (t) निम्नवत् है –
Bihar Board Class 11 Physics Chapter 4 समतल में गति
अतः वेग
Bihar Board Class 11 Physics Chapter 4 समतल में गति

अतः t समय पर प्रक्षेप्य के अक्षों को दिशाओं में वेग,
vtx = v0x vty = v0y – gt
∴ t समय पर वेग द्वारा x – अक्ष से बनाया कोण,
Bihar Board Class 11 Physics Chapter 4 समतल में गति

(b) मूल बिन्दु (0, 0) से फेंके गए प्रक्षेप्य का परास,
Bihar Board Class 11 Physics Chapter 4 समतल में गति
तथा महत्तम ऊँचाई,
Bihar Board Class 11 Physics Chapter 4 समतल में गति

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

Bihar Board Class 11 Physics दोलन Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 14.1
नीचे दिए गए उदाहरणों में कौन आवर्ती गति को निरूपित करता है?

  1. किसी तैराक द्वारा नदी के एक तट से दूसरे तट तक जाना और अपनी एक वापसी यात्रा पूरी करना।
  2. किसी स्वतंत्रतापूर्वक लटकाए गए दंड चुंबक को उसकी N – S दिशा से विस्थापित कर छोड़ देना।
  3. अपने द्रव्यमान केन्द्र के परितः घूर्णी गति करता कोई हाइड्रोजन अणु।
  4. किसी कमान से छोड़ा गया तीर।

उत्तर:

  1. यह आवश्यक नहीं है कि तैराक को प्रत्येक बार वापस लौटने में समान समय लगे। अर्थात् यह गति आवर्ती गति नहीं है।
  2. दण्ड चुंबक को N – S दिशा से विस्थापित कर छोड़ने पर उसकी गति आवर्ती गति होगी।
  3. यह गति आवर्ती है।
  4. तीर छूटने के बाद कभी भी पुनः प्रारम्भिक स्थिति में नहीं लौटता है। अत: यह गति आवर्ती नहीं है।

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.2
नीचे दिए गए उदाहरणों में कौन (लगभग) सरल आवर्त गति को तथा कौन आवर्ती परंतु सरल आवर्त गति नहीं निरूपित करते हैं?

  1. पृथ्वी की अपने अक्ष के परितः घूर्णन गति।
  2. किसी U नली में दोलायमान पारे के स्तंभ की गति।
  3. किसी चिकने वक्रीय कटोरे के भीतर एक बॉल बेयरिंग की गति जब उसे निम्नतम बिन्दु से कुछ ऊपर के बिन्दु से मुक्त रूप से छोड़ा जाए।
  4. किसी बहुपरमाणुक अणु की अपनी साम्यावस्था की स्थिति के परित: व्यापक कंपन।

उत्तर:

  1. आवर्त गति लेकिन सरल आवर्त गति नहीं है।
  2. सरल आवर्त गति।
  3. सरल आवर्त गति
  4. आवर्ती गति लेकिन सरल आवर्त गति नहीं है।

प्रश्न 14.3
चित्र में किसी कण की रैखिक गति के लिए चार x – t आरेख दिए गए हैं। इनमें से कौन-सा आरेख आवर्ती गति का निरूपण करता है? उस गति का आवर्तकाल क्या है? (आवर्ती गति वाली गति का)।
Bihar Board Class 11 Physics Chapter 14 दोलन
उत्तर:
(a) ग्राफ से स्पष्ट है कि कण कभी भी अपनी गति की पुनरावृत्ति नहीं करता है; अत: यह गति आवर्ती गति नहीं है।

(b) ग्राफ से ज्ञात है कि कण प्रत्येक 2 s के बाद अपनी गति की पुनरावृत्ति करता है; अतः यह गति एक आवर्ती गति है जिसका आवर्तकाल 2 s है।

(c) यद्यपि कण प्रत्येक 3 s के बाद अपनी प्रारम्भिक स्थिति में लौट रहा है परन्तु दो क्रमागत प्रारम्भिक स्थितियों के बीच कण अपनी गति की पुनरावृत्ति नहीं करता; अतः यह गति आवर्त गति नहीं है।

(d) कण प्रत्येक 2 s के बाद अपनी गति को दोहराता है; अत: यह गति एक आवर्ती गति है जिसका आवर्तकाल 2 s है।

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.4
नीचे दिए गए समय के फलनों में कौन –

(a) सरल आवर्त गति
(b) आवर्ती परंतु सरल आवर्त गति नहीं, तथा
(c) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए : (ω कोई धनात्मक अचर है।)

(a) sin ωt – cos ωt
(b) sin3 ωt
(c) 3 cos (\(\frac{1}{4}\) – 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt
(e) exp(-ω2t2)
(f) 1 + ωt + ω2t2
उत्तर:
(a) x = sin ωt – cos ωt
= 2 [\(\frac{1}{\sqrt{2}}\) sin ωt – \(\frac{1}{\sqrt{2}}\) cos ωt]
= \(\sqrt{2}\) [sin ω + cos \(\frac{π}{4}\) – cos ωt sin \(\frac{π}{4}\)]
= \(\sqrt{2}\) (ωt – \(\frac{π}{4}\))
स्पष्ट है कि यह सरल आवर्त गति को व्यक्त करता है।
इसका आयाम = \(\sqrt{2}\)
कोणीय वेग = ω
∴ आवर्त काल, T = \(\frac{2π}{ω}\)

(b) दिया गया फलन आवर्ती गति को व्यक्त करता है लेकिन यह सरल आवर्त गति नहीं है।
आवर्त काल, T = \(\frac{2π}{ω}\)

(c) यह फलन स० आ० ग० को व्यक्त करता है।
आवर्त काल T = \(\frac{2π}{ω}\) = \(\frac{π}{ω}\)

(d) यह फलन आवर्ती गति को व्यक्त करता है जोकि सरल आवर्त गति नहीं है।
फलन cos T = \(\frac{2π}{2ω}\) = \(\frac{π}{ω}\)
फलन cos ωt का आवर्तकाल T1 = \(\frac{2π}{ω}\)
फलन cos 2ωt का आवर्तकाल T2 = \(\frac{2π}{3ω}\)
व फलन cos 5ωt का आवर्तकाल T3 = \(\frac{2π}{5ω}\) है।
यहाँ T1 = 3T1 = 5T3
अत: T1 समय पश्चात् पहले फलन की एक बार दूसरे की तीन बार व तीसरे की पाँच बार पुनरावृत्ति होती है।
∴ दिए गए फलन का आवर्तकाल T = \(\frac{2π}{ω}\) है।

(e) तथा (f) में दिये दोनों फलन न तो आवर्त गति और न ही सरल आवर्त गति को निरूपित करते हैं।

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.5
कोई कण एक दूसरे से 10 cm दूरी पर स्थित दो बिन्दुओं A तथा B के बीच रैखिक सरल आवर्त गति कर रहा है। A से B की ओर की दिशा को धनात्मक दिशा मानकर वेग, त्वरण तथा कण पर लगे बल के चिह्न ज्ञात कीजिए जबकि यह कण
(a) A सिरे पर है,
(b) B सिरे पर है,
(c) A की ओर जाते हुए AB के मध्य बिन्दु पर है,
(d) A की ओर जाते हुए B से 2 cm दूर है,
(e) B की ओर जाते हुए A से 3 cm दूर है तथा
(f) A की ओर जाते हुए B से 4 cm दूर है।
उत्तर:
प्रश्न से स्पष्ट है कि बिन्दु A व B अधिकतम विस्थापन की स्थितियाँ हैं जिनका मध्य बिन्दु O सरल आवर्त गति का केन्द्र है।

(a)

  • बिन्दु A पर कण का वेग शून्य होगा।
  • कण के त्वरण की दिशा बिन्दु A से O की ओर होगी। अतः त्वरण धनात्मक होगा।
  • कण पर बल त्वरण की दिशा में होगा। अतः बल धनात्मक होगा।

(b)

  • बिन्दु B पर कण का वेग शून्य होगा।
  • कण का त्वरण B से O की ओर दिष्ट होगा। अत: त्वरण ऋणात्मक होगा।

(c)

  • AB का मध्य बिन्दु O से सरल आवर्त गति का केन्द्र है। चूँकि कण B से A की ओर चलता हुआ 0 से गुजरता है। अतः वेग BA के अनुदिश है अर्थात् वेग ऋणात्मक है।
  • त्वरण शून्य है।
  • बल भी शून्य है।

(d)

  • B से 2 सेमी० की दूरी पर कण B व O के मध्य होगा।
  • चूँकि कण B से A की ओर जा रहा है अत: वेग ऋणात्मक होगा।
  • त्वरण भी B से O की ओर दिष्ट है अतः त्वरण भी ऋणात्मक होगा।
  • बल भी ऋणात्मक होगा।

(e)

  • चूँकि कण B की ओर जा रहा है अतः वेग धनात्मक होगा।
  • चूँकि कण A व O के मध्य है अतः त्वरण A से O की ओर दिष्ट है। अतः त्वरण भी धनात्मक है।

(f)

  • चूँकि कण A की ओर गतिमान है अतः वेग ऋणात्मक होगा।
  • बल भी धनात्मक है।
  • चूँकि कण B तथा O के बीच है व त्वरण B से O की ओर दिष्ट है। अत: त्वरण ऋणात्मक है।
  • बल भी ऋणात्मक है।

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.6
नीचे दिए गए किसी कण के त्वरण a तथा विस्थापन के बीच संबंधों में से किससे सरल आवर्त गति संबद्ध है:
(a) a = 0.7x
(b) a = -200 x2
(c) a = -10x
(d) a = 100x3
उत्तर:
उपरोक्त में से केवल विकल्प (c) में a = -10x, त्वरण विस्थापन के समानुपाती है। इसमें त्वरण विस्थापन के विपरीत दिशा में है। अत: केवल यह सम्बन्ध सरल आवर्त गति को व्यक्त करता है।

प्रश्न 14.7
सरल आवर्त गति करते किसी कण की गति का वर्णन नीचे दिए गए विस्थापन फलन द्वारा किया जाता है,
x(t) = A cos (ωt + ϕ) ……………. (i)

यदि कण की आरंभिक (t = 0) स्थिति 1 cm तथा उसका आरंभिक वेग πcm s-1 है, तो कण का आयाम तथा आरंभिक कला कोण क्या है? कण की कोणीय आवृत्ति πs-1 है। यदि सरल आवर्त गति का वर्णन करने के लिए कोज्या (cos) फलन के स्थान पर हम ज्या (sin) फलन चुने; x = B sin (ωt + α) तो उपरोक्त आरंभिक प्रतिबंधों में कण का आयाम तथा आरंभिक कला कोण क्या होगा?
उत्तर:
(a) x (t) = A cos (ωt + ϕ) ……………. (i)
t = 0, ω = π cms-1
∴ x = 1 cm पर
v = ω = π cms-1 ……………….. (ii)
∴ समी० (i) व (ii) से,
1 = A cos (π × 0 + ϕ) = A cos ϕ ……………….. (iii)
पुनः ω = \(\frac{2π}{T}\)
∴ T = \(\frac{2π}{ω}\) = 2s
समी० (i) का t के सापेक्ष अवकलन करने पर,
\(\frac{d}{dx}\) (x) = -A sin (ωt + ϕ) (ω)
= -Aω sin (ωt + ϕ)
या v = -Aω sin (ωt + ϕ) …………………. (iv)
समी० (ii) व (iv) से
π = -A × π × sin (ω × 0 + b)
= -A sin ϕ
या 1 = -A sin ϕ
समी० (ii) व (v) का वर्ग करके जोड़ने पर,
12 + 12 = A2 (sin2 ϕ + cos2 ϕ) = A2
∴ A = \(\sqrt{2}\) cm
समी० (v) को समी० (iii) से भाग देने पर,
Bihar Board Class 11 Physics Chapter 14 दोलन

(b) जब x = B sin (ωt + α)
या x = B cos Cos [(ωt + α) – \(\frac{π}{2}\)]
अब (a) t = 0 पर x = 1 सेमी
तथा ∴ v = π cms-1, ω = π s-1 से,
∴ 1 = B cos (π × 0 + α – \(\frac{π}{2}\))
= B cos (α – \(\frac{π}{2}\)) ……………….. (vii)
पुनः माना v’ = वेग
Bihar Board Class 11 Physics Chapter 14 दोलन
समी० (vii) व (viii) का वर्ग कर जोड़ने पर,
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.8
किसी कमानीदार तुला का पैमाना 0 से 50 kg तक अंकित है और पैमाने की लम्बाई 20 cm है। इस तुला से लटकाया गया कोई पिण्ड, जब विस्थापित करके मुक्त किया जाता है, 0.65 के आवर्तकाल से दोलन करता है। पिंड का भार कितना है?
उत्तर:
दिया है, m = 50 kg,
अधिकतम प्रसार y = 20 – 0 = 20 cm
= 0.2 m, T = 0.65
∴ अधिकतम बल
F = mg = 50 × 9.8 = 490.0 N
∴ स्प्रिंग नियतांक
k = \(\frac{F}{y}\) = \(\frac{490}{0.2}\)
= \(\frac{490×10}{2}\) = 2450 Nm-1
हम जानते हैं कि आवर्त काल
Bihar Board Class 11 Physics Chapter 14 दोलन
वस्तु का भार w = mg = 22.36 × 9.8
= 219.1 N
= 22.36 kg

प्रश्न 14.9
1200 Nm-1 कमानी-स्थिरांक की कोई कमानी (चित्र) में दर्शाए अनुसार किसी क्षैतिज मेज से जुड़ी है। कमानी के मुक्त सिरे से 3 kg द्रव्यमान का कोई पिण्ड जुड़ा है। इस पिण्ड को एक ओर 2.0 cm दूरी तक खींच कर मुक्त किया जाता है।
(i) पिण्ड के दोलन की आवृत्ति
(ii) पिण्ड का अधिकतम त्वरण, तथा
(iii) पिण्ड की अधिकतम चाल ज्ञात कीजिए।
Bihar Board Class 11 Physics Chapter 14 दोलन
उत्तर:
दिया है:
k = 1200 Nm-1, m = 3.0 kg,
A = 2.0 cm = 0.02 m
= अधिकतम विस्थापन

(i) हम जानते हैं कि आवर्तकाल
Bihar Board Class 11 Physics Chapter 14 दोलन

(ii) त्वरण, α = -ω2 x = \(\frac{-k}{m}\) x
या c|amax| = \(\frac{k}{m}\) |xmax|, जहाँ ω = \(\sqrt{\frac{k}{m}}\)
या x के अधिकतम होने पर त्वरण भी अधिकतम होगा।
या x = A = 0.02 m
∴ a = \(\frac{1200}{m}\) × 0.02 × 8.0 ms-2

(iii) द्रव्यमान की अधिकतम चाल
ν = Aω = A \(\sqrt{\frac{k}{m}}\) = 0.02 × \(\sqrt{\frac{1200}{3}}\)
= 0.02 × 20
= 0.40 ms-1

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.10
प्रश्न 14.9 में मान लीजिए जब कमानी अतानित अवस्था में है तब पिण्ड की स्थिति x = 0 है तथा बाएँ से दाएँ की दिशा :-अक्ष की धनात्मक दिशा है। दोलन करते पिण्ड के विस्थापन x को समय के फलन के रूप में दर्शाइए, जबकि विराम घड़ी को आरम्भ (t = 0) करते समय पिण्ड,
(a) अपनी माध्य स्थिति,
(b) अधिकतम तानित स्थिति, तथा
(c) अधिकतम संपीडन की स्थिति पर है।
सरल आवर्त गति के लिए ये फलन एक दूसरे से आवृत्ति में,आयाम में अथवा आरंभिक कला में किस रूप में भिन्न है?
उत्तर:
चूँकि द्रव्यमान x = 0 पर स्थित है। अतः x – दिशा में विस्थापन निम्नवत् होगा
x = A sin ωt …………….. (i)
[∴ x = 0 पर प्रारम्भिक कला ϕ = 0] प्रश्न 14.9 से A = 2 cm = 0.02 m
k = 1200 Nm-2 ω = \(\sqrt{\frac{k}{m}}\)
= \(\sqrt{\frac{1200}{3}}\) = 20 s-1

(a) जब वस्तु माध्य स्थिति में है, समी० (i) से,
x = 2 sin 20 t ……………… (ii)

(b) अधिकतम तानित स्थिति में ϕ = \(\frac{π}{2}\)
∴ x = A sin (ωt + ϕ )
= 2 sin (20t + \(\frac{π}{2}\)) = 2 cos 20t ………………… (iii)

(c) अधिकतम सम्पीडन की स्थिति में,
ϕ = \(\frac{π}{2}\) + \(\frac{π}{2}\) = \(\frac{2π}{2}\)
∴ x = A cos ωt = – 2cos (20t) ………………… (iv)
समी० (ii), (iii) तथा (iv) से स्पष्ट है कि फलन केवल प्रारम्भिक कला. में ही असमान है चूँकि इनके आयाम (A = 2 cm) तथा आवर्तकाल समान है –
i.e.,T = \(\frac{2π}{ω}\) = \(\frac{2π}{20}\) = \(\frac{π}{10}\) rad s-1

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.11
चित्र में दिए गए दो आरेख दो वर्तुल गतियों के तद्नुरूपी हैं। प्रत्येक आरेख पर वृत्त की त्रिज्या, परिक्रमण काल, आरंभिक स्थिति और परिक्रमण की दिशा दर्शायी गई है। प्रत्येक प्रकरण में, परिक्रमण करते कण के त्रिज्य-सदिश के x अक्ष पर प्रक्षेप की तद्नुरूपी सरल आवर्त गति ज्ञात कीजिए।
Bihar Board Class 11 Physics Chapter 14 दोलन
उत्तर:
(a) यहाँ t = 0 पर, OP, x अक्ष से एका कोण बनाती है। चूंकि गति वर्तुल है अतः ϕ = \(\frac{+π}{2}\) रेडियन। अतः t समय पर OP का मन्घटक सरल आवर्त गति करता है।
t = 0 पर OP, x – अक्ष से धन दिशा में π कोण बनाता है।
Bihar Board Class 11 Physics Chapter 14 दोलन
x = -3 sin πt (cm)
T = 4 S, A = 2 m
t = 0 पर Op x – अक्ष से धन दिशा में कोण बनाता है।
i.e., ϕ = + L
अतः t समय में OP के x घटक की सरल आवर्त गति की समीकरण निम्न होगी –
चूँकि
Bihar Board Class 11 Physics Chapter 14 दोलन

प्रश्न 14.12
नीचे दी गई प्रत्येक सरल आवर्त गति के लिए तद्नुरूपी निर्देश वृत्त का आरेख खींचिए। घूर्णी कण की आरंभिक (t = 0) स्थिति, वृत्त की त्रिज्या तथा कोणीय चाल दर्शाइए। सुगमता के लिए प्रत्येक प्रकरण में परिक्रमण की दिशा वामावर्त लीजिए। (x को cm में तथा t को s में लीजिए।)
(a) x = – 2 sin (3t ÷ π/3)
(b) x = cos (π/6 – t)
(c) x = 3 sin (2πt + π/4)
(d) x = 2 cos πt
उत्तर:
(a) x = – z sin (3t + π/3)
Bihar Board Class 11 Physics Chapter 14 दोलन
∴ संगत निर्देश वृत्त चित्र (a) में दिखाया गया है।
समी० (i) की तुलना x = A cos (ωt + ϕ) से करने पर,
T = \(\frac{2π}{3}\), ϕ = \(\frac{5π}{6}\), A = 2 cm

(b) x = cos (\(\frac{π}{6}\) – t)
= cos (t – \(\frac{π}{6}\))
= 1 cos (\(\frac{2π}{2π}\)t – \(\frac{π}{6}\)) ………………. (ii)
∴ संगत निर्देश चित्र (b) में दिखाया गया है।
समी० (ii) की तुलना x = A cos (\(\frac{2π}{T}\)t + ϕ) से करने पर
A = 1 cm, t = 2π, ϕ = –\(\frac{π}{-6}\)
Bihar Board Class 11 Physics Chapter 14 दोलन

(c)
Bihar Board Class 11 Physics Chapter 14 दोलन
संगत निर्देश वृत्त चित्र (d) में दिखाया गया है।
समी० (iii) की (v) से तुलना करने पर,
A = 2 cm, T = 1s,
ϕ = – \(\frac{π}{4}\)

(d) x = 2 cos πt
= 2 cos (\(\frac{π}{1}\) t + 0) …………………. (v)
संगत निर्देश वृत्त चित्र (d) में दिखाया गया है।
समी० (iii) की (v) से तुलना करने पर,
A = 2cm, T = 15, ϕ = 0
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.13
चित्र (a) में k बल-स्थिरांक की किसी | कमानी के एक सिरे को किसी दृढ़ आधार से जकड़ा तथा दूसरे मुक्त सिरे से एक द्रव्यमान m जुड़ा दर्शाया गया है। कमानी के मुक्त सिरे पर बल F आरोपित करने से कमानी तन जाती है। चित्र (b) में उसी कमानी के दोनों मुक्त सिरों से द्रव्यमान m जुड़ा दर्शाया गया है। कमानी के दोनों सिरों को चित्र में समान बल F द्वारा तानित किया गया है।
(a) दोनों प्रकरणों में कमानी का अधिकतम विस्तार क्या
(b) यदि (a) का द्रव्यमान तथा (b) के दोनों द्रव्यमानों को मुक्त छोड़ दिया जाए, तो प्रत्येक प्रकरण में दोलन का आवर्तकाल ज्ञात कीजिए।
Bihar Board Class 11 Physics Chapter 14 दोलन
उत्तर:
माना कि स्प्रिंग का बल नियतांक = k
मुक्त सिरे से लटकाया गया द्रव्यमान = M

(1) मुक्त सिरे पर लगाया गया बल = F

(a) माना बल F लगाने पर मुक्त सिरे पर द्रव्यमान m लटकाने से उत्पन्न त्वरण a है।
अतः F = ma ……………… (i)
माना कि चित्र (a) में उत्पन्न विस्तार y1 है।
∴ F = -ky1 ……………… (ii)
समी० (i) व (ii) से,
Bihar Board Class 11 Physics Chapter 14 दोलन
जहाँ y विस्थापन y1 के समान है।
पुनः हम जानते हैं कि
a = -ω2y ………………. (iv)
∴ समी० (iii) व (iv) से,
ω2 = \(\frac{k}{M}\) य ω = \(\sqrt{k/m}\) ………………. (v)
∴ स्प्रिंग में उत्पन्न अधिकतम प्रसार y1 = y
या y1 = \(\frac{F}{k}\)

(b) समी० (v) से, a ∝ y तथा द्रव्यमान स० आ० ग० करता
∴ माना m द्रव्यमान के दोलन का आवर्तकाल T1 है।
अत: T1 = \(\frac{2π}{ω}\)
= 2π \(\sqrt{m/k}\) (समी० (v) से)
या T1 = 2π \(\sqrt{m/k}\) ………………… (vi)

(2) (a) माना दोनों द्रव्यमानों को छोड़ने पर, स्प्रिंग में कुल उत्पन्न प्रसार y2 है। चूँकि दो द्रव्यमान समान हैं अतः प्रत्येक द्रव्यमान के कारण स्प्रिंग में उत्पन्न प्रसार y है। अतः
y2 = y’ + y’ = 2y’
पुनः 1 (a) से,
Bihar Board Class 11 Physics Chapter 14 दोलन
i.e., प्रत्येक द्रव्यमान का विस्थापन
Bihar Board Class 11 Physics Chapter 14 दोलन
∴ प्रत्येक द्रव्यमान में उत्पन्न त्वरण
Bihar Board Class 11 Physics Chapter 14 दोलन

(b) माना प्रत्येक द्रव्यमान का आवर्तकाल T2 है।
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.14
किसी रेलगाड़ी के इंजन के सिलिंडर हैड में पिस्टन का स्ट्रोक (आयाम का दो गुना) 1.0 m का है। यदि पिस्टन 200 rad/min की कोणीय आवृत्ति से सरल आवर्त गति करता है तो उसकी अधिकतम चाल कितनी है?
उत्तर:
दिया है:
ω = 200 रेडियन/मिनट = \(\frac{200}{60}\) = \(\frac{10}{3}\) रेडियन प्रति सेकण्ड
स्ट्रोक की लम्बाई = 1 मीटर
माना सरल आवर्त गति का आयाम = a
∴2a = 1 मीटर
या a = \(\frac{1}{2}\) = 0.5 मीटर
सूत्र चाल = aω से,
पिस्टन की अधिकतम चाल,
νmax = aω = 0.5 × \(\frac{10}{3}\)
= \(\frac{5}{3}\) = 1.67 मीटर/सेकण्ड

प्रश्न 14.15
चंद्रमा के पृष्ठ पर गुरुत्वीय त्वरण 17 ms-2 है। यदि किसी सरल लोलक का पृथ्वी के पृष्ठ पर आवर्तकाल 3.5 s है, तो उसका चंद्रमा के पृष्ठ पर आवर्तकाल कितना होगा? (पृथ्वी के पृष्ठ पर g = 9.8 ms-2)
उत्तर:
दिया है:
पृथ्वी के पृष्ठ पर आवर्तकाल T = 3.5 s
चंद्रमा के पृष्ठ पर आवर्तकाल = Tm = ?
पृथ्वी के पृष्ठ पर गुरुत्वाकर्षण के कारण त्वरण
ge = 9.8 ms-2
सरल लोलक की लम्बाई l = ?
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.16
नीचे दिए गए प्रश्नों के उत्तर दीजिए:
(a) किसी कण की सरल आवर्त गति के आवर्तकाल का मान उस कण के द्रव्यमान तथा बल-स्थिरांक पर निर्भर करता
T = 2π \(\sqrt{m/k}\)
कोई सरल लोलक सन्निकट सरल आवर्त गति करता है। तब फिर किसी लोलक का आवर्तकाल लोलक के द्रव्यमान पर निर्भर क्यों नहीं करता?

(b) किसी सरल लोलक की गति छोटे कोण के सभी दोलनों के लिए सन्निकट सरल आवर्त गति होती है। बड़े कोणों के दोलनों के लिए एक अधिक गूढ़ विश्लेषण यह दर्शाता है कि T का मान 2π \(\sqrt{l/g}\) से अधिक होता है। इस परिणाम को समझने के लिए किसी गुणात्मक कारण का चिंतन कीजिए।

(c) कोई व्यक्ति कलाई घड़ी बाँधे किसी मीनार की चोटी से गिरता है। क्या मुक्त रूप से गिरते समय उसकी घड़ी यथार्थ समय बताती है?

(d) गुरुत्व बल के अंतर्गत मुक्त सिरे से गिरते किसी केबिन में लगे सरल लोलक के दोलन की आवृत्ति क्या होती है?
उत्तर:
(a) चूँकि सरल लोलक के लिए k स्वयं m के अनुक्रमानुपाती होता है अत: m निरस्त हो जाता है।

(b) sin θ < θ पर, यदि प्रत्यानयन बल mg sin θ का प्रतिस्थापन mg θ से कर दें तब इसका तात्पर्य यह होगा कि बड़े कोणों के लिए g के परिमाण में प्रभावी कमी व इस प्रकार सूत्र T = 2π \(\sqrt{l/g}\) से प्राप्त आवर्तकाल के परिमाण में वृद्धि होगी।

(c) हाँ, क्योंकि कलाई घड़ी में आवर्तकाल कमानी क्रिया पर निर्भर करता है, जिसका गुरुत्वीय त्वरण से कोई सम्बन्ध नहीं होता

(d) स्वतन्त्रतापूर्वक गिरते हुए मनुष्य के लिए गुरुत्वीय त्वरण का प्रभावी मान शून्य हो जाता है। अतः आवृत्ति शून्य होती है।

प्रश्न 14.17
किसी कार की छत से लम्बाई का कोई सरल लोलक, जिसके लोलक का द्रव्यमान M है, लटकाया गया है। कार R त्रिज्या की वृत्तीय पथ पर एकसमान चाल से गतिमान है। यदि लोलकत्रिज्य दिशा में अपनी साम्यावस्था की स्थिति के इधर-उधर छोटे दोलन करता है, तो इसका आवर्तकाल क्या होगा?
उत्तर:
कार जब मोड़ पर मुड़ती है तो उसकी गति में त्वरण अभिकेन्द्र त्वरण \(\frac { v^{ 2 } }{ R } \) होता है। अत: कार एक अजड़त्वीय निर्देश तन्त्र है।
अतः गोलक पर एक छद्म बल \(\frac { mv^{ 2 } }{ R } \) वृत्तीय पथ के बाहर की ओर लगेगा जिस कारण लोलक ऊर्ध्वाधर रहने के स्थान पर थोड़ा तिरछा हो जाएगा।
इस क्षण लोलक पर दो बल क्रमश: उपकेन्द्र बल \(\frac { v^{ 2 } }{ R } \) व भार mg’ लगेंगे। यदि लोलक के लिए गुरुत्वीय त्वरण g का प्रभावी मान g’ हो, तो गोलक पर प्रभावी बल mg’ होगा जो कि उक्त दो बलों का परिणामी है।
Bihar Board Class 11 Physics Chapter 14 दोलन
अत: लोलक का नया आवर्तकाल, सूत्र T = 2π \(\sqrt{l/g}\)
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.18
आधार क्षेत्रफल A तथा ऊँचाई h के एक कॉर्क का बेलनाकार दुकड़ा ρi घनत्व के किसी द्रव में तैर रहा है। कॉर्क को थोड़ा नीचे दबाकर स्वतंत्र छोड़ देते हैं, यह दर्शाइए कि कॉर्क ऊपर-नीचे सरल आवर्त दोलन करता है जिसका आवर्तकाल T = 2π \(\sqrt { \frac { h\rho }{ \rho _{ i }g } } \) है। यहाँ ρ कॉर्क का घनत्व है (द्रव की श्यानता के कारण अवमंदन को नगण्य मानिए)।
उत्तर:
माना कॉर्क के टुकड़े का द्रव्यमान m है। माना साम्यावस्था में इस टुकड़े की l लम्बाई द्रव में डूबती है।
Bihar Board Class 11 Physics Chapter 14 दोलन
तैरने के सिद्धान्त से, कॉर्क के डूबे भाग द्वारा हटाए गए द्रव का भार कॉर्क के भार के समान होगा। अतः
1g = mg
जहाँ V = डूबे भाग द्वारा विस्थापित द्रव का आयतन माना कि कॉर्क का अनुप्रस्थ क्षेत्रफल A है।
∴ V = A × l
या Al.ρig = g
या Aρil = m ………………. (i)
कॉर्क को द्रव में नीचे की ओर दबाकर छोड़ने पर यह ऊपर नीचे दोलन करने लगता है। माना किसी क्षण इसका साम्यावस्था से नीचे की ओर विस्थापन y है। इस क्षण, इसकी लम्बाई (y) द्वारा विस्थापित द्रव का उत्क्षेप बेलनाकार बर्तन को प्रत्यानयन बल प्रदान करेगा।
∴ F = -Ayρ1g
यहाँ ऋण चिह्न प्रदर्शित करता है कि प्रत्यानयन बल F1 कॉर्क के टुकड़े के विस्थापन के विपरीत दिशा में लगता है। अतः टुकड़े का त्वरण,
a = \(\frac{F}{m}\) = \(\frac{-A y \rho_{1} g}{m}\) ………………. (ii)
चूँकि कॉर्क के टुकड़े का घनत्व ρ व ऊँचाई h है।
∴ m = Ahp
Bihar Board Class 11 Physics Chapter 14 दोलन
अतः कॉर्क के टुकड़े का त्वरण α, विस्थापन के अनुक्रमानुपाती परन्तु दिशा विस्थापन के विपरीत है। अतः यह स० आ० ग० करता है।
समी० (ii) से,
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.19
पारे से भरी किसी U नली का एक सिरा किसी चूषण पम्प से जुड़ा है तथा दूसरा सिरा वायुमण्डल में खुला छोड़ दिया गया है। दोनों स्तम्भों में कुछ दाबान्तर बनाए रखा जाता है। यह दर्शाइए कि जब चूषण पम्प को हटा देते हैं, तब U नली में पारे का स्तम्भ सरल आवर्त गति करता है।
उत्तर:
स्पष्ट है कि चूषण पम्प की अनुपस्थिति में दोनों नलियों में पारे के तल समान होंगे। यह साम्यावस्था की स्थिति है। चूषण पम्प लगाने पर पम्प वाली नली में पारे का तल ऊपर उठ जाता है और पम्प हटाते ही पारा साम्यावस्था को प्राप्त करने का प्रयास करता है।
Bihar Board Class 11 Physics Chapter 14 दोलन
माना पम्प हटाने के बाद किसी क्षण दूसरी नली में पारे का तल साम्यावस्था से दूरी नीचे है तो दूसरी ओर यह y दूरी ऊपर होगा। यदि नली में एकांक लम्बाई में भरे पारे का द्रव्यमान m है तो पम्प वाली नली में चढ़े अतिरिक्त पारद स्तम्भ का भार 2y × mg होगा।

यह भार ही द्रव को दूसरी ओर धकेलता है, अतः प्रत्यानयन बल F = -2mgy होगा। ऋण चिहन यह प्रदर्शित करता है कि यह बल विस्थापन के विपरीत दिष्ट है। माना साम्यावस्था में दोनों नलियों में पारद स्तम्भ की ऊँचाई h है, तब नलियों में भरे पारे का कुल द्रव्यमान M = 2hm होगा।
यदि पारद स्तम्भ का त्वरण a है तो
F = ma
⇒ – 2mgy = 2hma
⇒ त्वरण a = – (\(\frac{g}{h}\)) y
अतः a ∝ (-y)
इससे स्पष्ट है कि पारद स्तम्भ की गति सरल आवर्त गति है।
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics दोलन Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 14.20
चित्र में दर्शाए अनुसार V आयतन के किसी वायु कक्ष की ग्रीवा (गर्दन) की अनुप्रस्थ काट का क्षेत्रफल a है। इस ग्रीवा में m द्रव्यमान की कोई गोली बिना किसी घर्षण के ऊपर-नीचे गति कर सकती है। यह दर्शाइए कि जब गोली को थोड़ा नीचे दबाकर मुक्त छोड़ देते हैं, तो वह सरल आवर्त गति करती है। दाब-आयतन विचरण को समतापी मानकर दोलनों के आवर्तकाल का व्यंजक ज्ञात कीजिए [चित्र देखिए।
Bihar Board Class 11 Physics Chapter 14 दोलन
उत्तर:
गोली को नीचे की ओर दबाकर छोड़ने पर यह अपनी साम्यावस्था के ऊपर नीचे सरल रेखीय दोलन करने लगती है। माना कि किसी क्षण गोली का साम्य अवस्था से नीचे की ओर विस्थापन x है। माना इस स्थिति में कक्ष में भरी वायु का आयतन। के स्थान पर V – ∆V हो जाता है व दाब P ये (P + ∆P) हो जाता है।
∴ बॉयल के नियम से,
PV = (P + ∆P) (V – ∆V)
या ∆P.V = P.∆V (∆P ∆V को छोड़ने पर)
∴ P = \(\frac{∆P}{∆V/V}\)
लेकिन P = ET = वायु की समतापी प्रत्यास्थता है।
∴ ET = \(\frac{∆P}{∆V/V}\)
जहाँ F वायु द्वारा गोली पर लगने वाला अतिरिक्त बल है व a ग्रीवा का अनुप्रस्थ क्षेत्रफल है। चूँकि ग्रीवा के गोली का नीचे की ओर विस्थापन = x
वायु के आयतन में कमी, ∆V = ax
Bihar Board Class 11 Physics Chapter 14 दोलन
परन्तु गोली पर वायु द्वारा लगने वाला बल बाहर की ओर लगता है। अत: यह बल गोली के विस्थापन x के विपरीत दिशा में है अर्थात् यह एक प्रत्यानयन बल है।
∴ सूत्र F = ma से,
Bihar Board Class 11 Physics Chapter 14 दोलन
∴ त्वरण ∝ (-x)
अर्थात् त्वरण विस्थापन के विपरीत दिशा में हैं। अतः गोली स० आ० ग० करती है।
समी० (ii) से,
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.21
आप किसी 3000 kg द्रव्यमान के स्वचालित वाहन पर सवार हैं। यह मानिए कि आप इस वाहन की निलंबन प्रणाली के दोलनी अभिलक्षणों का परीक्षण कर रहे हैं। जब समस्त वाहन इस पर रखा जाता है, तब निलंबन 15 cm आनमित होता है। साथ ही, एक पूर्ण दोलन की अवधि में दोलन के आयाम में 50% घटोतरी हो जाती है। निम्नलिखित के मानों का आंकलन कीजिए:
(a) कमानी स्थिरांक, तथा
(b) कमानी तथा एक पहिए के प्रघात अवशोषक तंत्र के लिए अवमंदन स्थिरांक b यह मानिए कि प्रत्येक पहिया 750 kg द्रव्यमान वहन करता है।
उत्तर:
(a) दिया है:
M = 3000 kg
प्रत्येक पहिए पर लटकाया गया द्रव्यमान = m = 750 kg
y = 15 cm = 0.15 m, a = g
स्प्रिंग नियतांक k = ?
हम जानते हैं कि,
\(\frac{m}{k}\) = \(\frac{y}{a}\) = \(\frac{y}{g}\)
Bihar Board Class 11 Physics Chapter 14 दोलन

(b)
Bihar Board Class 11 Physics Chapter 14 दोलन
पुनः माना कि प्रारम्भिक मान के आधे मान तक छोड़ने पर आयाम की आवर्त काल T1/2 है।
Bihar Board Class 11 Physics Chapter 14 दोलन

प्रश्न 14.22
यह दर्शाइए कि रैखिक सरल आवर्त गति करते किसी कण के लिए दोलन की किसी अवधि की औसत गतिज ऊर्जा उसी अवधि की औसत स्थितिज ऊर्जा के समान होती है।
उत्तर:
माना कि m द्रव्यमान का कण सरल आवर्त गति करता है जिसका आवर्त काल T है। किसी क्षण t पर जबकि समय माध्य स्थिति से मापा गया है, कण का विस्थापन निम्नवत् है –
y = a sin wt
V = कण का वेग
Bihar Board Class 11 Physics Chapter 14 दोलन
∴ (Ek)av = प्रति चक्र औसत KE
Bihar Board Class 11 Physics Chapter 14 दोलन
पुनः प्रति चक्र औसत स्थितिज ऊर्जा निम्नवत् है –
Bihar Board Class 11 Physics Chapter 14 दोलन
अतः समी० (ii) व (iii) से स्पष्ट है कि दोलन काल के दौरान औसत गतिज ऊर्जा समान; दोलनकाल में औसत स्थितिज ऊर्जा के समान होती है।

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.23
10 kg द्रव्यमान की कोई वृत्तीय चक्रिका अपने केन्द्र से जुड़े किसी तार से लटकी है। चक्रिका को घूर्णन देकर तार में ऐंठन उत्पन्न करके मुक्त कर दिया जाता है। मरोड़ी दोलन का आवर्तकाल 1.5 s है। चक्रिका की त्रिज्या 15 cm है। तार का मरोड़ी कमानी नियतांक ज्ञात कीजिए। [मरोड़ी कमानी नियतांक α संबंध J = -αθ द्वारा परिभाषित किया जाता है, जहाँ J प्रत्यानयन बल युग्म है तथा θ ऐंठन कोण है।]
उत्तर:
सम्पूर्ण निकाय मरोड़ी दोलन की भाँति कार्य करता है जिसका साम्य मरोड़ी आघूर्ण निम्नवत् है –
Bihar Board Class 11 Physics Chapter 14 दोलन
जहाँ t = तार की त्रिज्या
η = लटकाए गए तार की दृढ़ता गुणांक, θ = तार में ऐंठन कोण प्रति ऐंठन मरोड़ी आघूर्ण
Bihar Board Class 11 Physics Chapter 14 दोलन
समी० (i) की तुलना दी हुई समी० J = -αθ से करने पर,
J = τ
तथा
Bihar Board Class 11 Physics Chapter 14 दोलन
समीकरण (iv) मरोड़ी कमानी नियतांक को व्यक्त करता है।
वृत्तीय चक्रिका के लिए I = \(\frac{1}{2}\) mr2
पुनः αI = cθ तथा α = \(\frac{C}{1}\) θ
Bihar Board Class 11 Physics Chapter 14 दोलन
दिया है:
r = 15 cm = 0.15 cm,
T = 1.5 s, m = 10 kg
इन मानों को समी० (v) में रखने पर,
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 14 दोलन

प्रश्न 14.24
कोई वस्तु 5 cm के आयाम तथा 0.2 सेकण्ड की आवृत्ति से सरल आवृत्ति गति करती है। वस्तु का त्वरण तथा वेग ज्ञात कीजिए जब वस्तु का विस्थापन (a) 5 cm (b) 3 cm (c) 0 cm हो।
उत्तर:
दिया है:
आयाम, r = 5 cm = 0.05 m
T = 0.2 s
ω = \(\frac{2π}{T}\) = \(\frac{2π}{0.2}\) = 10π rad s-1
मानो कि वस्तु का विस्थापन y है। अत:
Bihar Board Class 11 Physics Chapter 14 दोलन

प्रश्न 14.25
किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग ω से घर्षण या अवमंद रहित दोलन कर सकता है। इसे जब x0 दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय t = 0 पर, v0 वेग से गुजरता है। प्राचल ω, x0 तथा v0 के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत : समीकरण x = a cos (ωt + θ) से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है।]
उत्तर:
माना किसी क्षण t कण का विस्थापन निम्न है –
x = a cos (ωt + ϕ0) ……………… (i)
जहाँ a = आयाम
ϕ0 = प्रा० कला
माना किसी क्षण t पर वेग v है।
तब,
Bihar Board Class 11 Physics Chapter 14 दोलन
t = 0 रखने पर, समी० (i) व (ii) से,
Bihar Board Class 11 Physics Chapter 14 दोलन
समी० (iii) यह व्यक्त करता है कि प्रा० वेग ऋणात्मक है। (iii) में दोनों ओर का वर्ग करने पर,
Bihar Board Class 11 Physics Chapter 14 दोलन

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

Bihar Board Class 11 Physics तरलों के यांत्रिकी गुण Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 10.1
स्पष्ट कीजिए क्यों?
(a) मस्तिष्क की अपेक्षा मानव का पैरों पर रक्तचाप अधिक होता है।
(b) 6 km ऊँचाई पर वायुमण्डलीय दाब समुद्र तल पर वायुमण्डलीय दाब का लगभग आधा हो जाता है, यद्यपि वायुमण्डल का विस्तार 100 km से भी अधिक ऊँचाई तक है।
(c) यद्यपि दाब, प्रति एकांक क्षेत्रफल पर लगने वाला बल होता है तथापि द्रवस्थैतिक दाब एक अदिश राशि है।
उत्तर:
(a) पैरों के ऊपर रक्त स्तम्भ की ऊँचाई मस्तिष्क के ऊपर रक्त स्तम्भ की ऊँचाई से ज्यादा होती है। हम जानते हैं कि द्रव स्तम्भ का दाब गहराई के अनुक्रमानुपाती होता है। इसी कारण पैरों पर रक्त दाब मस्तिष्क की तुलना में अधिक होता है।

(b) पृथ्वी के गुरुत्वीय प्रभाव के कारण वायु के अणु पृथ्वी के नजदीक बने रहते हैं, अधिक ऊँचाई तक नहीं जा पाते हैं। इस प्रकार 6 किमी से अधिक ऊँचाई तक जाने पर वायु बहुत ही विरल हो जाती है तथा घनत्व बहुत कम हो जाता है। चूंकि द्रव-दाब, द्रव के घनत्व के समानुपाती होता है। इस प्रकार 6 किमी से ऊपर की वायु का कुल दाब बहुत कम होता है। अतः पृथ्वी तल से 6 किमी की ऊँचाई पर वायुमण्डलीय दाब समुद्र तल पर वायुमण्डलीय दाब से आधा रह जाता है।

(c) पास्कल के नियमानुसार, किसी बिन्दु पर द्रव दाब समस्त दिशाओं में समान रूप से लगता है। अतः दाब के साथ कोई दिशा नहीं जोड़ी जा सकती है। अतः दाब एक सदिश राशि है।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.2
स्पष्ट कीजिए क्यों?
(a) पारे का काँच के साथ स्पर्श कोण अधिक कोण होता है जबकि जल का काँच के साथ स्पर्श कोण न्यून कोण होता
(b) काँच के स्वच्छ समतल पृष्ठ पर जल फैलने का प्रयास करता है जबकि पारा उसी पृष्ठ पर बूंदें बनाने का प्रयास करता है। (दूसरे शब्दों में जल काँच को गीला कर देता है जबकि पारा ऐसा नहीं करता है।)
(c) किसी द्रव का पृष्ठ तनाव पृष्ठ के क्षेत्रफल पर निर्भर नहीं करता है।
(d) जल में घुले अपमार्जकों के स्पर्श कोणों का मान कम होना चाहिए।
(e) यदि किसी बाह्य बल का प्रभाव न हो, तो द्रव बूंद की आकृति सदैव गोलाकार होती है।
उत्तर:
(a) पारे के अणुओं के मध्य संसजक बल, पारे तथा काँच के अणुओं के मध्य आसंजक बल से अधिक होता है। अतः काँच व पारे का स्पर्श कोण अधिक कोण होता है जबकि जल के अणुओं के मध्य संसजक बल, काँच तथा जल के अणुओं के मध्य आसंजक बल से कम होता है। अत: जल व काँच के मध्य स्पर्श कोण न्यूनकोण होता है।
(b) यहाँ पर उपरोक्त कारण लागू होता है।
(c) किसी द्रव के मुक्त पृष्ठ का क्षेत्रफल बढ़ा देने पर उसके तनाव में कोई परिवर्तन नहीं होता है जबकि रबड़ की झिल्ली को खींचने पर उसमें तनाव बढ़ जाता है। अतः द्रव का पृष्ठ-तनाव उसके मुक्त क्षेत्रफल से निर्भर होता है।
(d) अपमार्जक घुले होने पर जल का पृष्ठ तनाव कम हो जाता है, परिणामस्वरूप स्पर्श कोण भी कम हो जाता है।
(e) बाह्य बल की अनुपस्थिति में बूंद की आकृति सिर्फ पृष्ठ तनाव द्वारा निर्धारित होती है। पृष्ठ तनाव के कारण बूंद न्यूनतम क्षेत्रफल वाली आकृति ले लेती है। चूँकि एक दिए गए आयतन के लिए गोले का युक्त पृष्ठ न्यूनतम होता है। अतः बूंद गोलाकार हो जाती है।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.3
प्रत्येक प्रकथन के साथ संलग्न सूची में से उपयुक्त शब्द छाँटकर उस प्रकथन के रिक्त स्थान की पूर्ति कीजिए –
(a) व्यापक रूप में द्रवों का पृष्ठ तनाव ताप बढ़ने पर …………………….. (बढ़ता/घटता)
(b) गैसों की श्यानता ताप बढ़ने पर …………………….. है, जबकि द्रवों की श्यानता ताप बढ़ने पर ………………… है। (बढ़ती/घटती)
(c) दृढ़ता प्रत्यास्थता गुणांक वाले ठोसों के लिए अपरूपण प्रतिबल ………………….. के अनुक्रमानुपाती होता है, जबकि द्रवों के लिए वह ……………….. के अनुक्रमानुपाती होता है। (अपरूपण विकृति/अपरूपण विकृति की दर)
(d) किसी तरल के अपरिवर्ती प्रवाह में आए किसी संकीर्णन पर प्रवाह की चाल में वृद्धि में ………………….. का अनुसरण होता है। (संहति का संरक्षण/बर्नूली सिद्धांत)
(e) किसी वायु सुरंग में किसी वायुयान के मॉडल में प्रक्षोभ की चाल वास्तविक वायुयान के प्रक्षोभ के लिए क्रांतिक चाल की तुलना में ………………. होती है। (अधिक/कम)
उत्तर:
(a) घटता
(b) बढ़ती, घटती
(c) अपरूपण विकृति, अपरूपण विकृति की दर
(d) संहति का संरक्षण
(e) अधिक।

प्रश्न 10.4
निम्नलिखित के कारण स्पष्ट कीजिए।
(a) किसी कागज की पड़ी को क्षैतिज रखने के लिए आपको उस कागज पर ऊपर की ओर हवा फूंकनी चाहिए, नीचे की ओर नहीं।
(b) जब हम किसी जल टोंटी को अपनी उँगलियों द्वारा बंद करने का प्रयास करते हैं, तो उँगलियों के बीच की खाली जगह से तीव्र जल धाराएँ फूट निकलती हैं।
(c) इंजेक्शन लगाते समय डॉक्टर के अंगूठे द्वारा आरोपित दाब की अपेक्षा सुई का आकार दवाई की बहिःप्रवाही धारा को अधिक अच्छा नियंत्रित करता है।
(d) किसी पात्र के बारीक छिद्र से निकलने वाला तरल उस पर पीछे की ओर प्रणोद आरोपित करता है।
(e) कोई प्रचक्रमान क्रिकेट की गेंद वायु में परवलीय प्रपथ का अनुसरण नहीं करती।
उत्तर:
(a) कागज पर ऊपर की ओर फूंक मारने से ऊपर की वायु का वेग अधिक हो जाएगा। अत: बर्नूली की प्रमेय से, कागज के ऊपर वायुदाब, नीचे की अपेक्षा कम हो जाएगा। इससे कागज पर उत्थापक बल लगेगा जो कागज को नीचे गिरने से रोकेगा।

(b) जल टोंटी को उँगलियों द्वारा बन्द करने पर उँगलियों के बीच की खाली जगह से तीव्र जल धाराएँ फूट निकलती हैं। यहाँ धारा का अनुप्रस्थ क्षेत्रफल टोंटी के अनुप्रस्थ क्षेत्रफल से कम होता है। अतः अविरतता के नियमानुसार, जल का वेग अधिक हो जाता है।

(c) अविरतता के नियम से, समान दाब आरोपित किए जाने पर, सुई बारीक होने पर बहिःप्रवाही धारा का प्रवाह वेग बढ़ जाता है। अतः बहि:प्रवाही वेग सुई के आकार से ज्यादा नियन्त्रित होता है।

(d) किसी पात्र के बारीक छिद्र से निकलने वाला तत्व उस पर पीछे की ओर प्रणोद आरोपित करता है। इसका कारण यह है कि यहाँ उच्च बहि:स्राव वेग प्राप्त कर लेता है। बाह्य बल के अनुपस्थिति में पात्र तथा तरल का संवेग संरक्षित रहता है। अतः पात्र विपरीत दिशा में संवेग प्राप्त करता है। अर्थात् बाहर निकलता हुआ द्रव पात्र पर विपरीत दिशा में प्रणोद लगाता है।

(e) घूर्णन करती गेंद अपने साथ वायु को खींचती है। अतः गेंद के ऊपर व नीचे वायु के वेग में अन्तर आ जाता है। परिणामस्वरूप दाबों में भी अन्तर आ जाता है। इसी कारण गेंद पर भार के अतिरिक्त एक दूसरा बल भी लगने लगता है तथा गेंद का पथ परवलयाकार नहीं रह पाता है।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.5
ऊँची एड़ी के जूते पहने 50 kg संहति की कोई बालिका अपने शरीर को 1.0 cm व्यास की एक ही वृत्ताकार एड़ी पर संतुलित किए हुए है। क्षैतिज फर्श पर एड़ी द्वारा आरोपित दाब ज्ञात कीजिए।
उत्तर:
दिया है, F = mg = 50 × 9.8 N = 490 N
d = 1.0 cm, r = \(\frac{d}{2}\) = 0.5 cm
= 0.5 × 10-2 m = 5 × 10-3 m
फर्श का क्षैतिज क्षेत्रफल जहाँ एड़ी लगती है,
A = πr2
= 3.142 × (5 × 10-3)2
= 3.142 × 25 × 10-6 m2
माना एड़ी द्वारा क्षैतिज फर्श पर लगाया गया दाब P है।
अतः P = \(\frac{F}{A}\)
या P = \(\frac{490}{3.142 \times 25 \times 10^{-6}}\)
= 6.24 × 106 Pascal
P = 6.24 × 106 Pa

प्रश्न 10.6
टॉरिसिली के वायुदाब मापी में पारे का उपयोग किया गया था। पास्कल ने ऐसा ही वायुदाब मापी 984 kgm-3 घनत्व की फ्रेंच शराब का उपयोग करके बनाया। सामान्य वायुमंडलीय दाब के लिए शराब स्तंभ की ऊँचाई ज्ञात कीजिए।
उत्तर:
माना सामान्य ताप पर संगत फ्रेंच शराब स्तम्भ की ऊँचाई h है।
साधारण वायुमण्डलीय दाब,
P = 1.013 × 105 पास्कल
माना शराब स्तम्भ के संगत दाब P’ है।
P’ = Hpωg
जहाँ pω = शराब का घनत्व = 984 kgm-3
प्रश्नानुसार, P’ = P
या hρωg = P
या h = \(\frac{P}{\rho_{w} g}\)
= \(\frac{1.013 \times 10^{5}}{984 \times 9.8}\) = 10.5 m

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.7
समुद्र तट से दूर कोई ऊर्ध्वाधर संरचना 109 Pa के अधिकतम प्रतिबल को सहन करने के लिए बनाई गई है। क्या यह संरचना किसी महासागर के भीतर किसी तेल कूप के शिखर पर रखे जाने के लिए उपयुक्त है? महासागर की गहराई लगभग 3 km है। समुद्री धाराओं की उपेक्षा कीजिए।
उत्तर:
दिया है:
जल स्तम्भ की गहराई, L = 3 किमी
= 3 × 103 मीटर
जल का घनत्व, ρ = 103 किग्रा/मीटर3
माना जल स्तम्भ द्वारा आरोपित दाब P है।
∴ P = hpg
= 3 × 103 × 103 × 9.8
= 30 × 106 = 3 × 107 पास्कल
चूँकि संरचना को महासागर पर रखा गया है अतः महासागर का जल 3 × 107 पास्कल का दाब लगाता है।
चूँकि ऊर्ध्व संरचना पर अधिकतम भंजक प्रतिबल 109 है।
3 × 107 पास्कल < 109 पास्कल
अतः यह संरचना महासागर के भीतर तेल कूप के शिखर पर रखी जा सकती है।

प्रश्न 10.8
किसी द्रवचालित आटोमोबाइल लिफ्ट की संरचना अधिकतम 3000 kg संहति की कारों को उठाने के लिए की गई है। बोझ को उठाने वाले पिस्टन की अनुप्रस्थ काट का क्षेत्रफल 425 cm है। छोटे पिस्टन को कितना अधिकतम दाब सहन करना होगा?
उत्तर:
दिया है:
बड़े पिस्टन पर अधिकतम सहनीय बल,
F = 3000 kgf = 3000 × 9.8 N
पिस्टन का क्षेत्रफल,
A = 425 cm2 = 425 × 10-4 m2
माना बड़े पिस्टन पर अधिकतम दाब P है।
अतः P = \(\frac{F}{A}\) = \(\frac{3000 \times 9.8}{425 \times 10^{-4}}\)
= 6.92 × 105 Pa
चूँकि द्रव सभी दिशाओं में समान दाब आरोपित करता है। अतः छोटी पिस्टन 6.92 × 105 पास्कल का अधिकतम दाब सहन करना होगा।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.9
किसी U – नली की दोनों भजाओं में भरे जल तथा मेथेलेटिड स्पिरिट को पारा एक-दूसरे से पृथक् करता है। जब जल तथा पारे के स्तंभ क्रमशः 10 cm तथा 12.5 cm ऊँचे हैं, तो दोनों भुजाओं में पारे का स्तर समान है। स्पिरिट का आपेक्षित घनत्व ज्ञात कीजिए।
उत्तर:
दिया है:
U नली की एक भुजा में जल की ऊँचाई,
h1 = 10 सेमी,
ρ1 = ग्राम/सेमी3
U नली की एक दूसरी भुजा में स्प्रिट की ऊँचाई, h2 = 12.5 सेमी,
ρ2 = ?
माना जल तथा स्प्रिट द्वारा लगाया गया दाब क्रमश: P1 व P2 है।
∴ P1 = h1ρ1g ……………… (i)
व P2 = h2ρ2g ………………….. (ii)
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
चूँकि संरचना को महासागर पर रखा गया है अतः
P1 = P2
या h1ρ1g = h2ρ2 g
या ρ2 = \(\frac{h_{1} \rho_{1}}{h_{2}}\)
= \(\frac{0.8 \mathrm{gcm}^{-3}}{1 \mathrm{gcm}^{-3}}\) = 0.800

प्रश्न 10.10
यदि प्रश्न 10.9 की समस्या में, U – नली की दोनों भुजाओं में इन्हीं दोनों द्रवों को और उड़ेल कर दोनों द्रवों के स्तंभों की ऊँचाई 15 cm और बढ़ा दी जाए, तो दोनों भुजाओं में पारे के स्तरों में क्या अंतर होगा। (पारे का आपेक्षिक घनत्व = 13.6)।
उत्तर:
माना U – नली की दोनों भुजाओं में अन्तर h है।
माना पारे का घनत्व ρm है।
माना समान क्षैतिज पर दो बिन्दु A व B हैं।
∴ A पर दाब = B पर दाब
या P0 + hωρωg
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
= P0 + hsρsg + hmρmg
जहाँ P0 = वायुमण्डलीय दाब
या hwρw = hsρs + hmPm
या hmρm = hwρw – hsρs ………………. (i)
दिया है जल स्तम्भ की ऊँचाई,
hw = 10 + 15 = 25 cm ……………….. (ii)
स्प्रिट स्तम्भ की ऊँचाई,
hs = 12.5 + 15 = 27.5 cm
ρw = 1 g cm-3
ρs = 0.8 cm-3
ρm = 13.6 g cm-3
समी० (i) व (ii) से
hm × 13.6 = 25 × 1-27.5 × 0.8
या hm = \(\frac{25-22.00}{13.6}\) = 0.2206
= 0.221 cm
या hm = 0.221 cm

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.11
क्या बर्नूली समीकरण का उपयोग किसी नदी की किसी क्षिप्रिका के जल-प्रवाह का विवरण देने के लिए किया जा सकता है? स्पष्ट कीजिए।
उत्तर:
बर्नूली समीकरण केवल धार – रेखी प्रवाह पर लागू होता है। नदी की क्षिप्रिका का जल-प्रवाह धारा रेखी प्रवाह नहीं होता है। इसलिए इसका विवरण देने के लिए बर्नूली समीकरण का प्रयोग नहीं किया जा सकता है।

प्रश्न 10.12
बर्नूली समीकरण के अनुप्रयोग में यदि निरपेक्ष दाब के स्थान पर प्रमापी दाब (गेज दाब) का प्रयोग करें तो क्या इससे कोई अंतर पड़ेगा? स्पष्ट कीजिए।
उत्तर:
बर्नूली समीकरण से,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
माना दो बिन्दुओं पर वायुमण्डलीय व गेज दाब क्रमश:
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
अतः दोनों बिन्दुओं पर वायुमण्डलीय दाबों में बहुत कम अन्तर होने पर परमदाब के स्थान पर गेज दाब का प्रयोग करने से कोई अन्तर नहीं पड़ेगा।

प्रश्न 10.13
किसी 1.5 m लंबी 1.0 cm त्रिज्या की क्षैतिज नली से ग्लिसरीन का अपरिवर्ती प्रवाह हो रहा है। यदि नली के एक सिरे पर प्रति सेकंड एकत्र होने वाली ग्लिसरीन का परिणाम 4.0 × 10-3 kgs -1 है, तो नली के दोनों सिरों के बीच दाबांतर ज्ञात कीजिए। (ग्लिसरीन का घनत्व = 1.3 × 103 kgm-3 तथा ग्लिसरीन की श्यानता = 0.83 Pas) [आप यह भी जाँच करना चाहेंगे कि क्या इस नली में स्तरीय प्रवाह की परिकल्पना सही है।
उत्तर:
दिया है:
r = 1.0 cm = 10-2 cm
l = 1.5 m
ρ = 1.3 × 10-2 kg m-3
प्रति सेकण्ड ग्लिसरीन का प्रवाहित द्रव्यमान
M = 4 × 10-3 kgs-1
ग्लिसरीन की श्यानता,
η = 0.83 Pas = 0.83 Nm-2s
माना नली के दोनों सिरों पर दाबान्तर P है।
रेनॉल्ड संख्या NR = ?
माना ग्लिसरीन का प्रति सेकण्ड प्रवाहित आयतन V है।
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
पासले सूत्र से,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
धारा रेखीय प्रवाह की अभिग्रहीति जाँचने के लिए हम रेनॉल्ड संख्या का मान निकालते हैं –
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
धारा रेखीय प्रवाह के लिए,
0 < Nr < 2000
समी० (i) व (ii) से,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
अत: प्रवाह स्तरीय (धारा रेखीय) है।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.14
किसी आदर्श वायुयान के परीक्षण प्रयोग में वायु-सुरंग के भीतर पंखों के ऊपर और नीचे के पृष्ठों पर वायु-प्रवाह की गतियाँ क्रमश: 70 ms-1 तथा 63 ms-1 हैं। यदि पंख का क्षेत्रफल 2.5 m2 है, तो उस पर आरोपित उत्थापक बल परिकलित कीजिए। वायु का घनत्व 1.3 kgm-3 लीजिए।
उत्तर:
माना वायुयान के ऊपरी व निचली पर्तों की चाल क्रमशः v1 व v2 है तथा संगत दाब क्रमशः P1 व P2 है।
दिया है –
v1 = 70 मीटर/सेकण्ड
v2 = 63 मीटर/सेकण्ड
ρ = 1.3 किग्रा/मीटर3
माना पंखों की ऊपरी व निचले पर्ते समान ऊँचाई पर हैं।
h1 = h2
पंख का क्षेत्रफल, A = 2.5 मीटर2
बरनौली प्रमेय से,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
यह दाबान्तर ही वायुयान को ऊपर उठाता है। माना, पंखे पर आरोपित बल है।
अतः
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.15
चित्र (a) तथा (b) किसी द्रव (श्यानताहीन) का अपरिवर्ती प्रवाह दर्शाते हैं। इन दोनों चित्रों में से कौन सही नहीं है? कारण स्पष्ट कीजिए।
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
उत्तर:
चित्र (a) सही नहीं है। चूंकि इस चित्र में, नलिका की ग्रीवा में अनुप्रस्थ क्षेत्रफल कम है। अत: अविरतता के सिद्धान्त से, यहाँ वेग अधिक होगा। अर्थात् बर्नूली प्रमेय से यहाँ जल दाब कम होगा जबकि चित्र (a) में ग्रीवा पर जल दाब अधिक दिखाया गया है।

प्रश्न 10.16
किसी स्प्रे पंप की बेलनाकार नली की अनुप्रस्थ काट का क्षेत्रफल 8.0 cm2 है। इस नली के एक सिरे पर 1.0 mm व्यास के 40 सूक्ष्म छिद्र हैं। यदि इस नली के भीतर द्रव के प्रवाहित होने की दर 1.5 m min-1 है, तो छिद्रों से होकर जाने वाले द्रव की निष्कासन-चाल ज्ञात कीजिए।
उत्तर:
दिया है:
A1 = 8 सेमी2 = 8 × 10-4 मीटर2
छिद्र की त्रिज्या,
r = 0.5 मिमी = 0.5 × 10-3 मीटर
छिद्रों का कुल क्षेत्रफल = 40 × π(r2)
= 40 × 3.14 × (0.5 × 10-3)2
= 0.3 × -4 मीटर2
vt = 1.5 मीटर/मिनट
= \(\frac{1.5}{60}\) = \(\frac{1}{40}\) मीटर/सेकण्ड
v2 = ?
सातत्यता समीकरण से,
A2v2 = A1v1
v2 = \(\frac{A_{1}}{A_{2}}\) v1
= \(\frac{8 \times 10^{-4}}{0.3 \times 10^{-4}}\) × 0.025
= 9.64 मीटर/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.17
U – आकार के किसी तार को साबुन के विलयन में डुबो कर बाहर निकाला गया जिससे उस पर एक पतली साबुन की फिल्म बन गई। इस तार के दूसरे सिरे पर फिल्म के संपर्क में एक फिसलने वाला हल्का तार लगा है जो 1.5 × 10-2 N भार (जिसमें इसका अपना भार भी सम्मिलित है) को सँभालता है। फिसलने वाले तार की लम्बाई 30 cm है। साबुन की फिल्म का पृष्ठ तनाव कितना है?
उत्तर:
दिया है:
तार की लंबाई,
l = 30 सेमी = 0.3 मीटर
तार पर लटका भार,
W = 1.5 × 10-2 न्यूटन
माना फिल्म का पृष्ठ तनाव S है।
अत: फिल्म के एक ओर के पृष्ठ के कारण तार पर लगने वाला बल,
F1 = s × l
दोनों पृष्ठों के कारण तार पर बल,
F1 = 2F1
= 2sl
यह बल (F) ही भार (W) को सन्तुलित करता है।
2sl = W
पृष्ठ तनाव, s = \(\frac{W}{2l}\)
= \(\frac{1.5 \times 10^{-2}}{2 \times 0.3}\)
= 2.5 × 10-2 न्यूटन प्रति मीटर

प्रश्न 10.18
निम्नांकित चित्र (a) में किसी पतली द्रव फिल्म को 4.5 × -2 N का छोटा भार सँभाले दर्शाया गया है। चित्र (b) तथा (c) में बनी इसी द्रव की फिल्में इसी ताप पर कितना भार सँभाल सकती हैं? अपने उत्तर को प्राकृतिक नियमों के अनुसार स्पष्ट कीजिए।
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
उत्तर:
तीनों चित्रों में, फिल्म के नीचे वाले किनारे की लम्बाई 40 सेमी (समान) है। (F = 25 l) इस किनारे पर फिल्म के पृष्ठ तनाव (S) के कारण समान बल लगेगा। यह बल लटके हुए भार को साधता है। चूंकि साधने वाला बल प्रत्येक दशा में समान है। इसलिए चित्र (b) तथा (c) में भी वही भार 4.5 × -2 न्यूटन सँभाला जा सकता है।

प्रश्न 10.19
3.00 mm त्रिज्या की किसी पारे की बूंद के भीतर कमरे के ताप पर दाब क्या है? 20°C ताप पर पारे का पृष्ठ तनाव 4.65 × 10-1 Nm-1 है। यदि वायुमंडलीय दाब 1.01 × 105 Pa है, तो पारेकी बँद के भीतर दाब-आधिक्य भी ज्ञात कीजिए।
उत्तर:
दिया है:
बूंद की त्रिज्या r = 3.0 mm
= 3.0 × 10-3 m
पारे का पृष्ठ तनाव,
T = 4.65 × 10-1 Nm-1
बूंद के बाहर दाब, P0 = वायुमण्डलीय दाब
= 1.01 × 105 Pa
माना कि बूंद के अन्दर दाब Pi है तब बूंद के अन्दर आधिक्य दाब निम्नवत् है –
P = Pi = P0 = \(\frac{2T}{r}\)
= \(\frac{2 \times 4.65 \times 10^{-1}}{3 \times 10^{-3}}\)
Pi = P + P0
= 310 + 1.01 × 105 Pa
= 1.01 × 105 + 0.00310 × 105
= 1.01310 × 105 × 105 Pa
अतः Pi = 1.01 × 105 Pa

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.20
5.00 mm त्रिज्या के किसी साबुन के विलयन के बुलबुले के भीतर दाब-आधिक्य क्या है? 20°C ताप पर साबुन के विलयन का पृष्ठ तनाव 2.50 × 10-2 Nm-1 है। यदि इसी विमा का कोई वायु का बुलबुला 1.20 आपेक्षिक घनत्व के साबुन के विलयन से भरे किसी पात्र में 40.0 cm गहराई पर बनता, तो इस बुलबुले के भीतर क्या दाब होता, ज्ञात कीजिए। (1 वायुमंडलीय दाब = 1.01 × 105 Pa)।
उत्तर:
साबुन के घोल का पृष्ठ तनाव,
T = 2.5 × 10-2 Nm-1
साबुन के घोल का घनत्व = ρ
= 1.2 × 103 kg m-3
साबुन के बुलबुले की त्रिज्या = r
= 5.0 mm
= 5.0 × 10-3 m
1 वायुमण्डलीय दाब = 1.01 × 105 Pa
साबुन के बुलबुले के अन्दर आधिक्य दाब निम्नवत् है –
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
साबुन के घोल में वायु के बुलबुले के अन्दर आधिक्य दाब
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
40 सेमी गहराई पर वायु के बुलबुले के बाहर दाब, P0 = वायुमण्डलीय दाब + 40 सेमी के कारण दाब
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
∴ वायु के बुलबुले के अन्दर दाब
Pi = P0 + \(\frac{2T}{r}\)
= (1.06 × 105 + 10) Pa
= 1.06 × 105 + 0.00010 × 105
= 1.06010 × 105 Pa
= 1.06 × 105 Pa

Bihar Board Class 11 Physics तरलों के यांत्रिकी गुण Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 10.21
1.0 m2 क्षेत्रफल के वर्गाकार आधार वाले किसी टैंक को बीच में ऊर्ध्वाधर विभाजक दीवार द्वारा दो भागों में बाँटा गया है। विभाजक दीवार में नीचे 20 cm2 क्षेत्रफल का कब्जेदार दरवाजा है। टैंक का एक भाग जल से भरा है तथा दूसरा भाग 1.7 आपेक्षिक घनत्व के अम्ल से भरा है। दोनों भाग 4.0 m ऊँचाई तक भरे गए हैं। दरवाजे को बंद रखने के आवश्यक बल परिकलित कीजिए।
उत्तर:
दिया है:
दोनों ओर भरे द्रवों की ऊँचाई
hw = ha = 4 मीटर
जल का घनत्व pw = 103 किग्रा प्रति मीटर3
अम्ल का आपेक्षिक घनत्व = \(\frac{\rho_{a}}{\rho_{w}}\) = 1.7
दरवाजे का क्षेत्रफल
A = 20 सेमी2 = 2 × 10-3 मीटर2
जल की साइड से दरवाजे पर दाब
P1 = Pa + hwρωg
= Pa + 4 × 103 × 9.8
= Pa + 3.92 × 104 न्यूटन/मीटर2
अम्ल की साइड से दरवाजे पर दाब,
P2 = Pa + hwwg
= Pa + 4 × 103 × 9.8
= Pa + 3.92 × 104 न्यूटन/मीटर2
अम्ल की साइड से दरवाजे पर दाब,
P2 = Pa + haρa g
= Pa + ha \(\frac{\rho_{a}}{\rho_{w}}\) × g × ρw
= Pa + 4 × 1.7 × 9.8 × 103
= Pa + 6.66 × 104 न्यूटन/मीटर2
अतः दाबान्तर P = P2 – P1
= (6.66 – 3.92) × 104
= 2.74 × 104 न्यूटन/मीटर2
अतः दरवाजा बन्द रखने के लिए आवश्यक बल F = PA
= 2.74 × 104 × 2 × 10-3
= 54.8
= 55 न्यूटन

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.22
चित्र (a) में दर्शाए अनुसार कोई मैनोमीटर किसी बर्तन में भरी गैस के दाब का पाठ्यांक लेता है। पंप द्वारा कुछ गैस बाहर निकालने के पश्चात् मैनोमीटर चित्र
(b) में दर्शाए अनुसार पाठ्यांक लेता है। मैनोमीटर में पारा भरा है तथा वायुमंडलीय दाब का मान 76 cm (Hg) है।
(i) प्रकरणों (a) तथा (b) में बर्तन में भरी गैस के निरपेक्ष दाब तथा प्रमापी दाब cm (Hg) के मात्रक में लिखिए।
(ii) यदि मैनोमीटर की दाहिनी भुजा में 13.6 cm ऊँचाई तक जल (पारे के.साथ अमिश्रणीय) उड़ेल दिया जाए तो प्रकरण
(b) में स्तर में क्या परिवर्तन होगा?(गैस के आयतन में हुए थोड़े परिवर्तन की उपेक्षा कीजिए।)
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
उत्तर:
(i) प्रकरण (a) में,
गैस का निरपेक्ष दाब = Pa + h
दिया है : h = 20 सेमी पारा व pa = 76 सेमी पारा (वायुमण्डलीय दाब)
निरपेक्ष दाब = 76 + 20 = 96 सेमी (पारा) लेकिन प्रमापी दाब (मेज दाब) = 20 सेमी (पारा)
प्रकरण (b) में,
गैस का निरपेक्ष दाब = Pa + h
= 76 – 18 (h = -18 सेमी)
= 58 सेमी (पारा) लेकिन प्रमापी दाब (गेज दाब)
= -18 सेमी (पारा)

(ii) जल स्तम्भ के दाब को सन्तुलित करने के लिए बाईं भुजा में पारा ऊपर चढ़ेगा। माना दोनों ओर के तलों का अन्तर h है।
माना h1 = 13.6 सेमी ऊँचे जल स्तम्भ का दाब h’1 ऊँचाई वाले पारे के स्तम्भ के दाब के समान है।
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
प्रकरण (c) में गैस का निरपेक्ष दाब,
P = Pa + h’ + h’1
58 = 76 + h + 1
h = 58 – 77 = -19 सेमी।
अतः प्रथम स्तम्भ में पारे का तल दूसरे स्तम्भ की तुलना में 19 सेमी ऊँचा हो जाएगा।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.23
दो पात्रों के आधारों के क्षेत्रफल समान हैं परंतु आकृतियाँ भिन्न-भिन्न हैं। पहले पात्र में दूसरे पात्र की अपेक्षा किसी ऊँचाई तक भरने पर दो गुना जल आता है। क्या दोनों प्रकरणों में पात्रों के आधारों पर आरोपित बल समान हैं। यदि ऐसा है तो भार मापने की मशीन पर रखे एक ही ऊँचाई तक जल से भरे दोनों पात्रों के पाठ्यांक भिन्न-भिन्न क्यों होते है।
उत्तर:
हाँ, दोनों प्रकरणों में पात्रों के आधारों पर आरोपित बल समान है। माना प्रत्येक पात्र में जल स्तम्भ की ऊँचाई h व आधार का क्षेत्रफल A है।
अतः आधार पर बल = जल स्तम्भ का दाब – क्षेत्रफल
= hρg × A = Ahρg
अत: दोनों पात्रों के आधारों पर समान बल लगेंगे। भाप मापने वाली मशीन, पात्रों के आधार पर लगने वाले बल को मापने के स्थान पर पात्र तथा जल का भार मापती है। चूँकि एक पात्र में दूसरे की तुलना में दो गुना जल है। अतः भार मापने की मशीन के पाठ्यांक अलग-अलग होंगे।

प्रश्न 10.24
रुधिर-आधान के समय किसी शिरा में,जहाँ दाब 2000 Pa है, एक सुई धुंसाई जाती है। रुधिर के पात्र को किस ऊँचाई पर रखा जाना चाहिए ताकि शिरा में रक्त ठीक-ठीक प्रवेश कर सके।
(सम्पूर्ण रुधिर का घनत्व सारणी 10.1 में दिया गया है।)
उत्तर:
दिया है:
शिरा में रक्त दाब,
P = 2000 Pa
रक्त का घनत्व ρ = 1.06 × 103 kg m-3
g = 9.8 ms-2
माना कि रक्त के पात्र की सुई से ऊँचाई = h
सूत्र P = hρg से,
h = \(\frac{P}{ρg}\)
= \(\frac{2000}{1.06 \times 10^{3} \times 9.8}\)
= \(\frac{1000}{106×49}\)
= 0.193 m
या h = 0.2 m

प्रश्न 10.25
बर्नूली समीकरण व्युत्पन्न करने में हमने नली में भरे तरल पर किए गए कार्य को तरल की गतिज तथा स्थितिज ऊर्जाओं में परिवर्तन के बराबर माना था।
(a) यदि क्षयकारी बल उपस्थित है, तब नली के अनुदिश तरल में गति करने पर दाब में परिवर्तन किस प्रकार होता है?
(b) क्या तरल का वेग बढ़ने पर क्षयकारी बल अधिक महत्वपूर्ण हो जाते हैं? गुणात्मक रूप में चर्चा कीजिए।
उत्तर:
(a) क्षयकारी बल की अनुपस्थिति में बहते हुए द्रव के एकांक आयतन की सम्पूर्ण ऊर्जा स्थिर रहती है लेकिन क्षयकारी बल की उपस्थिति में नली में तरल के प्रवाह को बनाए रखने के लिए क्षयकारी बल के विरुद्ध कार्य करना पड़ता है।

अतः नली के अनुदिश चलने पर तरल का दाब अधिक तीव्रता से घटता जाता है। इसी कारण शहरों में जल की टंकी से बहुत दूरी पर स्थित मकानों की ऊँचाई टंकी से कम होने पर भी जल उनकी ऊपर वाली मंजिल तक नहीं पहुँच पाता है।

(b) हाँ, तरल का वेग बढ़ने पर तरल की अपरूपण दर। बढ़ती है। इस प्रकार क्षयकारी श्यान बल और ज्यादा महत्वपूर्ण हो जाते हैं।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.26
(a) यदि किसी धमनी में रुधिर का प्रवाह पटलीय प्रवाह ही बनाए रखना है तो 2 × 10-3 m त्रिज्या की किसी धमनी में रुधिर-प्रवाह की अधिकतम चाल क्या होनी चाहिए?
(b) तद्नुरूपी प्रवाह-दर क्या है? (रुधिर की श्यानता 2.084 × 10-3 Pas लीजिए)।
उत्तर:
दिया है:
η = 2.084 × 10-3
r = 2 c 10-3 मीटर

(a) माना रुधिर प्रवाह की अधिकतम चाल = vmax
सूत्र रेनाल्ड संख्या,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
= 0.98 मीटर/सेकण्ड

(b) माना तद्नुरूपी प्रवाह दर = प्रति सेकण्ड प्रवाहित रक्त = धमनी का अनुप्रस्थ परिच्छेद × रक्त प्रवाह की दर
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.27
कोई वायुयान किसी निश्चित ऊँचाई पर किसी नियत चाल से आकाश में उड़ रहा है तथा इसके दोनों पंखों में प्रत्येक का क्षेत्रफल 25 m2 है। यदि वायु की चाल पंख के निचले पृष्ठ पर 180 kmh-1 तथा ऊपरी पृष्ठ पर 234 kmh-1 है, तो वायुयान की संहति ज्ञात कीजिए। (वायु का घनत्व 1kgm-3 लीजिए)।
उत्तर:
माना पंख के ऊपरी व निचले पृष्ठ पर वायु का वेग क्रमशः v1 व v2 है।
v1 = 234 kmh-1
= 234 × \(\frac{5}{18}\)
= 65 ms-1
तथा v2 = 180 kmh-1
= 180 × \(\frac{5}{18}\)
= 50 ms-1
प्रत्येक पंख का क्षेत्रफल = 25 m2
पंख का कुल क्षेत्रफल,
A = 25 + 25 = 50 m2
अतः बर्नूली प्रमेय से दोनों पंखों के वायु का घनत्व
ρ = 1kg m-3
पृष्ठों के बीच दाबान्तर,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.28
मिलिकन तेल बूंद प्रयोग में, 2.0 × 10-5 m त्रिज्या तथा 1.2 × 103 kgm-3 घनत्व की किसी बँद की सीमांत चाल क्या है? प्रयोग के ताप पर वायु की श्यानता 1.8 × 10-5 Pas लीजिए। इस चाल पर बूंद पर श्यान बल कितना है? (वायु के कारण बूंद पर उत्प्लावन बल की उपेक्षा कीजिए)।
उत्तर:
दिया है:
r = 2.0 × 10-5 m
ρ = 1.2 × 103 kgm-3,
η = 1.8 × 10-5 Nsm-2,
vT = ?; F = ?
सीमान्त वेग v = \(\frac{2}{9}\) r2 \(\frac{\left(p-\rho_{0}\right) g}{\eta}\)
चूँकि वायु के कारण बूँद का घनत्व नगण्य है।
वायु के लिए ρ0 = 0
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
स्टोक्स के नियम से बूंद पर श्यान बल,
F = 6πηrnvT
= 6 × 3.142 × (1.8 × 10-5) × (2 × 10-5) × (5.8 × 10-2)
= 3.93 × 10-10 N

प्रश्न 10.29
सोडा काँच के साथ पारे का स्पर्श कोण 140° है। यदि पारे से भरी द्रोणिका में 1.00 mm त्रिज्या की काँच की किसी नली का एक सिरा डुबोया जाता है, तो पारे के बाहरी पृष्ठ के स्तर की तुलना में नली के भीतर पारे का स्तर कितना नीचे चला जाता है? (पारे का घनत्व = 13.6 × 103kgm-3)
उत्तर:
दिया है:
स्पर्श कोण, θ = 140°, r = 1 मिमी = 10-3 मीटर
पृष्ठ तनाव T = 0.465 न्यूटन प्रति मीटर
पारे का घनत्व ρ = 13.6 × 103 किग्रा प्रति मीटर
h = ?
cos θ = cos 140°
= – cos 40°
= -0.7660
सूत्र h = \(\frac{2T cosθ}{rρg}\) से
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
यहाँ ऋणात्मक चिन्ह को छोड़ने पर यह प्रदर्शित करता है कि बाहर के पारे के स्तम्भ के सापेक्ष नली के स्तम्भ में अवनमन होता है।
अवनमन = 5.34 मिमी।

Bihar Board Class 11 Physics Solutions Chapter 10 तरलों के यांत्रिकी गुण

प्रश्न 10.30
3.0 mm तथा 6.0 mm व्यास की दो संकीर्ण नलियों को एक साथ जोड़कर दोनों सिरों से खुली एक U – आकार की नली बनाई जाती है। यदि इस नली में जल भरा है, तो इस नली की दोनों भुजाओं में भरे जल के स्तरों में क्या अंतर है। प्रयोग के ताप पर जल का पृष्ठ तनाव 7.3 × 10-2 Nm-1 है। स्पर्श कोण शून्य लीजिए तथा जल का घनत्व 1.0 × 103 kgm -3 लीजिए। (g = 9.8 ms-2)
उत्तर:
दिया है:
जल का पृष्ठ घनत्व,
T = 7.3 × 10-2 Nm-1
जल का घनत्व ρ = 1 × 103 kg m-3
स्पर्श कोण, θ = 0°, g = 9.8 ms-2
माना दो संकीर्ण नलिकाओं के छिद्रों के व्यास D1 व D2 हैं।
अत: D1 = 3.0 mm तथा D2 = 6.0 mm
∴ त्रिज्याएँ, r1 = \(\frac{D_{2}}{2}\) = \(\frac{6}{2}\) = 3mm
= 3 × 10-3 m
माना U आकार की नली में पहली व दूसरी नली में जल क्रमश: h1 व h2 ऊँचाई तक चढ़ता है।
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
r2 > r1
∴h1 > h2
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण

परिकलित्र/कम्प्यूटर – आधारित प्रश्न

प्रश्न 10.31
(a) यह ज्ञात है कि वायु का घनत्व ρ ऊँचाई y(मीटरों में) के साथ इस संबंध के अनुसार घटता है –
\(\rho=\rho_{0} e^{-y / y_{0}}\) यहाँ समुद्र तल पर वायु का घनत्व P0 = 125 kg m-3 तथा Y0 एक नियतांक है। घनत्व में इस परिवर्तन को वायुमंडल का नियम कहते हैं। यह संकल्पना करते हुए कि वायुमंडल का ताप नियत रहता है (समतापी अवस्था) इस नियम को प्राप्त कीजिए। यह भी मानिए किg का मान नियत रहता है।
(b) 1425 m3 आयतन का हीलियम से भरा कोई बड़ा गुब्बारा 400 kg के किसी पेलोड को उठाने के काम में लाया जाता है। यह मानते हुए कि ऊपर उठते समय गुब्बारे की त्रिज्या नियत रहती है, गुब्बारा कितनी अधिकतम ऊँचाई तक ऊपर उठेगा? [y0 = 8000 m तथा ρHe = 0.18 kg m-3 लीजिए।]
उत्तर:
(a) माना कि एक दूसरे से ऊर्ध्वाधर दूरी dy पर दो बिन्दु A व B हैं।
माना Y = बिन्दु A की समुद्र तल से ऊँचाई
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण

(i) P = A पर दाब
dp = A से B तक दाब में परिवर्तन
जैसे-जैसे हम समुद्र तल से ऊँचाई की ओर चलते हैं, दाब तथा घनत्व दोनों ही ऊँचाई के साथ बढ़ते हैं।
p – dp = B पर दाब
माना A तथा B पर घनत्व क्रमशः ρ व ρ – dρ हैं।
अतः A से B तक दाब में कमी = -dp
= बल/क्षेत्रफल = \(\frac{mg}{a}\) = \(\frac{mg}{V.a}\) V
= (\(\frac{m}{V}\))g. \(\frac{a}{a}\) dy
= ρgdy
चूँकि ताप नियत रहता है।
∴P ∝ ρ
(∵ बॉयल के नियम से p ∝ \(\frac{1}{V}\) ∝ \(\frac{1}{(M/ρ)}\) या \(\frac{P}{M}\) ∝ ρ)
या p = kp
जहाँ K नियतांक है।
समी० (i) व (ii) से,
-d(kp) = ρgdy
या \(\frac{dρ}{ρ}\) = \(\frac{g}{k}\) dy = 0 …………….. (iii)
समी (iii) का समाकलन करने पर,
∫ \(\frac{dρ}{ρ}\) + ∫\(\frac{g}{k}\) dy = C
या logeρ + \(\frac{g}{k}\) y = C …………….. (iv)
जहाँ C समाकलन नियतांक है।
माना Y = 0 पर ρ = ρ0
समी० (iv) से,
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
दिया है: y0 = \(\frac{k}{g}\) नियतांक है।
(b) माना हीलियम का गुब्बारा Y ऊँचाई तक उड़ता है। गुब्बारे का आयतन, V = 1425 मीटर3
ρHeपेलोड = 400 gN
ρHeHe = 0.18 किग्रा-मीटर-3, ρ0 = 1.25 kgm-3
Y0 = 8km
माना He का द्रव्यमान = m
m = ρHe × y
= 0.18 × 1425
= 256.5 kg
लिफ्ट से अलग कुल लोड
= 400 + 256.5
= 656.5 N
माना ऊँचाई पर वायु का घनत्व है। साम्यावस्था में, लिफ्ट से अलग किया लोड = He के गुब्बारे का भार
या 656.5g = V × ρ × g
Bihar Board Class 11 Physics Chapter 10 तरलों के यांत्रिकी गुण
या y = 0.997 × 8
= 7.98 km
~ 8 km
यदि ऊँचाई के साथ g में परिवर्तन माना जाए तब ऊँचाई लगभग 8.2 किमी० होगी।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

Bihar Board Class 11 Physics गति के नियम Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 5.1
निम्नलिखित पर कार्यरत नेट बल का परिमाण व उसकी दिशा लिखिए:

  1. एकसमान चाल से नीचे गिरती वर्षा की कोई बूंद
  2. जल में तैरता 10g संहति का कोई कार्क
  3. कुशलता से आकाश में स्थिर रोकी गई कोई पतंग
  4. 30 km h-1 के एकसमान वेग से ऊबड़-खाबड़ सड़क पर गतिशील कोई कार
  5. सभी गुरुत्वीय पिण्डों से दूर तथा वैद्युत और चुंबकीय क्षेत्रों से मुक्त, अंतरिक्ष में तीव्र चाल वाला इलेक्ट्रॉन।

उत्तर:

  1. न्यूटन के प्रथम नियमानुसार कोई नेट बल नहीं लगता है।
  2. न्यूटन के प्रथम नियमानुसार कोई नेट बल नहीं लगता है।
  3. न्यूटन के प्रथम नियमानुसार कोई नेट बल नहीं लगता है।
  4. न्यूटन के प्रथम नियमानुसार कोई नेट बल नहीं लगता है।
  5. चूँकि यह वैद्युत चुम्बकीय एवम् गुरुत्वीय बल उत्पन्न करने वाली भौतिक एजेंसियों से काफी दूर है। अत: कोई बल कार्य नहीं करता है।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.2
0.05 kg संहति का कोई कंकड़ ऊर्ध्वाधर ऊपर फेंका गया है। नीचे दी गई प्रत्येक परिस्थिति में कंकड़ पर लग रहे नेट बल का परिमाण व उसकी दिशा लिखिए:

  1. उपरिमुखी गति के समय।
  2. अधोमुखी गति के समय।
  3. उच्चतम बिंदु पर जहाँ क्षण भर के लिए यह विराम में रहता है।

यदि कंकड़ को क्षैतिज दिशा से 45° कोण पर फेंका जाए, तो क्या आपके उत्तर में कोई परिवर्तन होगा? वायु-प्रतिरोध को उपेक्षणीय मानिए।

उत्तर:
चूँकि उपरोक्त तीनों स्थितियों में, वायु के प्रभाव को नगण्य मानते हुए कंकड़ पर केवल एक ही बल (गुरुत्व बल) 0.5 न्यूटन ऊर्ध्वाधरतः, अधोमुखी लगता है यदि कंकड़ की गति ऊर्ध्वाधर की ओर नहीं है तब भी उत्तर अपरिवर्तित रहता है। कंकड़ उच्चतम बिन्दु पर विराम में नहीं है। इसकी समस्त गति की अवधि में इस पर वेग का एकसमान क्षैतिज घटक कार्यरत रहता है।

प्रश्न 5.3
0.1 kg संहति के पत्थर पर कार्यरत नेट बल का परिमाण व उसकी दिशा निम्नलिखित परिस्थितियों में ज्ञात कीजिए:

  1. पत्थर को स्थिर रेलगाड़ी की खिड़की से गिराने के तुरन्त पश्चात्,
  2. पत्थर को 36 km h-1 के एकसमान वेग से गतिशील किसी रेलगाड़ी की खिड़की से गिराने के तुरन्त पश्चात्,
  3. पत्थर को 1 ms-2 के त्वरण से गतिशील किसी रेलगाड़ी की खिड़की से गिराने के तुरंत पश्चात्,
  4. पत्थर 1 ms-2 के त्वरण से गतिशील किसी रेलगाड़ी के फर्श पर पड़ा है तथा वह रेलगाड़ी के सापेक्ष विराम में है। उपरोक्त सभी स्थितियों में वायु का प्रतिरोध उपेक्षणीय मानिए।

उत्तर:
1. स्थिर रेलगाड़ी की खिड़की से गिराने पर, पत्थर पर एक मात्र बल उसका भार नीचे की ओर कार्य करेगा। पत्थर पर बल (mg) = 0.1 × 10 = 1 न्यूटन नीचे की ओर।

2. इस स्थिति में गाड़ी से गिराने के पश्चात् गाड़ी की गति का उस पर कार्य करने वाले बल पर कोई प्रभाव नहीं होगा तथा पत्थर पर बल उसका भार नीचे की ओर कार्य करेगा। अत: पत्थर बल पर = 1 न्यूटन नीचे की ओर।

3. इस स्थिति में (b) के समान बल नीचे की ओर कार्य करेगा।

4. पत्थर रेलगाड़ी के सापेक्ष विरामावस्था में है।
∴ पत्थर पर त्वरण = रेलगाड़ी का त्वरण = 1 मीटर/सेकण्ड2
∴ पत्थर पर गाड़ी की त्वरित गति के कारण नेट बल
F = ma = 0.1 × 1 = 0.1 न्यूटन क्षैतिज दिशा में।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.4
l लंबाई की एक डोरी का एक सिरा mसंहति के किसी कण से तथा दूसरा सिरा चिकनी क्षैतिज मेज पर लगी खूटी से बँधा है। यदि कण v चाल से वृत्त में गति करता है तो कण पर (केंद्र की ओर निर्देशित) नेट बल है:

  1. T
  2. T – \(\frac{m v^{2}}{l}\)
  3. T + \(\frac{m v^{2}}{l}\)
  4. 0

T डोरी में तनाव है। (सही विकल्प चुनिए)
उत्तर:
विकल्प (i) सही है।

प्रश्न 5.5
15 ms-1 की आरंभिक चाल से गतिशील 20 kg संहति के किसी पिण्ड पर 50 N का स्थाई मंदन बल आरोपित किया गया है। पिण्ड को रुकने में कितना समय लगेगा?
उत्तर:
दिया है:
u = 15 मीटर/सेकण्ड, m = 20 किग्रा, मंदन बल, F = 50 न्यूटन, v = 0, समय (t) = ?
गति के द्वितीय नियम से,
F = ma
∴ पिण्ड का मंदन,
a = \(\frac{F}{m}\) = \(\frac{50}{20}\) = 2.5 मीटर/सेकण्ड2
20 सूत्र, v = u + at से,
0 = 15 + (-2.5) × t
∴ t = \(\frac{15}{2.5}\)
= 6 सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.6
3.0 kg संहति के किसी पिण्ड पर आरोपित कोई बल 25 s में उसकी चाल को 2.0 ms-1 से 3.5 ms-1 कर देता है। पिण्ड की गति की दिशा अपरिवर्तित रहती है। बल का परिमाण व दिशा क्या है?
उत्तर:
दिया है:
m = 3 किग्रा, µ = 2 मीटर/सेकण्ड, t = 25 सेकण्ड, v = 3.5 मीटर/सेकण्ड, बल का परिणाम F = ?, बल की दिशा = ?
न्यूटन के गति विषयक द्वितीय नियम से,
पिण्ड पर लगा बल, F = संवेग परिवर्तन की दर
= \(\frac{mv-mu}{t}\) = \(\frac{m(v-u)}{t}\)
= \(\frac{3(3.5 – 2)}{25}\) = \(\frac{3×1.5}{25}\)
= 1.8 न्यूटन
बल पिण्ड की गति की दिशा में ही लगेगा।

प्रश्न 5.7
5.0 kg संहति के किसी पिण्ड पर 8 N व 6 N के दो लंबवत् बल आरोपित हैं। पिण्ड के त्वरण का परिमाण व दिशा ज्ञात कीजिए।
उत्तर:
दिया है:
m = 5 किग्रा,
Bihar Board Class 11 Physics Chapter 5 गति के नियम
F1 = 6 न्यूटन
F2 = 8 न्यूटन
त्वरण = ?, त्वरण की दिशा = ?
बलों के समान्तर चतुर्भुज नियम से, पिण्ड पर लगने वाला परिणामी बल,
F = \(\sqrt{F_{1}^{2}+F_{2}^{2}}=\sqrt{8^{2}+6^{2}}\)
= 10 न्यूटन
परिणामी बल द्वारा F1 से बना कोण,
θ = tan-1 = \(\left(\frac{F^{2}}{F_{1}}\right)\)
= tan-1 = \(\frac{6}{8}\) = 37°
पिण्ड पर त्वरण,
a = \(\frac{F}{m}\) = \(\frac{10}{5}\) = 2 मीटर/सेकण्ड2

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.8
36 kmh-1 की चाल से गतिमान किसी ऑटो रिक्शा का चालक सड़क के बीच एक बच्चे को खड़ा देखकर अपने वाहन को ठीक 4.0s में रोककर उस बच्चे को बचा लेता हैं। यदि ऑटो रिक्शा बच्चे के ठीक निकट रुकता है, तो वाहन पर लगा औसत मंदन बल क्या है? ऑटो रिक्शा तथा चालक की संहतियाँ क्रमशः 400 kg और 65 kg हैं।
उत्तर:
दिया है:
ऑटो रिक्शा की प्रा० चाल, u = 36 किमी/घण्टा = 10 मीटर/सेकण्ड
ऑटो रिक्शा की अन्तिम चाल v = 0, t = 4 सेकण्ड औसत मंदन बल, F = ?
कुल द्रव्यमान = ऑटो रिक्शा का द्रव्यमान + चालक का द्रव्यमान
= 400 + 65 = 465 किग्रा
समी० u = y + at से,
θ = \(\frac{v-u}{t}\) = \(\frac{0-10}{4}\)
= -2.5 मीटर/सेकण्ड2
अतः मंदन बल, F = ma = 465 × 2.5
= 1.16 × 103 = 1.2 × 103 न्यूटन

प्रश्न 5.9
20,000 kg उत्थापन संहति के किसी रॉकेट में 5 ms-2 के आरंभिक त्वरण के साथ ऊपर की ओर स्फोट किया जाता है। स्फोट का आरंभिक प्रणोद (बल) परिकलित कीजिए।
उत्तर:
दिया है:
रॉकेट का द्रव्यमान, m = 20,000 किग्रा
त्वरण, a = 5 मीटर/सेकण्ड2
माना रॉकेट पर ऊपर की ओर लगने वाला आरम्भिक प्रणोद F है।
यहाँ रॉकेट पर दो बल लगते हैं –

1. प्रणोद (F) ऊपर की ओर तथा
2. रॉकेट का भार (mg) नीचे की ओर

चूँकि रॉकेट ऊपर उठ रहा है। अतः रॉकेट पर ऊपर की ओर लगने वाला बल, F1 = F – mg, लेकिन F1 = ma
∴ ma = F – mg
∴ F = mg + ma
= m (g + a)
रॉकेट = 20,000 (10 + 5)
= 20,000 × 15
= 300,000 × 3 × 105 न्यूटन।
Bihar Board Class 11 Physics Chapter 5 गति के नियम

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.10
उत्तर की ओर 10 ms-1 की एकसमान आरंभिक चाल से गतिमान 0.40 kg MB संहति के किसी पिण्ड पर दक्षिण दिशा के अनुदिश 8.0N का स्थाई बल 30 s के लिए आरोपित किया गया है। जिस क्षण बल आरोपित किया गया उसे t = 0, तथा उस समय पिण्ड की स्थिति x = 0 लीजिए। t = -5s, 25 s, 100 s पर इस कण की स्थति क्या होगी?
उत्तर:
दिया है:
प्रारम्भिक वेग, u = 10 मीटर/सेकण्ड, उत्तर दिशा की ओर
आरोपित बल F = 8 न्यूटन, दक्षिण की ओर
m = 0.4 किग्रा, t = 30 सेकण्ड
t = 0 तथा x = 0 पर बल आरोपित किया जाता है।
t = -5 सेकण्ड पर,
चूँकि t = 0 से पूर्व पिण्ड पर कोई बल आरोपित नहीं था।
अतः इस समयान्तराल में पिण्ड एकसमान वेग से गतिशील होगा।
सूत्र
Bihar Board Class 11 Physics Chapter 5 गति के नियम
= -50 मीटर
अत: t = -5 सेकण्ड पर पिण्ड x = -50 मीटर पर है।
t = 25 सेकण्ड पर,
चूँकि t = 0 से t = 30 सेकण्ड तक पिण्ड पर बल आरोपित है। अत: पिण्ड त्वरित गति में होगा।
चूँकि बल की दिशा प्रारम्भिक वेग से विपरीत है अतः यह मंदन, उत्पन्न करेगा।
सूत्र F = ma से,
मंदन, a = \(\frac{F}{m}\) = \(\frac{8}{0.4}\) = 20 मीटर/सेकण्ड2
x0 = 0, µx = 10 मीटर/सेकण्ड, t = 25 सेकण्ड
ax = -20 मीटर/सेकण्डर2
अतः (x)t = 25 = 0 + 10 × 25 × \(\frac{1}{2}\)(-20) × (25)
= – 6000 मीटर
= – 6 किमी
अतः t = 25 सेकण्ड पर पिण्ड x = -6 किमी पर है।
t = 100 सेकण्ड
xt=30 = 0 + 10 × 30 + \(\frac{1}{2}\) (-20) × 302
= -8700 मीटर
30 सेकण्ड पश्चात् वेग,
= u + at = 10 + (-20) × 30
= -590 मीटर/सेकण्ड
t = 30 सेकण्ड बाद F = 0 है। अतः t = 30 सेकण्ड बाद पिण्ड आगे के 70 सेकण्ड तक नियत चाल से चलेगा।
∴ S = vt = -590 × 70
= -41300 मीटर
∴ t = 100 सेकण्ड पर
x = (x)t=30 + xt = 70
= -8700 – 41300 = -50000
= -50 किमी।
अतः t = 100 सेकण्ड पर पिण्ड x = -50 किमी पर है।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.11
कोई ट्रक विरामावस्था से गति आरंभ करके 2.0 ms-2 के समान त्वरण से गतिशील रहता है। t = 10s पर, ट्रक के ऊपर खड़ा एक व्यक्ति धरती से 6 m की ऊँचाई से कोई पत्थर बाहर गिराता है। t = 11s पर, पत्थर का (a) वेग, तथा (b) त्वरण क्या है? (वायु का प्रतिरोध उपेक्षणीय मानिए।)
उत्तर:
दिया है:
u = 0, a = 2 मीटर/सेकण्ड2
सूत्र v = u + at से,
vt=10 = 0 + 2 × 10 = 20 मीटर/सेकण्ड (क्षैतिज दिशा में)
Bihar Board Class 11 Physics Chapter 5 गति के नियम
इसी समय व्यक्ति ट्रक पर पत्थर छोड़ता है। पत्थर छोड़ने के पश्चात् ट्रक का त्वरण पत्थर पर कोई प्रभाव नहीं डालता है। लेकिन इस क्षण तक ट्रक तथा पत्थर का वेग समान होगा। इस दशा में पत्थर गुरुत्वीय त्वरण के अधीन मुक्त गति करेगा। माना पत्थर बिन्दु P पर छोड़ते हैं। बिन्दु P से जाने वाली क्षैतिज एवम् ऊर्ध्वाधर रेखाओं को क्रमश: x व y – अक्ष माना, जबकि P मूल बिन्दु है।
∴ ux = 20 मीटर/सेकण्ड, ax = 0 व uy = 0, ay = -g मीटर/सेकण्ड2
∴ x – दिशा में त्वरण शून्य है। इस प्रकार 1 सेकण्ड पश्चात् x दिशा में वेग, ux = 20 मीटर/सेकण्ड
व vy + uy + ayt
= 0 + (-10) × 1 = -10 मीटर/सेकण्ड
∴ पत्थर छोड़ने के 1 सेकण्ड बाद वेग,
v = \(\sqrt{u_{x}^{2}+u_{y}^{2}}\)
= \(\sqrt{20^{2}+10^{2}}\) = \(\sqrt{500}\)
= 22.3 मीटर/सेकण्ड
अत:
(a) गति प्रारम्भ के बाद t = 11 सेकण्ड पर पत्थर का वेग = 22.3 मीटर/सेकण्ड
(b) 11 सेकण्ड पर पत्थर का त्वरण, a = g = 10 मीटर/सेकण्ड2

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.12
किसी कमरे की छत से 2 m लंबी डोरी द्वारा 0.1 kg संहति के गोलक को लटकाकर दोलन आरंभ किए गए। अपनी माध्य स्थिति पर गोलक की चाल 1ms-1 है। गोलक का प्रक्षेप-पथ क्या होगा यदि डोरी को उस समय काट दिया जाता है जब गोलक अपनी –

  1. चरम स्थितियों में से किसी एक पर है, तथा
  2. माध्य स्थिति पर है?

उत्तर:

  1. चरम स्थिति पर गोलक की चाल शून्य है। अब डोरी काट दी जाए तब वह ऊर्ध्वाधर अधोमुखी गिरेगा।
  2. माध्य स्थिति पर गोलक में क्षैतिज वेग होता है। जब डोरी काट दी जाए तब वह किसी परवलयिक पथ के अनुदिश गिरेगा।

प्रश्न 5.13
किसी व्यक्ति की संहति 70 kg है। वह एक गतिमान लिफ्ट में तुला पर खड़ा है जो –
(a) 10 ms-1 की एकसमान चाल से ऊपर जा रही है
(b) 5 ms-2 के एकसमान त्वरण से नीचे जा रही है
(c) 5 ms-2 के एकसमान त्वरण से ऊपर जा रही है, तो प्रत्येक प्रकरण में तुला के पैमाने का पाठ्यांक क्या होगा?
(d) यदि लिफ्ट की मशीन में खराबी आ जाए और वह गुरुत्वीय प्रभाव में मुक्त रूप से नीचे गिरे तो पाठ्यांक क्या होगा?
उत्तर:
दिया है:
m = 70 किग्रा
(a) चूँकि लिफ्ट एकसमान वेग से गतिमान है। अतः त्वरण a = 0
तुला के पैमाने का पाठ्यांक,
R = mg = 70 × 9.8 = 686 न्यूटन

(b) लिफ्ट का त्वरण, a = 5 मीटर/सेकण्ड2 (नीचे की ओर)
∴ तुला के पैमाने का पाठ्यांक,
R = m (g – a)
= 70 × (9.8 – 5)
= 336 न्यूटन

(c) लिफ्ट का त्वरण, a = 5 मीटर/सेकण्ड2 (ऊपर की ओर)
∴ तुला के पैमाने का पाठ्यांक,
R = m (g + a)
= 70 (9.8 + 5)
= 1036 न्यूटन

(d) चूँकि लिफ्ट गुरुत्वीय प्रभाव में मुक्त रूप से गिरती है।
∴ a = g
∴ तुला के पैमाने का पाठ्यांक,
R = m (g – a)
= 70 × 0 = 0

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.14
चित्र में 4 kg संहति के किसी पिण्ड का स्थिति-समय ग्राफ दर्शाया गया है।
(a) t < 0; t > 4s; 0 < t < 4s के लिए पिण्ड पर आरोपित बल क्या है?
(b) t = 0 तथा t = 4s पर आवेग क्या है?
Bihar Board Class 11 Physics Chapter 5 गति के नियम
(केवल एकविमीय गति पर विचार कीजिए)
उत्तर:
(a) t < पर, स्थिति – समय (n – t) ग्राफ समय अक्ष के साथ सम्पाती है। अतः पिण्ड पर आरोपित बल शून्य है। t > 4 सेकण्ड के लिए, x – t ग्राफ समय अक्ष के समान्तर सरल रेखा है। अतः पिण्ड विरामावस्था में है तथा पिण्ड पर कार्यरत बल शून्य है। 0 < t < 4 सेकण्ड के लिए, x – t ग्राफ एक झुकी हुई सरल रेखा है अर्थात् इस काल में पिण्ड की मूल बिन्दु से दूरी नियत दर से लगातार बढ़ रही है अर्थात् इस दौरान नियत है व त्वरण शून्य है। अतः पिण्ड पर आरोपित बल शून्य है।

(b) t = 0 से पहले पिण्ड का वेग v1 = 0
t = 0 के पश्चात् पिण्ड का वेग
v2 = ग्राफ OA का ढाल
= \(\frac{3}{4}\) मीटर/सेकण्ड
अतः t = 0 पर, आवेग = संवेग परिवर्तन की दर
= mv2 – mv1
= 4 × \(\frac{3}{4}\) – 4 × 0
= 3 किग्रा मीटर/सेकण्ड
पुनः t = 4 सेकण्ड के ठीक पहले, वेग
v1 = \(\frac{3}{4}\) मीटर/सेकण्ड
t = 4 सेकण्ड के ठीक बाद, वेग v2 = 0
∴ t = 4 सेकण्ड दर, आवेग = संवेग परिवर्तन
= mv2 – mv1
= 4(0 – \(\frac{3}{4}\))
= -3 किग्रा मीटर/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.15
किसी घर्षणरहित मेज पर रखे 10 kg तथा 20 kg के दो पिण्ड किसी पतली डोरी द्वारा आपस में जुड़े हैं। 600 N का कोई क्षैतिज बल

  1. A पर
  2. B पर डोरी के अनुदिश लगाया जाता है। प्रत्येक स्थिति में डोरी में तनाव क्या है?

उत्तर:
दिया है:
F = 600 न्यूटन
Bihar Board Class 11 Physics Chapter 5 गति के नियम

1. माना पिण्ड A पर बल आरोपित करने से दोनों पिण्ड त्वरण a, से चलना प्रारम्भ करते हैं एवम् डोरी में तनाव T है। पिण्ड A पर बल F आगे की ओर एवम् तनाव T पीछे की ओर लगेगा।
अतः इस पिण्ड पर नेट बल,
F = F – T
न्यूटन के गति विषयक द्वितीय नियम से,
F1 = m1a
∴ m1a = F – T
या 10a = 600 – T ……………. (1)
पिण्ड B पर एकमात्र बल, डोरी का तनाव (T) आगे की ओर लगेगा।
∴ T = m2a = 20a ………….. (2)
समी० (2) से T का मान समी० (1) में रखने पर,
10a = 600 – 20a
या 10a + 20a = 600
∴ 30a = 600 या।
a = \(\frac{600}{30}\) = 20 मी/सेकण्ड2
a का यह मान समी० (2) में रखने पर,
T = 20 × 20 = 400 न्यूटन

2. इस स्थिति में, पिण्ड B पर नेट बल F2 = F – T होगा।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
न्यूटन के गति विषयक द्वितीय नियम से,
F – T = m2a
या 600 – T = 20a ……………. (3)
पिण्ड A पर नेट बल T आगे की ओर होगा।
∴ T = m, a
= 10a …… (4)
समी० (4) से T का मान समी० (3) में रखने पर,
600 – 10a = 20a
∴ a = \(\frac{600}{30}\) = 20 मीटर/सेकण्ड2 ………….. (3)
a का यह मान समी० (4) में रखने पर
T = 10 × 20
= 200 न्यूटन

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.16.
8 kg तथा 12 kg के दो पिण्डों को किसी हल्की अवितान्य डोरी,जो घर्षणरहित घिरनी पर चढ़ी है, के दो सिरों से बाँधा गया है। पिण्डों को मुक्त छोड़ने पर उनके त्वरण तथा डोरी में तनाव ज्ञात कीजिए।
उत्तर:
माना घर्षण रहित घिरनी पर हल्की अवितान्य डोरी से द्रव्यमान m1 व m2 लटकाएँ गए हैं।
∴ m1 = 8 किग्रा,
m2 = 12 किग्रा
माना डोरी में तनाव T व त्वरण a है। यह त्वरण m2 पर नीचे की ओर तथा m1 पर ऊपर की ओर है। m2 की गति की समी० निम्न होगी –
F = 12g – T (नीचे की ओर)
गति के नियम से,
F = m2a = 12a
Bihar Board Class 11 Physics Chapter 5 गति के नियम
∴ 12g – T = 12a …………….. (2)
इसी प्रकार m1 के लिए,
8g – T = -8a [∴ a ऊपर की ओर है।]
∴ समी० (2) को (1) में से घटाने पर,
4g = 20a
∴ a = \(\frac{4×10}{20}\) = 2 मीटर/सेकण्ड2
∴ समी० (1) से डोरी में तनाव,
T = 12 (g – a) = 12 (10 – 2)
= 12 × 8
= 96 न्यूटन

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.17
प्रयोगशाला के निर्देश फ्रेम में कोई नाभिक विराम में है। यदि यह नाभिक दो छोटे नाभिकों में विघटित हो जाता है, तो यह दर्शाइए कि उत्पाद विपरीत दिशाओं में गति करने चाहिए।
उत्तर:
माना विरामावस्था में नाभिक का द्रव्यमान = m
विरामावस्था में नाभिक का प्रा० वेग, \(\vec{u}\) = 0
माना विघटित नाभिकों के द्रव्यमान m1 व m2 तथा इनके वेग क्रमश: \(\vec{v}_{1}\) व \(\vec{v}_{2}\) है।
माना विघटन से पूर्व तथा बाद में संवेग क्रमश: \(\vec{p}_{i}\) व \(\vec{p}_{t}\)
∴ \(\vec{p}_{i}\) = m\(\vec{u}\) = 0 …………… (1)
तथा \(\vec{p}_{t}\) = m1 \(\vec{v}_{1}\) + m2 \(\vec{v}_{2}\) परन्तु संवेग संरक्षण के नियम से,
\(\vec{p}_{i}\) = \(\vec{p}_{t}\)
∴ 0 = m1 \(\vec{v}_{1}\) + m2 \(\vec{v}_{2}\)
या \(\vec{v}_{2}\) = – \(\frac { m_{ 1 } }{ m_{ 2 } } \) \(\vec{v}_{1}\)
समीकरण (3) से स्पष्ट है कि \(\vec{v}_{1}\) तथा \(\vec{v}_{2}\) विपरीत दिशा में हैं। अतः विघटित नाभिक विपरीत दिशाओं में गति करेंगे।

प्रश्न 5.18
दो बिलियर्ड गेंद जिनमें प्रत्येक की संहति 0.05 kg है, 6 ms-1 की चाल से विपरीत दिशाओं में गति करती हई संघट्ट करती हैं और संघट्ट के पश्चात् उसी चाल से वापस लौटती हैं। प्रत्येक गेंद पर दूसरी गेंद कितना आवेग लगाती है?
उत्तर:
गेंदों का द्रव्यमान m1 = m2 = 0.05 किग्रा
माना पहली गेंद धनात्मक दिशा में चलती है।
∴ u1 = 6 मीटर/से
v1 = -6 मीटर/सेकण्ड
u2 = -6 मीटर/सेकण्ड
v2 = मीटर/सेकण्ड
सूत्र आवेग = संवेग परिवर्तन से, पहली गेंद का दूसरी गेंद पर आवेग,
= m1v1 – m1u1
= 0.05 × (-6) – 0.05 × 6
= -0.6 किग्रा मीटर/सेकण्ड
तथा दूसरी गेंद का पहली गेंद पर आवेग,
= m2v2 – m2u2
= 0.05 × 6 – 0.05 × – 6
= 0.6 किग्रा मीटर/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.19
100 kg संहति की किसी तोप द्वारा 0.020 kg का गोला दागा जाता है। यदि गोले की नालमुखी चाल 80 ms-1 है, तो तोप की प्रतिक्षेप चाल क्या है?
उत्तर:
दिया है: तोप का द्रव्यमान, m1 = 100 किग्रा
गोले का द्रव्यमान m2 = 0.02 किग्रा
गोले की नालमुखी चाल, v2 = 80 मीटर/सेकण्ड
तोप की प्रतिक्षेप चाल v1 = ?
प्रश्नानुसार विस्फोट से पूर्व तोप एवम् गोला दोनों विरामावस्था में थे।
∴ संवेग संरक्षण के निकाय से,
विस्फोट से पूर्व संवेग = विस्फोट के बाद संवेग
∴ m1v1 + m2v2 = 0
∴ v1 = \(\frac { -m_{ 2 }v_{ 2 } }{ m_{ 1 } } \)
= \(\frac{-0.02×80}{100}\) = – 0.016 मीटर/सेकण्ड

प्रश्न 5.20
कोई बल्लेबाज किसी गेंद को 45° के कोण पर विक्षेपित कर देता है। ऐसा करने में वह गेंद की आरंभिक चाल, जो 54 km/h-1 है, में कोई परिवर्तन नहीं करता। गेंद को कितना आवेग दिया जाता है? (गेंद की संहति 0.15 kg है)
उत्तर:
दिया है:
गेंद का द्रव्यमान, m1 = 0.15 किग्रा
प्रा० वेग, u = 54 किमी/घण्टा
= 54 × \(\frac{5}{18}\) = 15 मीटर/सेकण्ड
अन्तिम वेग, v = 15 मीटर/सेकण्ड जो कि u से 45° के कोण पर है।
माना प्रारम्भिक तथा अन्तिम संवेग क्रमश: \(\vec{p}_{i}\) व \(\vec{p}_{t}\) हैं।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
∴ सूत्र आवेग = संवेग परिवर्तन से,
\(\vec{I}\) = \(\vec{p}_{t}\) – \(\vec{p}_{i}\)
= \(\vec{p}_{t}\) + (-\(\vec{p}_{i}\))
अतः आवेग दोनों संवेगों का परिणामी है।
∴ \(\vec{I}\) का परिमाण
Bihar Board Class 11 Physics Chapter 5 गति के नियम
= 1.72 किग्रा मीटर/सेकण्ड
= 172 न्यूटन सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.21
किसी डोरी के एक सिरे से बँधा 0.25 kg संहति का कोई पत्थर क्षैतिज तल में 1.5 m त्रिज्या के वृत्त पर 40 rev/min की चाल से चक्कर लगाता है? डोरी में तनाव कितना है? यदि डोरी 200Nके अधिकतम तनाव को सहन कर सकती है तो अधिकतम चाल ज्ञात कीजिए जिससे पत्थर को घुमाया जा सकता है।
उत्तर:
दिया है:
पत्थर का द्रव्यमान, m = 0.25 किग्रा
पत्थर के पथ की त्रिज्या, r = 1.5 मीटर
पत्थर की घूर्णन आवृत्ति, u = 40 चक्कर/मिनट
= \(\frac{40}{60}\) = \(\frac{2}{3}\) चक्कर/सेकण्ड
∴ T = mrω2 = mr(2πv)2
= 0.25 × 1.5 × [2 × 3.14 × \(\frac{2}{3}\))2
= 6.6 न्यूटन
डोरी का अधिकतम तनाव, Tmax = 200 न्यूटन
पत्थर की अधिकतम चाल = ?
सूत्र
Bihar Board Class 11 Physics Chapter 5 गति के नियम
= 35 मीटर/सेकण्ड

प्रश्न 5.22
यदि अभ्यास 5.21 में पत्थर की चाल को अधिकतम निर्धारित सीमा से भी अधिक कर दिया जाए, तथा डोरी यकायकं टूट जाए, तो डोरी के टूटने के पश्चात् पत्थर के प्रक्षेप का वर्णन निम्नलिखित में से कौन करता है:
(a) वह पत्थर झटके के साथ त्रिज्यत: बाहर की ओर जाता है।
(b) डोरी टूटने के क्षण पत्थर स्पर्श रेखीय पथ पर उड़ जाता है।
(c) पत्थर स्पर्शी से किसी कोण पर, जिसका परिमाण पत्थर की चाल पर निर्भर करता है, उड़ जाता है।
उत्तर:
विकल्प (b) सही है।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.23
स्पष्ट कीजिए कि क्यों:
(a) कोई घोड़ा रिक्त दिक्स्थान में किसी गाड़ी को खींचते हुए दौड़ नहीं सकता।
(b) किसी तीव्र गति से चल रही बस के यकायक रुकने पर यात्री आगे की ओर गिरते हैं।
(c) लान मूवर को धकेलने की तुलना में खींचना आसान होता है।
(d) क्रिकेट का खिलाड़ी गेंद को लपकते समय अपने हाथ गेंद के साथ पीछे को खींचता है।
उत्तर:
(a) चूँकि दिक्स्थान से घोड़ा-गाड़ी निकाय पर कोई बाह्य बल कार्यरत नहीं है। घोड़ा तथा गाड़ी के मध्य पारस्परिक बल (क्रिया प्रतिक्रिया के नियम से) निरस्त हो जाता है। अत: फर्श पर, निकाय व फर्श के बीच सम्पर्क बल (घर्षण बल) घोड़े व गाड़ी को विराम से गति में लाने का कारण होते हैं।

(b) यात्री के शरीर का जो भाग गद्दी के सीधे सम्पर्क में नहीं है वह जड़त्व के कारण गतिमान, बस के यकायक रुकने पर आगे की ओर हो जाता है परिणामस्वरूप यात्री गिर जाते हैं।

(c) घास मूवर को किसी कोण पर बल आरोपित करके खींचा या धकेला जाता है। जब हम धक्का देते हैं तब ऊर्ध्वाधर दिशा में सन्तुलन के लिए, अभिलम्ब बल उसके भार से अधिक होना चाहिए जिसके परिणामस्वरूप घर्षण बल बढ़ जाता है। इस प्रकार मूवर को चलाने के लिए अधिक बल आरोपित करना पड़ता है जबकि खींचते समय इसके विपरीत होता है। इसी कारण लॉन मूवर को खींचना आसान होता है।

(d) क्रिकेट का खिलाड़ी गेंद को लपकते समय, अपने हाथ को गेंद के साथ पीछे की ओर इस कारण खींचता है कि ताकि खिलाड़ी संवेग परिवर्तन की दर को घटा दे तथा इस प्रकार गेंद को रोकने के लिए आवश्यक बल को कम करने के लिए हाथ को पीछे की ओर खींचता है।

Bihar Board Class 11 Physics गति के नियम Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 5.24
चित्र में 0.04 kg संहति के किसी पिण्ड का स्थिति-समय ग्राफ दर्शाया गया है। इस गति के लिए कोई उचित भौतिक संदर्भ प्रस्तावित कीजिए। पिण्ड द्वारा प्राप्त दो क्रमिक आवेगों के बीच समय-अंतराल क्या है? प्रत्येक आवेग का परिमाण क्या है?
Bihar Board Class 11 Physics Chapter 5 गति के नियम
उत्तर:
दिया गया ग्राफ दो समान्तर ऊर्ध्वाधर दीवारों के मध्य एक समान चाल से क्षैतिज गति करती गेंद का ग्राफ हो सकता है जो बार-बार दीवार से टकराकर 2 सेकण्ड बाद दूसरी दीवार से टकराती है। यह प्रक्रिया निरन्तर चलती रहती है अर्थात् प्रत्येक 2 सेकण्ड के पश्चात् पिण्ड का वेग बदलता है।
∴ दो क्रमिक आवेगों के बीच समयान्तराल = 2 सेकण्ड
t = 2 सेकण्ड से पहले, वेग v1 = ग्राफ का ढाल
= \(\frac{2}{2}\) = 1 सेमी/सेकण्ड
t = 2 सेकण्ड के बाद वेग v2 = ग्राफ का ढाल
= \(\frac{-2}{2}\) = -1 सेमी/सेकण्ड
∴ सूत्र आवेग = संवेग परिवर्तन से,
आवेग = Pi = Pt = mv1 – m2
= m (v1 – v2) = 0.04 [1 – (-1)]
= 0.04 × 2 = 0.08 किग्रा सेमी/सेकण्ड
\(\frac{0.08}{100}\) किग्रा-मीटर/सेकण्ड
= 8 × 10-4 किग्रा-मीटर/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.25
चित्र में कोई व्यक्ति 1ms-2 त्वरण से गतिशील क्षैतिज संवाहक पट्टे पर स्थित खड़ा है। उस व्यक्ति पर आरोपित नेट बल क्या है? यदि व्यक्ति के जूतों और पट्टे के बीच स्थैतिक घर्षण गुणांक 0.2 है, तो पट्टे के कितने त्वरण तक वह व्यक्ति उस पट्टे के सापेक्ष स्थिर रह सकता है? (व्यक्ति की संहति = 65 kg)
Bihar Board Class 11 Physics Chapter 5 गति के नियम
उत्तर:
दिया है:
पट्टे का त्वरण, a = 1 मीटर/सेकण्ड2
व्यक्ति का द्रव्यमान, m = 65 किग्रा।
चूँकि व्यक्ति पट्टे पर स्थिर खड़ा है। अत: व्यक्ति का त्वरण a = 1 मी/सेकण्ड2
सूत्र F = ma से,
व्यक्ति पर नेट बल, F = 65 × 1
= 65 न्यूटन।
पुनः µs = 0.2
चूँकि पट्टा क्षैतिज अवस्था में है। अत: व्यक्ति पर पट्टे की अभिलम्ब प्रतिक्रिया,
N = mg = 65 × 10 = 650 न्यूटन
माना पट्टे का अधिकतम त्वरण amax है। इस स्थिति में पट्टे के साथ गति करने के लिए व्यक्ति को mamax के बराबर बल की आवश्यकता होगी जो उसे स्थैतिक घर्षण से प्राप्त होगा।
∴ mamax ≤ µs N
∴ amax = \(\frac { \mu _{ s }N }{ m } \)
= \(\frac{0.2×650}{65}\) = 2 मीटर/सेकण्डर2

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.26
m संहति के पत्थर को किसी डोरी के एक सिरे से बाँधकर R त्रिज्या के ऊर्ध्वाधर वृत्त में घुमाया जाता है। वृत्त के निम्नतम तथा उच्चतम बिंदुओं पर ऊर्ध्वाधरतः अधोमुखी दिशा में नेट बल है। (सही विकल्प चुनिए)
Bihar Board Class 11 Physics Chapter 5 गति के नियम
यहाँ T1 तथा v1, निम्नतम बिन्दु पर तनाव तथा चाल दर्शाते हैं। T2 तथा v2 इनके उच्चतम बिन्दु पर तदनुरूपी मान हैं।
उत्तर:
अधोमुखी नेट बल = mg – T1
जहाँ T1 तनाव निम्नतम बिन्दु पर ऊपर की ओर तथा भार mg नीचे की ओर है।
तथा नेट अधोमुखी बल = mg + T2
जहाँ T2 तनाव उच्चतम बिन्दु पर तथा भार mg दोनों नीचे की ओर हैं।
अतः विकल्प (i) सही है।

प्रश्न 5.27
1000 kg संहति का कोई हेलीकॉप्टर 15 ms-2 के ऊर्ध्वाधर त्वरण से ऊपर उठता है। चालक दल तथा यात्रियों की संहति 300 kg है। निम्नलिखित बलों का परिमाण व दिशा लिखिए:
(a) चालक दल तथा यात्रियों द्वारा फर्श पर आरोपित बल,
(b) चारों ओर की वायु पर हेलीकॉप्टर के रोटर की क्रिया, तथा
(c) चारों ओर की वायु के कारण हेलीकॉप्टर पर आरोपित बल
उत्तर:
दिया है:
हेलीकॉप्टर का द्रव्यमान,
m1 = 1000 किग्रा।
चालक दल व यात्रियों का द्रव्यमान m2 = 300 किग्रा।
हेलीकॉप्टर का ऊर्ध्वाधर त्वरण, a = 15 मीटर/सेकण्ड2
गुरुत्व के कारण त्वरण, g = 10 मीटर/सेकण्ड2

(a) माना चालक व यात्रियों द्वारा फर्श पर आरोपित बल R1 है।
∴ R1 = m2(g + a) = 300 (10 + 15)
= 7500 न्यूटन। जोकि ऊपर की ओर होगा।

(b) माना कि रोटर के कारण वायु पर बल R2 है।
∴ R2 = (m1 + m2) (g + a)
= (1000 + 300) (15 + 10)
= 32500 न्यूटन
चूँकि हेलीकॉप्टर इस बल के प्रतिक्रिया स्वरूप ऊपर की ओर चलता है अत: यह बल भी ऊपर की ओर दिष्ट होगा।

(c) क्रिया प्रतिक्रिया के नियम से, वायु द्वारा हेलीकॉप्टर पर आरोपित बल भी 32500 न्यूटन होगा।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.28
15 ms-1 की चाल से क्षैतिजतः प्रवाहित कोई जलधारा 10-2m2 अनुप्रस्थ काट की किसी नली से बाहर निकलती है तथा समीप की किसी ऊर्ध्वाधर दीवार से टकराती है। जल की टक्कर द्वारा, यह मानते हुए कि जलधारा टकराने पर वापस नहीं लौटती, दीवार पर आरोपित बल ज्ञात कीजिए।
उत्तर:
दिया है:
नली का अनुप्रस्थ क्षेत्रफल, A = 10-2 मीटर2
जल का वेग, µ = 15 मीटर/सेकण्ड
जल का घनत्व, d = 103 किग्रा/मीटर3
जल के कारण दीवार पर लगने वाला बल F = ?
नली से प्रतिसेकण्ड निकलने वाले जल का आयतन
= a × v
= 15 × 10-2 मीटर/सेकण्ड
जल का घनत्व ∅ = 103 किग्रा/मीटर3
दीवार से प्रति सेकण्ड टकराने वाले जल का आयतन, m = ∅v
= 103 × 15 × 10-2
= 150 किग्रा/सेकण्ड
चूँकि दीवार से टकराकर जल वापस नहीं लौटता है।
अतः आरोपित बल = प्रति सेकण्ड निकलने वाले जल के संवेग में परिवर्तन
= 150 × 15
= 2250 न्यूटन

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.29
किसी मेज पर एक-एक रुपये के दस सिक्कों को एक के ऊपर एक करके रखा गया है। प्रत्येक सिक्के की संहति m है। निम्नलिखित प्रत्येक स्थिति में बल का परिमाण एवं दिशा लिखिए:
(a) सातवें सिक्के (नीचे से गिनने पर) पर उसके ऊपर रखे सभी सिक्कों के कारण बल,
(b) सातवें सिक्के पर आठवें सिक्के द्वारा आरोपित बल, तथा
(c) छठे सिक्के की सातवें सिक्के पर प्रतिक्रिया।
उत्तर:
(a) नीचे से सातवें सिक्के के ऊपर तीन सिक्के रखे हैं। अतः सातवें सिक्के पर तीनों सिक्कों के भार का अनुभव होगा।
∴ सातवें सिक्के के ऊपर के सिक्कों के कारण बल = 3mg न्यूटन

(b) आठवें सिक्के के ऊपर दो सिक्के रखे हैं। अत: सातवें व आठवें सिक्के के कारण बल, आठवें व इसके ऊपर रखे दो सिक्कों के भारों के योग के समान होगा।
अतः सातवें सिक्के पर आठवें सिक्के के कारण बल
= 3 × mg
= 3mg न्यूटन

(c) सातवाँ सिक्का स्वयं व ऊपर के तीन सिक्कों के भारों के योग के समान बल से छठवें सिक्के को दबाएगा।
अतः छठे सिक्के पर सातवें सिक्के के कारण बल = 4mg न्यूटन।
अतः छठे सिक्के की सातवें सिक्के पर प्रतिक्रिया
= 4mg न्यूटन

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.30
कोई वायुयान अपने पंखों को क्षैतिज से 15° के झुकाव पर रखते हुए 720 kmh-1 की चाल से एक क्षैतिज लूप पूरा करता है। लूप की त्रिज्या क्या है?
उत्तर:
दिया है:
वेग = 720 किमी/घण्टा
θ = 15°
लूप की त्रिज्या, r = ?
सूत्र
Bihar Board Class 11 Physics Chapter 5 गति के नियम
= 14.8
= 15 किमी।

प्रश्न 5.31
कोई रेलगाड़ी बिना ढाल वाले 30 m त्रिज्या के वृत्तीय मोड़ पर 54 km h-1 चाल से चलती है। रेलगाड़ी की संहति 106 kg है। इस कार्य को करने के लिए आवश्यक अभिकेंद्र बल कौन प्रदान करता है? इंजन अथवा पटरियाँ? पटरियों को क्षतिग्रस्त होने से बचाने के लिए मोड़ का ढाल-कोण कितना होना चाहिए?
उत्तर:
दिया है:
v = 54 किमी/घण्टा
= 54 × \(\frac{5}{18}\) = 15 मीटर/सेकण्ड
r = 30 मीटर
m = 106 किग्रा, g = 10 मीटर/सेकण्ड2
सूत्र tan θ = \(\frac{v}{rg}\) से
tan θ = \(\frac { (15)^{ 2 } }{ 30\times 10 } \) = \(\frac{3}{4}\)
θ = tan-1 (\(\frac{3}{4}\)) = 40°
अर्थात् पटरियों को क्षतिग्रस्त होने से बचाने के लिए पटरियों का झुकाव 40° होना चाहिए।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.32
चित्र में दर्शाए अनुसार 50 kg संहति का कोई व्यक्ति 25 kg संहति के किसी गटके को दो भिन्न ढंग से उठाता है। दोनों स्थितियों में उस व्यक्ति द्वारा फर्श पर आरोपित क्रिया-बल कितना है? यदि 700 N अभिलंब बल से फर्श धंसने लगता है, तो फर्श को धंसने से बचाने के लिए उस व्यक्ति को, गुटके को उठाने के लिए कौन-सा ढंग अपनाना चाहिए?
Bihar Board Class 11 Physics Chapter 5 गति के नियम
उत्तर:
दिया है:
व्यक्ति का द्रव्यमान m1 = 50 किग्रा,
गुटके का द्रव्यमान m2 = 25 किग्रा
प्रथम स्थिति (स्थिति – a) में,
व्यक्ति रस्सी पर 25 g न्यूटन का बल लगाकर ऊपर खींचता है तथा प्रतिक्रिया स्वरूप रस्सी भी व्यक्ति पर नीचे की ओर 25 g N का बल लगाती है।
∴ व्यक्ति पर नेट बल,
F = व्यक्ति का भार + गुटके का भार
= 50g + 25g = 75g = 75 × 10
= 750 न्यूटन।
चूँकि व्यक्ति फर्श पर खड़ा है अतः व्यक्ति फर्श पर यही बल आरोपित करेगा।
द्वितीय स्थिति (स्थिति – b) में, व्यक्ति गुटके को उठाने के लिए, रस्सी पर 25 g न्यूटन का बल नीचे की ओर लगाता है। अतः रस्सी भी इतना ही बल व्यक्ति पर ऊपर की ओर लगाएगी।
∴ व्यक्ति पर नेट बल
F = व्यक्ति का भार – रस्सी द्वारा लगाया गया बल
= 50g – 25g
= 25 g
= 250 न्यूटन।
यही बल व्यक्ति फर्श पर लगाता है। उपरोक्त वर्णन से स्पष्ट है कि स्थिति में फर्श धंस जाएगा। अतः इससे बचाने के लिए यह ढंग अनुप्रयुक्त है।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.33
40 kg संहति का कोई बंदर 600 N का अधिकतम तनाव सह सकने योग्य किसी रस्सी पर चढ़ता है (चित्र)।नीचे दी गई स्थितियों में से किसमें रस्सी टूट जाएगी:
(a) बंदर 6 ms-2 त्वरण से ऊपर चढ़ता है,
(b) बंदर 4 ms-2 त्वरण से नीचे उतरता है,
(c) बंदर 5 ms-1 की एकसमान चाल से रस्सी पर चढ़ता है,
(d) बंदर लगभग मुक्त रूप से गुरुत्व बल के प्रभाव में रस्सी से गिरता है। (रस्सी की संहति उपेक्षणीय मानिए।)
Bihar Board Class 11 Physics Chapter 5 गति के नियम
उत्तर:
माना बन्दर रस्सी पर T बल नीचे की ओर लगाते हुए a त्वरण से ऊपर की ओर चलता है। अतः क्रिया प्रतिक्रिया के नियम से, रस्सी भी बन्दर पर T बल ऊपर की ओर लगाएगी।
∴ बन्दर पर नेट बल, F = T – mg (ऊपर की ओर)
पुनः सूत्र F = ma से,
ma = T – mg
∴ रस्सी पर तनाव, T = mg + ma ……. (1)

(a) दिया है:
a = 6 मीटर/सेकण्ड2, m = 40 किग्रा, g = 10 मीटर/सेकण्ड
∴ T = 40 × 10 + 40 × 6
= 640 न्यूटन
परन्तु रस्सी पर अधिकतम तनाव 600 न्यूटन है अतः रस्सी टूट जाएगी।

(b) दिया है:
a = -4 मीटर/सेकण्ड2
∴ तनाव T = 40 × 10 – 40 × 4
= 240 न्यूटन

(c) दिया है:
a = 0, चूँकि v = 5 मीटर/सेकण्ड नियत है।
∴ तनाव, T = 40 × 10 – 40 × 0
= 400 न्यूटना

(d) मुक्त रूप से गिरते हुए, a = – g
∴ तनाव, T = 40 × g – 40 × g
अतः रस्सी केवल प्रथम स्थिति में टूटेगी।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.34
दो पिण्ड A तथा B, जिनकी संहति क्रमशः 5 kg तथा 10 kg है, एक दूसरे के संपर्क में एक मेज पर किसी दृढ़ विभाजक दीवार के सामने विराम में रखे हैं। (चित्र) पिण्डों तथा मेज के बीच घर्षण गुणांक 0.15 है। 200N का कोई बल क्षैतिजतः A पर आरोपित किया जाता है।
(a) विभाजक दीवार की प्रतिक्रिया, तथा
(b) A तथा B के बीच क्रिया-प्रतिक्रिया बल क्या हैं? विभाजक दीवार को हटाने पर क्या होता है? यदि पिण्ड गतिशील है तो क्या
(c) का उत्तर बदल जाएगा? µs तथा µk के बीच अंतर की उपेक्षा कीजिए।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
उत्तर:
विभाजक दीवार होने पर, पिण्ड विरामावस्था में होंगे।
∴ पिण्डों का त्वरण, a = 0
माना कि पिण्ड A, B पर R1 बल आरोपित करता है जबकि पिण्ड B, A पर विपरीत दिशा में R2 बल आरोपित करता है।
चूँकि पिण्ड A स्थिर अवस्था में है। अतः इस पर नैट बल शून्य होगा।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
∴ 200 न्यूटन – R1
R1 = 200 न्यूटन
पुनः माना पिण्ड B द्वारा दीवार पर आरोपित बल R2 है। क्रिया प्रतिक्रिया के नियम से, पिण्ड B पर दीवार समान बल विपरीत दिशा में आरोपित करेगी।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
चूँकि पिण्ड B भी स्थिर अवस्था में है। अतः इस पर नेट बल, F = 0
∴ R1 – R2
∴ R2 = R1 = 200 न्यूटन
(a) अतः दीवार. की प्रतिक्रिया, R2 = 200 न्यूटन
(b) पिण्डों A तथा B के बीच क्रिया व प्रतिक्रिया,
R1 = 200 न्यटन
विभाजक दीवार हटाने पर पिण्ड गतिशील हो जाते हैं एवम् घर्षण बल कार्यशील हो जाते हैं।
इस दशा में पिण्ड A का बल आरेख चित्र में दिया गया है।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
मेज की अभिलम्ब प्रतिक्रिया, R = 5g न्यूटन।
माना पिण्ड A, त्वरण a से चलना प्रारम्भ करता है तब पिण्ड का गति समीकरण निम्न होगा –
Bihar Board Class 11 Physics Chapter 5 गति के नियम
∴ R1 – R1 µg = 5a …………… (i)
पिण्ड B का बल आरेख चित्र के अनुसार है।
∴ अभिलम्ब प्रतिक्रिया, R’ = 10g
तथा गति का समीकरण
R1 – µR’ = 10a
∴ R1 – 10µg = 10a ……………. (ii)
समी० (i) व (ii) को जोड़ने पर,
200 – 15µg = 15a
त्वरण
a = \(\frac{200-15µg}{15}\)
= \(\frac{200-15×0.15×10}{15}\)
= 11.83 ~ 12 मीटर/सेकण्डर2
अर्थात् पिण्ड गतिशील हो जाएँगे।
a का मान समी० (2) में रखने पर,
R1 – 10 × 0.15 × 10 = 10 × 12
∴ R1 = 120 + 15
= 135 न्यूटन
अर्थात् पिण्डों के गतिशील होने पर भाग (b) का अन्तर परिवर्तित हो गया है।

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.35
15 kg संहति का कोई गुटका किसी लंबी ट्राली पर रखा है। गुटके तथा ट्राली के बीच स्थैतिक घर्षण गुणांक 0.18 है। ट्राली विरामावस्था से 20 s तक 0.5 ms-2 के त्वरण से त्वरित होकर एकसमान वेग से गति करने लगती है।
(a) धरती पर स्थिर खड़े किसी प्रेक्षक को, तथा
(b) ट्राली के साथ गतिमान किसी अन्य प्रेक्षक को, गुटके की गति कैसी प्रतीत होगी, इसकी विवेचना कीजिए।
उत्तर:
दिया है:
गुटके का द्रव्यमान, m = 15 किग्रा,
स्थैतिक घर्षण गुणांक, µs = 0.18
t = 20 सेकण्ड के लिए, ट्राली का त्वरण,
a1 = 0.5 मीटर/सेकण्ड2
t = 20 सेकण्ड के पश्चात् ट्राली का वेग अचर है।
चूँकि प्रारम्भ में ट्राली त्वरित गति करती है। अतः यह एक अजड़त्वीय निर्देश तन्त्र का उदाहरण है।
अतः गुटके पर छद्द बल
F1 = ma = 15 × 0.5 = 7.5 न्यूटन बल पीछे की ओर कार्य करेगा।
ट्राली के फर्श द्वारा गुटके पर लगाया गया अग्रगामी घर्षण बल,
F2 = µN = 0.18 × (15 × 10) = 27 न्यूटन
चूँकि घर्षण बल पश्चगामी बल की तुलना में कम है अतः गुटका पीछे की ओर नहीं फिसलेगा व ट्राली के साथ-साथ गतिमान रहेगा।
(a) धरती पर स्थिर खड़े प्रेक्षक को गुटका ट्राली के साथ गति करता प्रतीत होगा।

प्रश्न 5.36
चित्र में दर्शाए अनुसार किसी ट्रक का पिछला भाग खुला है तथा 40 kg संहति का एक संदूक खुले सिरे से 5 m दूरी पर रखा है। ट्रक के फर्श तथा संदूक के बीच घर्षण गुणांक 0.15 है। किसी सीधी सड़क पर ट्रक विरामावस्था से
Bihar Board Class 11 Physics Chapter 5 गति के नियम
गति प्रारंभ करके 2 ms-2 से त्वरित होता है। आरंभ बिंदु से कितनी दूर चलने पर वह संदूक ट्रक से नीचे गिर जाएगा? (संदूक के आमाप की उपेक्षा कीजिए।)
उत्तर:
दिया है:
घर्षण गुणांक, µ = 0.15
संदूक का द्रव्यमान = 40 किग्रा.
खुले सिरे से दूरी, s = 5 मीटर, ट्रक के लिए। µ = 0, त्वरण = 2 मीटर/सेकण्ड2 ट्रक द्वारा तय दूरी (जबकि संदूक गिर जाता है) = ?
चूँकि ट्रक की गति त्वरित है अत: यह एक अजड़त्वीय निर्देश तन्त्र होगा।
अतः ट्रक के पीछे रखे संदूक पर पीछे की ओर एक छद्म बल (F = ma) होगा।
F = 40 × 2 = 80 न्यूटन
संदूक पर स्थैतिक घर्षण बल (µsN) आगे की ओर लगेगा।
∴ संदूक पर नेट बल,
F1 = F – µsN
= 80 – 0.15 × 40 × 10
= 20 न्यूटन (पीछे की ओर)
अतः ट्रक के सापेक्ष संदूक का त्वरण
a1 = \(\frac { F_{ 1 } }{ m } \) = \(\frac{20}{40}\) = 0.5 मीटर/सेकण्ड2 (पीछे की ओर)
माना संदूक 5 मीटर चलने में t समय लेता है।
∴ सूत्र s = ut + \(\frac{1}{2}\) at2 से,
5 = 0 × t + \(\frac{1}{2}\) × 0.5 × t2
∴ t2 = 20
∴ इस समय में तय दूरी
s = ut + \(\frac{1}{2}\) at2
= 0 + \(\frac{1}{2}\) × 2 × 20 = 20 मीटर

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.37
15 cm त्रिज्या का कोई बड़ा ग्रामोफोन रिकॉर्ड 33 \(\frac{1}{3}\) rev/min की चाल से घूर्णन कर रहा है। रिकॉर्ड पर उसके केंद्र से 4 cm तथा 14 cm की दूरियों पर दो सिक्के रखे गए हैं। यदि सिक्के तथा रिकॉर्ड के बीच घर्षण गुणांक 0.15 है तो कौन-सा सिक्का रिकॉर्ड के साथ परिक्रमा करेगा?
उत्तर:
दिया है:
पथों की त्रिज्याएँ
r1 = 0.04 मीटर, r2 = 0.14 मीटर
घूर्णन आवृत्ति v = 33 \(\frac{1}{3}\) चक्र/मिनट
\(\frac{100/3}{60}\) = \(\frac{5}{9}\) चक्र/सेकण्ड
घर्षण गुणांक v = 0.15
सिक्कों को रिकॉर्ड पर घुमाने हेतु आवश्यक अभिकेन्द्र बल m1r1ω2 व m2r2ω2, स्थैतिक घर्षण बल से प्राप्त होगा।
Bihar Board Class 11 Physics Chapter 5 गति के नियम
पहले सिक्के के लिए, r1 = 0.04 मीटर > 0.12
दूसरे सिक्के के लिए,
जबकि, r2 = 0.14 मीटर > 0.12 मीटर
अतः पहला सिक्का रिकॉर्ड के साथ परिक्रमा करेगा,
जबकि दूसरा सिक्का रिकॉर्ड से फिसलकर बाहर गिर जाएगा।

प्रश्न 5.38
आपने सरकस में ‘मौत के कुएँ’ (एक खोखला जालयुक्त गोलीय चैम्बर ताकि उसके भीतर के क्रियाकलापों को दर्शक देख सकें) में मोटरसाइकिल सवार को ऊर्ध्वाधर लूप में मोटरसाइकिल चलाते हुए देखा होगा। स्पष्ट कीजिए कि वह मोटरसाइकिल सवार नीचे से कोई सहारा न होने पर भी गोले के उच्चतम बिन्दु से नीचे क्यों नहीं गिरता? यदि चैम्बर की त्रिज्या 25 m है, तो ऊर्ध्वाधर लप को पूरा करने के लिए मोटरसाइकिल की न्यूनतम चाल कितनी होनी चाहिए?
उत्तर:
गोलीय चैम्बर के उच्चतम बिन्दु पर, मोटर साइकिल सवार चैम्बर को अपकेन्द्र बल के कारण बाहर की ओर दबाता है जिसके प्रतिक्रिया स्वरूप चैम्बर भी सवार पर गोले के केन्द्र की ओर प्रतिक्रिया R लगाता है। यहाँ मोटर साइकिल व सवार का भार (mg) भी गोले के केन्द्र की ओर कार्य करते हैं। सवार को वृत्तीय गति के लिए आवश्यक अभिकेन्द्र बल दोनों बल ही प्रदान करते हैं। इसी कारण सवार गिरता नहीं है।
∴ इस स्थिति में गति का समीकरण
R + mg = \(\frac { mv^{ 2 } }{ r } \)
परन्तु ऊर्ध्वाधर लूप को पूरा करने के लिए उच्चतम बिन्दु पर न्यूनतम चाल होगी।
∴ R = 0 होगा।
⇒ mg = \(\frac { mr^{ 2 } }{ r } \)
∴ v = \(\sqrt{gr}\) = \(\sqrt{10×25}\) = 15.8 मीटर/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.39
70 kg संहति का कोई व्यक्ति अपने ऊर्ध्वाधर अक्ष पर 200 rev/min की चाल से घूर्णन करती 3 m त्रिज्या की किसी बेलनाकार दीवार के साथ उसके संपर्क में खड़ा है। दीवार तथा उसके कपड़ों के बीच घर्षण गुणांक 0.15 है। दीवार की वह न्यूनतम घूर्णन चाल ज्ञात कीजिए, जिससे फर्श को यकायक हटा लेने पर भी, वह व्यक्ति बिना गिरे दीवार से चिपका रह सके।
उत्तर:
दिया है:
m = 70 किग्रा,
घूर्णन आवृत्ति, v = 200 चक्र/मिनट
= \(\frac{200}{60}\) = \(\frac{10}{3}\) चक्र/सेकण्ड
त्रिज्या, r = 3 मीटर
घर्षण गुणांक, µ = 0.15
घूर्णन करते समय, व्यक्ति दीवार को बाहर की ओर दबाता है तथा दीवार का अभिलम्ब प्रतिक्रिया आवश्यक अभिकेन्द्र बल प्रदान करती है जो कि केन्द्र की ओर दिष्ट होता है।
∴ Fc = mrω2 …………….. (1)
घर्षण बल, जोकि व्यक्ति के भार को सन्तुलित करता है,
F = mg = µFc ……………….. (2)
∴ ω2 = g
∴ mg = µ.mrω2
Bihar Board Class 11 Physics Chapter 5 गति के नियम
= 4.72
= 5 रेडियन/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 5 गति के नियम

प्रश्न 5.40
R त्रिज्या का पतला वृत्तीय तार अपने ऊर्ध्वाधर व्यास के परितः कोणीय आवृत्ति ω से घूर्णन कर रहा है। यह दर्शाइए कि इस तार में डली कोई मणिका ω ≤ \(\sqrt{g/R}\) के लिए अपने निम्नतम बिंदु पर रहती है। ω = \(\sqrt{2g/R}\) के लिए, केंद्र से मनके को जोड़ने वाला त्रिज्य सदिश ऊर्ध्वाधर अधोमुखी दिशा से कितना कोण बनाता है। (घर्षण को उपेक्षणीय मानिए।)
उत्तर:
माना कि किसी समय मणिका R त्रिज्या के गोले में
A बिन्दु पर है। A बिन्दु पर, वृत्तीय तार की अभिलम्ब प्रतिक्रिया M नीचे की ओर AO के अनुदिश होगी जिससे ऊर्ध्वाधर तथा क्षैतिज
Bihar Board Class 11 Physics Chapter 5 गति के नियम
घटकों को वियोजित कर सकते हैं। यहाँ N cos θ भार को सन्तुलित करता है जब N sin θ आवश्यक अभिकेन्द्र बल mrω2 प्रदान करता है।
जहाँ O = वृत्त का केन्द्र
θ = त्रिज्या सदिश द्वारा ऊर्ध्व AO से बना कोण
N cos θ = mg
तथा N sin θ = mRω2 sin θ …………….. (2)
समी० (1) से (2) से भाग देने पर
cos θ = \(\frac { g }{ R\omega ^{ 2 } } \)
मणिका को निम्नतम बिन्दु B पर रखने के लिए θ = 0 अतः cos θ = 1
\(\frac { g }{ R\omega ^{ 2 } } \) = 1
ω = \(\sqrt{g/R}\)
जब ω \(\sqrt{g/R}\) मणिका निम्नतम बिन्दु B से ऊपर उठ जाएगा।
अतः मणिका को B बिन्दु पर रखने के लिए,
ω = ≤ \(\sqrt{g/R}\) इति सिद्धम्
∴ जब = ω = ≤ \(\sqrt{2g/R}\)
समी० (3) से,
cos θ = \(\frac{g}{R.2g}\) × R = \(\frac{1}{2}\) = cos 60°
θ = 60°

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

Bihar Board Class 11 Physics सरल रेखा में गति Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 3.1
नीचे दिए गए गति के कौन-से उदाहरणों में वस्तु को लगभग बिंदु वस्तु माना जा सकता है:

  1. दो स्टेशनों के बीच बिना किसी झटके के चल रही कोई रेलगाड़ी।
  2. किसी वृत्तीय पथ पर साइकिल चला रहे किसी व्यक्ति के ऊपर बैठा कोई बंदर।
  3. जमीन से टकरा कर तेजी से मुड़ने वाली क्रिकेट की कोई फिरकती गेंद।
  4. किसी मेज के किनारे से फिसल कर गिरा कोई बीकर।

उत्तर:

  1. रेलगाड़ी दो स्टेशनों के मध्य बिना झटके के चल रही है। इसलिए दोनों स्टेशनों के मध्य की दूरी, रेलगाड़ी की लम्बाई की अपेक्षा अधिक मानी जा सकती है। अतः रेलगाड़ी को बिन्दु वस्तु मान सकते हैं।
  2. बन्दर निश्चित समय में अधिक दूरी तय करता है। इसलिए बन्दर को बिन्दु-वस्तु मान सकते हैं।
  3. चूँकि क्रिकेट की गेंद का मुड़ना सरल नहीं है। इस प्रकार निश्चित समय में क्रिकेट गेंद द्वारा तय की गई दूरी कम है। अतः क्रिकेट गेंद को बिन्दु-वस्तु नहीं मान सकते हैं।
  4. चूँकि बीकर निश्चित समय में कम दूरी चलता है। अतः बीकर को बिन्दु-वस्तु नहीं माना जा सकता है।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.2
दो बच्चे A व Bअपने विद्यालय 0 से लौट कर अपने – अपने घर क्रमश: P तथा Q को जा रहे हैं। उनके स्थिति-समय (x – t) ग्राफ चित्र में दिखाए गए हैं। नीचे लिखे कोष्ठकों में सही प्रविष्टियों को चुनिए:

  1. B/A की तुलना में AIB विद्यालय से निकट रहता है।
  2. B/A की तुलना में AIB विद्यालय से पहले चलता है।
  3. B/A की तुलना A/B तेज चलता है।
  4. A और B घर(एक ही/भिन्न) समय पर पहुंचते हैं।
  5. A/B सड़क पर B/A से (एक बार/दो बार) आगे हो जाते हैं।
    Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

उत्तर:

  1. B की तुलना में A विद्यालय से निकट रहता है।
  2. B की तुलना में A विद्यालय से पहले चलता है। चूँकि A के लिए गति प्रारम्भ का समय t = 0 जबकि B के लिए गति प्रारम्भ t समय पर होती है।
  3. A की तुलना में B तेज चलता है।
  4. A तथा B घर अलग-अलग समय पर पहुँचते हैं।
  5. B सड़क पर A से एक बार आगे हो जाता है।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.3
एक महिला अपने घर से प्रात: 9.00 बजे 2.5 km दूर अपने कार्यालय के लिए सीधी सड़क पर 5 km h-1 चाल से चलती है। वहाँ वह सायं 5.00 बजे तक रहती है और 25 km h-1 की चाल से चल रही किसी ऑटो रिक्शा द्वारा अपने घर लौट आती है। उपयुक्त पैमाना चुनिए तथा उसकी गति का x – t ग्राफ खींचिए।
उत्तर:
घर से कार्यालय तक पार की गई दूरी = 2.5 किमी
घर से चलने पर चाल = 5 किमी प्रति घण्टा
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
कार्यालय पहुँचने में लगा समय = \(\frac{2.5}{5}\) = 0.5 घण्टा
माना x – t (समय-दूरी) ग्राफ का मूल बिन्दु O है। t = 9 AM पर x = 0 तथा t = 9:30 AM पर x = 2.5 किमी (बिन्दु
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
P)। तथा महिला 9:30 AM से समय 5:00 PM तक कार्यालय में रहती है। जिसे PQ द्वारा व्यक्त किया गया है।
कार्यालय से घर तक पहुँचने में लगा समय
= \(\frac{2.5}{25}\) = \(\frac{1}{10}\) घण्टा
= 6 मिनट
∴ t = 5 : 06 PM पर x = 0 जिसे बिन्दु R से व्यक्त किया गया है।

प्रश्न 3.4
कोई शराबी किसी तंग गली में 5 कदम आगे बढ़ता है और 3 कदम पीछे आता है, उसके बाद फिर 5 कदम आगे बढ़ता है और 3 कदम पीछे आता है, और इसी तरह वह चलता रहता है। उसका हर कदम 1 m लंबा है और 1 समय लगता है। उसकी गति का x – t ग्राफ खींचिए। ग्राफ से तथा किसी अन्य विधि से यह ज्ञात कीजिए कि वह जहाँ से चलना प्रारंभ करता है वहाँ से 13 m दूर किसी गड्ढे में कितने समय पश्चात् गिरता है?
उत्तर:
शराबी का x – t ग्राफ चित्र में दिखाया गया है। पहले 8 कदमों अर्थात् 8 सेकण्ड में शराबी द्वारा चली दूरी
= 5 मी० – 3 मी० = 2 मीटर अतः 16 कदमों में शराबी द्वारा चली गई दूरी
= 2 × 2 = 4 मीटर
24 कदमों में शराबी द्वारा चली गई दूरी
= 4 + 2 = 6 मीटर
32 कदमों में शराबी द्वारा चली गई दूरी
= 6 + 2 = 8
मीटर अगले 5 कदमों में शराबी द्वारा चली गई दूरी
= 8 + 5 = 13 मीटर
∴ कुल 13 मीटर चलने पर लिया गया समय
8 × 4 + 5 = 37 सेकण्ड।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.5
कोई जेट वायुयान 500 km h-1 की चाल से चल रहा है और यह जेट यान के सापेक्ष 1500 km h-1 की चाल से अपने दहन उत्पादों को बाहर निकालता है। जमीन पर खड़े किसी प्रेक्षक के सापेक्ष इन दहन उत्पादों की चाल क्या होगी?
उत्तर:
दिया है: जैट का वेग, Vj = -500 किमी प्रति घण्टा
जेट के सापेक्ष उत्पाद बाहर निकालने का आपेक्षिक वेग, ve = 1500 किमी प्रति घण्टा
माना बाहर निकलने वाले दहन उत्पादों का वेग ve है।
∴ Vej = Ve – Vj
या Ve = Vej + Vj = 1500 + (-500)
= 1000 किमी प्रति घण्टा

प्रश्न 3.6
सीधे राजमार्ग पर कोई कार 126 kmh-1 की चाल से चल रही है। इसे 200 m की दूरी पर रोक दिया जाता है। कार के मंदन को एक समान मानिए और इसका मान निकालिए। कार को रुकने में कितना समय लगा?
उत्तर:
दिया है:
u = 126 किमी/घण्टा
= 126 × \(\frac{1000}{60×60}\) = 35 मीटर/सेकण्ड
S = 200 मीटर
v = 0
न्यूटन के गति विषयक तृतीय समी० से,
v2 = u2 + 2as
02 = (35)2 + 2 × a × 200
अथवा a = \(\frac{-35×35}{2×200}\) = -3.06 मीटर/सेकण्ड
पुनः समीकरण v = u + \(\frac{1}{2}\)at2 से
t = \(\frac{v-u}{a}\) = \(\frac{0-35}{-3.06}\)
= 11.44 सेकण्ड।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.7
दो रेलगाड़ियाँ A व B दो समांतर पटरियों पर 72 km h-1 की एकसमान चाल से एक ही दिशा में चल रही हैं। प्रत्येक गाड़ी 400 m लंबी है और गाड़ी A गाड़ी B से आगे है। B का चालक A से आगे निकलना चाहता है। 1ms-2 से इसे त्वरित करता है। यदि 50s के बाद B का गार्ड A के चालक से आगे हो जाता है तो दोनों के बीच आरंभिक दूरी कितनी थी?
उत्तर:
दिया है:
uA = uB = 72 किमी प्रति घण्टा
= 72 × \(\frac{5}{18}\) = 20 मीटर/सेकण्ड
t = 50 सेकण्ड
गाड़ी की लम्बाई = 400 मीटर
SA = uA × t
= 20 × 50
= 1000 मीटर
सूत्र S = ut + \(\frac{1}{2}\)at2 से
SB = 20 × 50 + 1 × (50)2
= 1000 + \(\frac{1}{2}\) × 2500
= 1000 + 1250
= 2250 मीटर
अत: दोनों रेलगाड़ियों के बीच आरम्भिक दूरी
= 2250 – 1000
= 1250 मीटर

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.8
दो – लेन वाली किसी सड़क पर कार A 36 km h-1 की चाल से चल रही है। एक दूसरे की विपरीत दिशाओं में चलती दो कारें B व C जिनमें से प्रत्येक की चाल 54kmh-1 है, कार A तक पहुँचना चाहती है। किसी क्षण जब दूरी AB दूरी AC के बराबर है तथा दोनों 1 km है, कार B का चालक यह निर्णय करता है कि कार C के कार A तक पहुँचने के पहले ही वह कार A से आगे निकल जाए। किसी दुर्घटना से बचने के लिए कार B का कितना न्यूनतम त्वरण जरूरी है?
उत्तर:
दिया है:
vA = 36 किमी/घण्टा
= 54 × \(\frac{5}{18}\) = 15 मीटर/सेकण्ड
माना कार A के सापेक्ष C की आपेक्षिक चाल vca तथा कार A के सापेक्ष कार B की आपेक्षिक चाल VBA है।
∴ vca = 15 – (-10) = 25 मीटर/सेकण्ड
तथा VBA = 15 – 10 = 5 मीटर/सेकण्ड
प्रश्नानुसार aca = 0, चूँकि दोनों कारें (A व C) नियत वेग से गतिमान हैं।
AC दूरी तय करने में लगा समय

माना कार B का A के सापेक्ष त्वरण aBA = a है।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

प्रश्न 3.9
दो नगर A व B नियमित बस सेवा द्वारा एक दूसरे से जुड़े हैं और प्रत्येक T मिनट के बाद दोनों तरफ बसें चलती हैं। कोई व्यक्ति साइकिल से 20 km h-1 की चाल से A से B की तरफ जा रहा है और यह नोट करता है कि प्रत्येक 18 मिनट के बाद एक बस उसकी गति की दिशा में तथा प्रत्येक 6मिनट बाद उसके विपरीत दिशा में गुजरती है। बस सेवाकाल T कितना है और बसें सड़क पर किस चाल (स्थिर मानिए) से चलती हैं?
उत्तर:
माना प्रत्येक बल की चाल vb किमी प्रति घण्टा तथा साइकिल सवार की चाल vc किमी प्रति घण्टा है। साइकिल सवार की गति की दिशा में अर्थात् A से B की ओर चल रही बसों की आपेक्षिक चाल = vb – vc
∴ साइकिल सवार की गति की दिशा में प्रत्येक 18 मिनट बाद एक बस गुजरती है।
∴ चली गई दूरी = (vb – vb) × \(\frac{18}{60}\)
परन्तु बसें प्रत्येक T मिनट बाद चलती हैं। अतः यह दूरी vb × \(\frac{T}{60}\) के तुल्य होगी।
अर्थात् (vb – bc) × \(\frac{T}{18}\) ……………. (1)
साइकिल सवार से विपरीत दिशा में बसों का आपेक्षिक वेग
= (vb + vc)
∴ चली दूरी = (vb + vb) × \(\frac{6}{60}\)
प्रश्नानुसार विपरीत दिशा में बस प्रत्येक 6 मीटर के अन्तराल पर मिलती है। अतः यह चली दूरी vb × \(\frac{T}{60}\) के तुल्य होगी।
∴ (vb + vc) × \(\frac{6}{60}\) = vb × \(\frac{T}{60}\)
या vb + vc = \(\frac{vb×T}{6}\) ………………… (2)
समी० (2) को (1) से भाग देने पर,
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
या vb + vc = 3vb – 3vc
अथवा vc + 3vc = 3vb – vb
∴ vb = 2vc
= 2 × 20 किमी/घण्टा
= 40 किमी/घण्टा।
समी० (2) में vb व vc का मान रखने पर,
40 + 20 = \(\frac{40×T}{60}\)
T = \(\frac{60×6}{40}\) = 9 मिनट

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.10
कोई खिलाड़ी एक गेंद को ऊपर की ओर आरंभिक चाल 29 ms-1 से फेंकता है –
(i) गेंद की ऊपर की ओर गति के दौरान त्वरण की दिशा क्या होगी?
(ii) इसकी गति के उच्चतम बिंदु पर गेंद के वेग व त्वरण क्या होंगे?
(iii) गेंद के उच्चतम बिंदु पर स्थान व समय को x = 0 व t = 0 चुनिए, ऊर्ध्वाधर नीचे की ओर की दिशा को x – अक्ष की धनात्मक दिशा मानिए। गेंद की ऊपर की व नीचे की ओर गति के दौरान स्थिति, वेग व त्वरण के चिन्ह बताइए।
(iv) किस ऊँचाई तक गेंद ऊपर जाती है और कितनी देर के बाद गेंद खिलाड़ी के हाथों में आ जाती है?
[g = 9.8 ms-2 तथा वायु का प्रतिरोध नगण्य है।]
उत्तर:
(i) ऊर्ध्वाधर गति में वस्तु सदैव गुरुत्वीय त्वरण के अधीन चलती है जिसकी दिशा नीचे की ओर होती है।

(ii) गति के उच्चतम बिन्दु v = 0
a = 9.8 मीटर/सेकण्ड2 नीचे की ओर

Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

(iv) दिया है : u = 29 मीटर/सेकण्ड
a = 9.8 मीटर/सेकण्डर2
v = 0
सूत्र v2 = a2 + 2as से,
v2 = 2a2 + 2 × 9.8 × S
∴ S = \(\frac{-2a×2a}{2×9.8}\) = 42.9 मीटर
अतः सूत्र = u + at से,
0 = 29 – 9.8 × t
∴ t = \(\frac{29}{2.8}\) = 2.96
∴ कुल समय = 2 × 2.96
= 5.92 सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.11
नीचे दिए गए कथनों को ध्यान से पढ़िए और कारण बताते हुए व उदाहरण देते हुए बताइए कि वे सत्य हैं या असत्य, एकविमीय गति में किसी कण की –

  1. किसी क्षण चाल शून्य होने पर भी उसका त्वरण अशून्य हो सकता है।
  2. चाल शून्य होने पर भी उसका वेग अशून्य हो सकता है।
  3. चाल स्थिर हो तो त्वरण अवश्य ही शून्य होना चाहिए।
  4. चाल अवश्य ही बढ़ती रहेगी, यदि उसका त्वरण धनात्मक हो।

उत्तर:

  1. सत्य, सरल आवर्त गति करते कण की महत्तम विस्थापन की स्थिति में कण की चाल शून्य होती है, जबकि त्वरण महत्तम (अशून्य) होता है।
  2. असत्य, चाल शून्य होने का अर्थ है कि कण के वेग का परिमाण शून्य है।
  3. असत्य, एकसमान वृत्तीय गति करते हुए कण की चाल स्थिर रहती है तो भी उसकी गति में अभिकेन्द्र त्वरण कार्य करता है।
  4. असत्य, यह केवल तब सत्य हो सकता है, जब चुनी गई धनात्मक दिशा गति की दिशा के अनुदिश हो।

प्रश्न 3.12
किसी गेंद को 90 m की ऊँचाई से फर्श पर गिराया जाता है। फर्श के साथ प्रत्येक टक्कर में गेंद की चाल 1/10 कम हो जाती है। इसकी गति का t = 0 से 12 s के बीच चाल-समय ग्राफ खींचिए।
उत्तर:
दिया है:
u1 = 0, s1 = 90 मीटर,
a1 = 9.8 मीटर/सेकण्ड2
सूत्र v2 = u2 + 2as से,
v12 = 02 + 2 × 9.8 × 90
∴ v1 = \(\sqrt{2×9.8×90}\)
= 42 मीटर प्रति सेकण्ड
पुनः सूत्र v = u + at से,
42 = 0 + 9.8 × t1
∴ t1 = \(\frac{42}{9.8}\) = 4.2 सेकण्ड
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
प्रश्नानुसार, u2 = v1 – \(\frac{v_{1}}{10}\)
= 42 – 4.2 = 37.8 मीटर/सेकण्ड
v2 = 0, a2 = -9.8 मीटर/सेकण्ड2
सूत्र v = u + at से,
0 = 37.8 – 9.8 × t2
∴ t2 = \(\frac{37.8}{9.8}\) = 3.9 सेकण्ड
∴ t = t1 + t2
= 4.2 + 3.9 = 8.1 सेकण्ड
u2 = 0
हम जानते हैं कि, ऊपर जाने का समय = नीचे आने का समय = 3.9 सेकण्ड
∴ t3 = t2 = 3.9 सेकण्ड
वह वेग जिससे गेंद फर्श पर टकराती है,
= a3 = a2 = 37.8 मीटर/सेकण्ड
तथा t = (t1 + t2) + t3
= 8.1 + 3.9 = 12 सेकण्ड पर
चाल v = 37.8 मीटर/सेकण्ड

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.13
उदाहरण सहित निम्नलिखित के बीच के अंतर को स्पष्ट कीजिए:
(a) किसी समय अंतराल में विस्थापन के परिमाण (जिसे कभी-कभी दूरी भी कहा जाता है) और किसी कण द्वारा उसी अंतराल के दौरान तय किए गए पथ की कुल लंबाई।

(b) किसी समय अंतराल में औसत वेग के परिमाण और उसी अंतराल में औसत चाल (किसी समय अंतराल में किसी कण की औसत चाल को समय अंतराल द्वारा विभाजित की गई कुल पथ-लंबाई के रूप में परिभाषित किया जाता है)। प्रदर्शित कीजिए कि (a) व (b) दोनों में ही दूसरी राशि पहली से अधिक या उसके बराबर है। समता का चिन्ह कब सत्य होता है? (सरलता के लिए केवल एकविमीय गति पर विचार कीजिए।)
उत्तर:
(a) विस्थापन के परिमाण से तात्पर्य है कि सीधी रेखा की कुल लम्बाई कण द्वारा किसी समयान्तराल में तय किए गए निश्चित पथ की लम्बाई उसी समयान्तराल में उन्हीं बिन्दुओं के मध्य तय किए गए पथ से अलग हो सकती है। जैसा कि चित्र में दिखाया गया है।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

(b)
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
लेकिन औसत वेग का मान शून्य है चूँकि इस समय में विस्थापन शून्य है।
∴ औसत चाल > औसत वेग

प्रश्न 3.14
कोई व्यक्ति अपने घर से सीधी सड़क पर 5 km h-1 की चाल से 2.5 km दूर बाजार तक पैदल चलता है। परंतु बाजार बंद देखकर वह उसी क्षण वापस मुड़ जाता है तथा 7.5 km h-1 की चाल से घर लौट आता है।
समय अंतराल –

(i) 0 – 30 मिनट
(ii) 0 – 50 मिनट
(iii) 0 – 40 मिनट की अवधि में उस व्यक्ति

(a) के माध्य वेग का परिमाण, तथा
(b) का माध्य चाल क्या है? (नोट : आप इस उदाहरण से समझ सकेंगे कि औसत चाल को औसत वेग के परिमाण के रूप में परिभाषित करने की अपेक्षा समय द्वारा विभाजित कुल पथ-लंबाई के रूप में परिभाषित करना अधिक अच्छा क्यों है। आप थक कर घर लौटे उस व्यक्ति को यह बताना नहीं चाहेंगे कि उसकी औसत चाल शून्य थी।)
उत्तर:
सूत्र v = \(\frac{S}{t}\) से,
∴ व्यक्ति को बाजार जाने में लगा समय,
t1 = \(\frac{2.5}{5}\) = 0.5 घण्टा = 30 मिनट
∴ व्यक्ति को बाजार से आने में लगा समय,
t2 = \(\frac{2.5}{7.5}\) = 0.33 घण्टा = 20 मिनट

(i) 0 – 30 मिनट में व्यक्ति द्वारा चली दूरी = 2.5 किमी
∴ माध्य चाल = \(\frac{2.5}{30/60}\) = 5 किमी/घण्टा
अर्थात् इस समयान्तराल में व्यक्ति का विस्थापन तथा माध्य वेग के परिमाण भी क्रमश: 2.5 किमी तथा 5 किमी/घण्टा होंगे।

(ii) 0-50 मिनट के समयान्तराल में प्रथम 30 मिनट में व्यक्ति बाजार जाता है जबकि अगले 20 मिनट में वापस आता है।
∴ विस्थापन = 0
∴ माध्य वेग का परिमाण = \(\frac{0}{50/60}\) = 0
इस समयान्तराल में चली दूरी
= 2.5 + 2.5 = 5 किमी
∴ माध्य चाल = \(\frac{5}{50/60}\) = 6 किमी/घण्टा

(iii) चूँकि वापस आने में तय दूरी 2.5 किमी तथा लिया गया समय 20 मिनट है।
अतः प्रथम 10 मिनट में तय की गई दूरी 1.25 किमी होगी।
अतः 0 – 40 मिनट के समयान्तराल में विस्थापन
= 2.5 – 1.25
= 1.25 किमी
∴ माध्य वेग का परिमाण = \(\frac{1.25}{20/60}\) = 1.875 किमी/घण्टा
तथा इस समयान्तराल में चली दूरी
= 2.5 + 1.25 = 3.75 किमी
∴ माध्य चाल = \(\frac{3.75}{20/60}\) = 5.625
∴ माध्य वेग < माध्य चाल

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.15
हमने अभ्यास 3.13 तथा 3.14 में औसत चाल व औसत वेग के परिमाण के बीच के अंतर को स्पष्ट किया है। यदि हम तात्क्षणिक चाल व वेग के परिमाण पर विचार करते हैं, तो इस तरह का अंतर करना आवश्यक नहीं होता। तात्क्षणिक चाल हमेशा तात्क्षणिक वेग के बराबर होती है। क्यों?
उत्तर:
हम जानते हैं कि तात्क्षणिक चाल
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
अत्यन्त लघु समयान्तरालों अर्थात् ∆t → 0 में वस्तु की गति की दिशा को अपरिवर्तित माना जाता है। इस प्रकार कुल पद लम्बाई अर्थात् दूरी एवम् विस्थापन के परिमाण में कोई अन्तर नहीं होता है। अर्थात् तात्क्षणिक चाल हमेशा तात्क्षणिक वेग के परिमाण के तुल्य होती है।

प्रश्न 3.16
चित्र में (a) से (d) तक के ग्राफों को ध्यान से देखिए और देखकर बताइए कि इनमें से कौन – सा ग्राफ एकविमीय गति को संभवतः नहीं दर्शा सकता।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
चारों ही ग्राफ असम्भव हैं, चूँकि –

  1. एक ही समय किसी कण की दो विभिन्न स्थितियाँ सम्भव नहीं है।
  2. एक ही समय किसी कण के विपरीत दिशाओं में वेग नहीं हो सकते हैं।
  3. चाल कभी भी ऋणात्मक नहीं होती है।
  4. किसी कण की कुल पथ लम्बाई समय के साथ कभी भी नहीं घट सकती है।

प्रश्न 3.17
चित्र में किसी कण की एकविमीय गति का x – t ग्राफ दिखाया गया है। ग्राफ से क्या यह कहना ठीक होगा कि यह कण t < 0 के लिए किसी सरल रेखा में और t > 0 के लिए किसी परवलीय पथ में गति करता है। यदि नहीं, तो ग्राफ के संगत किसी उचित भौतिक संदर्भ का सुझाव दीजिए।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
नहीं, यह गलत है। समय-दूरी आलेख (x – t वक्र) किसी कण के प्रक्षेपण को व्यक्त नहीं करता है। जैसे – जब कोई पिण्ड किसी मीनार से गिराया जाता है तब x = 0 पर t = 0 होता है।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.18
किसी राजमार्ग पर पुलिस की कोई गाड़ी 30 km/h की चाल से चल रही है और यह उसी दिशा में 192 km/h की चाल से जा रही किसी चोर की कार पर गोली चलाती है। यदि गोली की नाल मुखी चाल 150 ms-1 है तो चोर की कार को गोली किस चाल के साथ आघात करेगी? (नोट : उस चाल को ज्ञात कीजिए जो चोर की कार को हानि पहुँचाने में प्रासंगिक हो)।
उत्तर:
दिया है : चोर की चाल, vt = 192 किमी/घण्टा
= 192 × \(\frac{5}{18}\) = \(\frac{160}{3}\) मीटर/सेकण्ड
तथा पुलिस की चाल vp = 30 किमी/घण्टा
= 30 × \(\frac{5}{18}\) = \(\frac{25}{3}\) मीटर/सेकण्ड
अत: चोर की कार का पुलिस की कार के आपेक्ष वेग,
vtp = vt – vp
= \(\frac{160}{3}\) – \(\frac{25}{3}\) = \(\frac{160-25}{3}\)
= \(\frac{135}{3}\) = 45 मीटर / सेकण्ड
गोली की नाल मुखी चाल, vb = 150 मीटर / सेकण्ड
= गोली की पुलिस के सापेक्ष चाल
अत: चोर की कार पर प्रहार करते समय गोली की चाल = पुलिस के सापेक्ष गोली की सापेक्ष चाल – पुलिस के सापेक्ष चोर की कार की सापेक्ष चाल
= 150 – 45
= 105 मीटर / सेकण्ड

प्रश्न 3.19
चित्र में दिखाए गए प्रत्येक ग्राफ के लिए किसी उचित भौतिक स्थिति का सुझाव दीजिए –
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
(a) x – t ग्राफ प्रदर्शित कर रहा है कि प्रारम्भ में x शून्य है, फिर यह एक स्थिर मान प्राप्त करता है। पुन: यह शून्य हो जाता है तथा फिर यह विपरीत दिशा में बढ़कर अन्त में एक स्थिर मान (विरामावस्था) प्राप्त कर लेता है। अत: यह ग्राफ इस प्रकार की भौतिक स्थिति व्यक्त कर सकता है जैसे एक गेंद को विरामावस्था से फेंका जाता है और वह दीवार से टकराकर लौटती है तथा कम चाल से उछलती है तथा यह क्रम इसके विराम में पहुँचने तक चलत रहता है।

(b) यह ग्राफ प्रदर्शित कर रहा है कि वेग समय के प्रत्येक अन्तराल के साथ परिवर्तित हो रहा है तथा प्रत्येक बार इसका वेग कम हो रहा है। इसलिए यह ग्राफ एक ऐसी भौतिक स्थिति को व्यक्त कर सकता है। जिसमें एक स्वतन्त्रतापूर्वक गिरती हुई गेंद (फेंके जाने पर) धरती से टकराकर कम चाल से पुनः उछलती है तथा प्रत्येक बार धरती से टकराने पर इसकी चाल कम होती जाती है।

(c) यह ग्राफ प्रदर्शित करता है कि वस्तु अल्प समय में ही त्वरित हो जाती है; अतः यह ग्राफ एक ऐसी भौतिक स्थिति को व्यक्त कर सकता है जिसमें एकसमान चाल से चलती हुई गेंद को अत्यल्प समयान्तराल में बल्ले द्वारा टकराया जाता है।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.20
चित्र में किसी कण की एकविमीय सरल आवर्ती गति के लिए x – t ग्राफ दिखाया गया है।(इस गति के बारे में आप अध्याय 14 में पढ़ेंगे) समय t = 0.3 s, 1.2 s, -1.2 s पर कण के स्थिति, वेग व त्वरण के चिन्ह क्या होंगे?
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
हम जानते हैं कि सरल आवर्त गति में,
त्वरण a = -w2x
जहाँ w नियतांक है जिसे कोणीय आवृत्ति कहते हैं।
समय t = 0.3 सेकण्ड दर, दूरी (x) ऋणात्मक है। दूरी-समय ग्राफ का दाब भी ऋणात्मक है। इस कारण स्थिति तथा वेग ऋणात्मक है। अतः त्वरण (a = -w2x) धनात्मक है।
समय t = 1.2 सेकण्ड पर, दूरी (x) धनात्मक है। दूरी समय (x – t) ग्राफ का ढाल भी धनात्मक है। इस प्रकार स्थिति तथा वेग धनात्मक है। अतः त्वरण ऋणात्मक है।
समय t = -1.2 सेकण्ड पर, दूरी (x) ऋणात्मक है। दूरी समय (x – t) ग्राफ का ढाल भी धनात्मक है। इस प्रकार वेग धनात्मक है तथा अन्त में त्वरण (a) भी धनात्मक है।

प्रश्न 3.21
चित्र किसी कण की एकविमीय गति का x – t ग्राफ दर्शाता है। इसमें तीन समान अंतराल दिखाए गए हैं। किस अंतराल में औसत चाल अधिकतम है और किसमें न्यूनतम है? प्रत्येक अंतराल के लिए औसत वेग का चिह्न बताइए।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
चूँकि लघु अन्तरालों में समय-दूरी (x – t) ग्राफ की ढाल उस अन्तराल में कण की औसत चाल को प्रदर्शित करती है। ग्राफ से स्पष्ट है कि इस अन्तराल में,
(i) अन्तराल (3) में ग्राफ की ढाल अधिकतम है अतः औसत चाल अधिकतम है। जबकि अन्तराल (2) में ग्राफ की ढाल न्यूनतम है अतः इस अन्तराल में औसत चाल न्यूनतम है।

(ii) अन्तराल (1) एवम् (2) में ढाल धनात्मक है लेकिन अन्तराल (3) में ऋणात्मक है अतः अन्तराल (1 व 2) में औसत वेग धनात्मक जबकि अन्तराल (3) में ऋणात्मक है।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.22
चित्र में किसी नियत (स्थिर) दिशा के अनुदिश चल रहे कण का चाल-समय ग्राफ दिखाया गया है।
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
इसमें तीन समान समय अंतराल दिखाए गए हैं। किस अंतराल में औसत त्वरण का परिमाण अधिकतम होगा? किस अंतराल में औसत चाल अधिकतम होगी? धनात्मक दिशा को गति की स्थिर दिशा चुनते हुए तीनों अंतरालों में v तथा a के चिह्न बताइए। A, B, C व D बिंदुओं पर त्वरण क्या होंगे?
उत्तर:
(i) चूँकि लघु अन्तरालों में चाल-समय (v – t) ग्राफ की ढाल का परिमाण कण के औसत त्वरण के परिमाण को व्यक्त करता है। दिए गए ग्राफ से स्पष्ट है कि ढाल का परिमाण अन्तराल वक्र (2) में अधिकतम जबकि अन्तराल (3) में न्यूनतम है। इस प्रकार औसत त्वरण का परिमाण अन्तराल (2) में अधिकतम व अन्तराल (3) में न्यूनतम होगा।

(ii) औसत चाल अन्तराल (1) में न्यूनतम तथा अन्तराल (3) में अधिकतम है।

(iii) तीनों अन्तरालों में चाल (v) धनात्मक है। अन्तराल (1) में चाल-समय (v – t) ग्राफ का ढाल धनात्मक जबकि अन्तराल (2) में ढाल अर्थात् त्वरण a ऋणात्मक है। अन्तराल (3) में चाल-समय ग्राफ समय-अक्ष के समान्तर है। अतः इस अन्तराल में त्वरण शून्य है।

(iv) चारों बिन्दुओं (i. e.,A, B, C तथा D) पर, चाल-समय ग्राफ समय-अक्ष के समान्तर है। अतः इन चारों बिन्दुओं पर त्वरण शून्य है।

Bihar Board Class 11 Physics सरल रेखा में गति Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 3.23
कोई तीन पहिये वाला स्कूटर अपनी विरामावस्था से गति प्रारंभ करता है। फिर 10 s तक किसी सीधी सड़क पर 1ms-2 के एकसमान त्वरण से चलता है। इसके बाद वह एक समान वेग से चलता है। स्कूटर द्वारा वें सेकंड (n = 1, 2, 3, …) में तय की गई दूरी को n के सापेक्ष आलेखित कीजिए। आप क्या आशा करते हैं कि त्वरित गति के दौरान यह ग्राफ कोई सरल रेखा या कोई परवलय होगा?
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
प्रारम्भिक वेग, u = 0,
त्वरण a = 1 मीटर/सेकण्ड2, t = 10 सेकण्ड
सूत्र,
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
इत्यादि।
चित्र से स्पष्ट है कि एक समान त्वरित गति के लिए समय अक्ष पर झुकी सरल रेखा, एक समान गति के लिए समय अक्ष के समान्तर सरल रेखा ही है।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.24
किसी स्थिर लिफ्ट में (जो ऊपर से खुली है) कोई बालक खड़ा है। वह अपने पूरे जोर से एक गेंद ऊपर की ओर फेंकता है जिसकी प्रारंभिक चाल 49 ms-1 है। उसके हाथों में गेंद के वापिस आने में कितना समय लगेगा? यदि लिफ्ट ऊपर की ओर 5 ms-1 की एकसमान चाल से गति करना प्रारंभ कर दे और वह बालक फिर गेंद को अपने पूरे जोर से फेंकता तो कितनी देर में गेंद उसके हाथों में लौट आएगी?
उत्तर:
जब लिफ्ट स्थिर है, तब u = 49 m s-1, υ = 0 तथा a = – 9.8 ms-2
जब गेंद लड़के के हाथ में वापस लौटेगी तो गेंद का लिफ्ट के सापेक्ष विस्थापन शून्य होगा।
अत: s = ut + \(\frac{1}{2}\)at2 में, s = 0 तथा माना लौटने में लगा समय = t
∴ 0 = 49t – \(\frac{1}{2}\) × 9.8 × t2
= \(\frac{1}{2}\) × 9.8 × t2 = 49t
= t = \(\frac{49×2}{9.8}\) = 10s
9.8 जब लिफ्ट ऊपर की ओर एक समान वेग से चलती है तो लिफ्ट के सापेक्ष गेंद का प्रारम्भिक वेग 49 ms-1 ही रहेगा; अतः गेंद को बालक के हाथों में आने में 10s का ही समय लगेगा।

प्रश्न 3.25
क्षैतिज में गतिमान कोई लम्बा पट्टा (चित्र) 4km/h की चाल से चल रहा है। एक बालक इस पर (पट्टे के सापेक्ष)9 km/h की चाल से कभी आगे कभी पीछे अपने माता-पिता के बीच दौड़ रहा है। माता व पिता के बीच 50 m की दूरी है। बाहर किसी स्थिर प्लेटफॉर्म पर खड़े एक प्रेक्षक के लिए, निम्नलिखित का मान प्राप्त करिए –
(a) पट्टे की गति की दिशा में दौड़ रहे बालक की चाल,
(b) पट्टे की गति की दिशा के विपरीत दौड़ रहे बालक की चाल,
(c) बच्चे द्वारा (a) व (b) में लिया गया समय यदि बालक की गति का प्रेक्षण उसके माता या पिता करें तो कौन-सा उत्तर बदल जाएगा?
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
माना \(\overrightarrow{v_{B}}\) = पट्टे का वेग = 4 kmh-1 (बाएँ से दाएँ)
\(\overrightarrow{v_{CB}}\) = पट्टे के सापेक्ष बालक का वेग

(a) जब बालक पट्टे की गति की दिशा में दौड़ता है –
पट्टे के सापेक्ष बालक का वेग = 9 km h-1 (बाएँ से दाएँ)
यदि बालक का वेग, प्लेटफार्म पर खड़े किसी प्रेक्षक के सापेक्ष \(\overrightarrow{v_{c}}\) हो तो,
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

(b) जब बालक पट्टे की गति की दिशा के विपरीत दौड़ता है –
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
ऋणात्मक चिह्न बालक की विपरीत दिशा (दाएँ से बाएँ) को व्यक्त करता है।

(c) स्थिति (a) अथवा (b) में लगने वाला समय
= \(\frac{50×60×60}{1000×9}\) = 20 s
समय 20 s रह जाएगा यदि माता या पिता बालक की गति का प्रेक्षण करते हैं।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.26
किसी 200 m ऊँची खड़ी चट्टान के किनारे से दो पत्थरों को एक साथ ऊपर की ओर 15 ms-1 तथा 30 ms-1 की प्रारंभिक चाल से फेंका जाता है। इसका सत्यापन कीजिए कि नीचे दिखाया गया ग्राफ (चित्र) पहले पत्थर के सापेक्ष दूसरे पत्थर की आपेक्षिक स्थिति का समय के साथ परिवर्तन को प्रदर्शित करता है। वायु के प्रतिरोध को नगण्य मानिए और यह मानिए कि जमीन से टकराने के बाद
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
पत्थर ऊपर की ओर उछलते नहीं। मान लीजिए g = 10 ms-2 ग्राफ के रेखीय व वक्रीय भागों के लिए समीकरण लिखिए।
उत्तर:
दिया है:
x(0) = 200 मीटर,
v(0) = 15 मीटर/सेकण्ड
a = -10 मीटर/सेकण्ड2
हम जानते हैं कि
x = x0 + ut + \(\frac{1}{2}\)at2
∴ x1(t) = 200 + 15 × t – 5t2
जब पहला पत्थर जमीन से टकराता है,
x1(t) = 0
∴ -5t2 + 15t + 200 = 0 ……………. (1)
या t2 – 3t – 400 = 0
या (t + 5) (t – 8) = 0
∴ t = -5 या 8
परन्तु t # ऋणात्मक
∴ t = 8 सेकण्ड
जब दूसरा पत्थर जमीन से टकराता है,
x2(t) = 200 मीटर, V0 = 30 मीटर/सेकण्ड
a = -10 मीटर/सेकण्ड2
x2 (t) = 200 + 30t – 5t2
प्रश्नानुसार, x2(t) – x1(t) = 15t …………………… (1)
जहाँ x2 (t) – x1 (t) दोनों पत्थरों के बीच दूरी (x) है।
x = 15t
i.e., x ∝ t
i.e., अब तक दोनों पत्थर गतिमान रहेंगे, उनके बीच दूरी बढ़ती रहेगी। अर्थात् (x – t) ग्राफ सरल रेखा होगा।
चूँकि t = 8 सेकण्ड, अत: पत्थर पृथ्वी पर 8 सेकण्ड बाद लौटेगा। इस समय पर दोनों के बीच अधिकतम दूरी होगी।
∴ अधिकतम दूरी, x = 15 × 8
= 120 मीटर होगी।
अर्थात् 8 सेकण्ड बाद केवल दूसरा पत्थर गतिशील होगा। अतः ग्राफ द्विघाती समीकरण के अनुसार परवलयाकार होगा।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.27
किसी निश्चित दिशा के अनुदिश चल रहे किसी कण का चाल-समय ग्राफ (चित्र) में दिखाया गया है। कण द्वारा (a) t = 0s से t = 10s
(b) t = 25 से 6s के बीच तय की गई दूरी ज्ञात कीजिए।
(a) तथा (b) में दिए गए अंतरालों की अवधि में कण की औसत चाल क्या है?
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
उत्तर:
(a) t = 0 सेकण्ड से t = 10 सेकण्ड में चली गई
= चाल समय ग्राफ का क्षेत्रफल
= 0B × AC
= 1 × 10 × 12
= 60 मीटर
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति

(b) t = 2 सेकण्ड से t = 6 सेकण्ड में चली दूरी ज्ञात करने के लिए, इसे दो भागों में अर्थात् t = 2 से t = 5 से० तक तथा t = 5 से t = 6 से० तक ज्ञात कर जोड़ेंगे।
(i) t = 2 से t = 5 से० के लिए
ut = 0, v =12 मीटर/सेकण्ड, t = 5 सेकण्ड
∴ a = \(\frac{v-u}{t}\) से
a = \(\frac{12}{5}\) = 2.5 मीटर/सेकण्ड
अब सूत्र v = u + at से, 1 = 2 सेकण्ड पर चाल,
v = 0 + 2.4 × 2 = 4.8 मीटर/सेकण्ड
∴ t = 2 से 1 =5 से० में चली दूरी
S = ut + \(\frac{1}{2}\)at2
= 4.8 × 3 + \(\frac{1}{2}\) × 2.4 × 32
= 14.4 + 10.8
= 25.2 मीटर

(ii) t = 5 से t = 6 से० के बीच चली दूरी
x = 12 × 1 + \(\frac{1}{2}\) × (-2.4) – 12
= 12 – 1.2 = 10.8 मीटर
∴ कुल चली दूरी = 25.2 + 10.8
= 36 मीटर
अत:
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
\(\frac{36}{4}\) = 9 मीटर/सेकण्ड।

Bihar Board Class 11 Physics Solutions Chapter 3 सरल रेखा में गति

प्रश्न 3.28
एकविमीय गति में किसी कण का वेग-समय ग्राफ (चित्र) में दिखाया गया है:
Bihar Board Class 11 Physics Chapter 3 सरल रेखा में गति
नीचे दिए सूत्रों में से t, तक के समय अंतराल की अवधि में कण की गति का वर्णन करने के लिए कौन-से सूत्र सही हैं:

  1. x (t2) = x(t1) + v(t1) (t2 – t1) + (1/2) a(t2 – t1)
  2. v(t2) = v(t1) + a(t2 – t1)
  3. vaverage = [x(t2) – x(t1)]/t2 – t1)
  4. aaverage = [v(t2) – v (t1)]/(t2 – t1)
  5. x(t2) = x(t1) + vaverage (t2 – t1) + (1/2) aaverage (t2 – t1)
  6. x(t2) – x(t1) = t – अक्ष तथा दिखाई गई बिंदुकित रेखा के बीच दर्शाए गए वक्र के अंतर्गत आने वाला क्षेत्रफल।

उत्तर:

  1. असत्य
  2. सत्य
  3. सत्य
  4. सत्य।

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

Bihar Board Class 11 Physics अणुगति सिद्धांत Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 13.1
ऑक्सीजन के अणुओं के आयतन और STP पर इनके द्वारा घेरे गए कुल आयतन का अनुपात ज्ञात कीजिए। ऑक्सीजन के एक अणु का व्यास 3 A लीजिए।
उत्तर:
दिया है:
d = 3Å
∴r = \(\frac{1}{2}\) × 3 = 1.5 Å
= 1.5 × 10-10 मीटर
STP पर 1 मोल गैस का आयतन
V1 = 22.4 l = 22.4 × 10-3 मीटर3
तथा 1 मोल गैस में अणुओं की संख्या
= N = 6.02 × 1023
∴ अणुओं का आयतन, V2 = एक अणु का आयतन × N
= \(\frac{4}{3}\) π3 × N
= \(\frac{4}{3}\) × 3.14 × (1.5 × 10-10)3 × 6.02 × 1023
= 8.52 × 10-6 मीटर2
∴\(\frac{V_{2}}{V_{1}}\) = \(\frac{8.52 \times 10^{-6}}{22.4 \times 10^{-3}}\) = 3.8 × 10-4
अतः अणुओं के आयतन तथा STP पर इनके द्वारा घेरे गए आयतन का अनुपात 3.8 × 10-4 है।

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.2
मोलर आयतन STP पर किसी गैस (आदर्श) के 1 मोल द्वारा घेरा गया आयतन है। (STP : 1 atm) दाब, 0°C दर्शाइये कि यह 22.4 लीटर है।
उत्तर:
दिया है:
STP पर,
P = 1 atm = 7.6 m of Hg column
= 0.76 × 13.6 × 103 × 9.9
= 1.013 × 105 Nm-2
T = 0°C = 273 K
R = 8.31 J mol-1K-1
n = 1 मोल V = 22.41 सिद्ध करने के लिए, सूत्र PV = nRT से,
V = \(\frac{nRT}{P}\)
= \(\frac{1 \times 8.31 \times 273}{1.013 \times 10^{5}}\)
= 22.4 × 10-3 m-3
= 22.4 लीटर
इति सिद्धम्।

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.3
चित्र में ऑक्सीजन के 1.00 × 10-3 kg द्रव्यमान के लिए PV/T एवं P में, दो अलग-अलग तापों पर ग्राफ दर्शाये गए हैं।
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
(a) बिंदुकित रेखा क्या दर्शाती है?
(b) क्या सत्य है : T1 > T2 अथवा T1 < T2?
(c) y – अक्ष पर जहाँ वक्र मिलते हैं वहाँ PVIT का मान क्या है?
(d) यदि हम ऐसे ही ग्राफ 100 × 10-3 kg हाइड्रोजन के लिए बनाएँ तो भी क्या उस बिंदु पर जहाँ वक्र y – अक्ष से मिलते हैं PV/T का मान यही होगा? यदि नहीं तो हाइड्रोजन के कितने द्रव्यमान के लिए PV/T का मान (कम दाब और उच्च ताप के क्षेत्र के लिए वही होगा? H2 का अणु द्रव्यमान = 2.02 u, O2 का अणु द्रव्यमान = 32.0 u, R = 8.31J mol-1K-1)
उत्तर:
(a) बिन्दुकित रेखा यह व्यक्त करती है कि राशि PV/T स्थिर है। यह तथ्य केवल आदर्श गैस के लिए सत्य है। अर्थात् बिन्दुकित रेखा आदर्श गैस का ग्राफ है।

(b) ताप T2 पर ग्राफ की तुलना में ताप T1 पर गैस का ग्राफ आदर्श गैस के ग्राफ के अधिक समीप है। हम जानते हैं कि वास्तविक गैसें निम्न ताप पर आदर्श गैस के व्यवहार से अधिक विचलित होती हैं। अत: T1 > T2

(c) जहाँ ग्राफ -अक्ष पर मिलते हैं ठीक उसी बिन्दु पर आदर्श गैस का ग्राफ भी गुजरता है। अतः इस बिन्दु पर ऑक्सीजन गैस, आदर्श गैस का पालन करती है।
अत: गैस समीकरण से,
\(\frac{PV}{T}\) = nR
हम जानते हैं O2 का 32 × 10-3 kg = 1 मोल
∴ O2 का 1.00 × 10-3 kg
= \(\frac{1}{32 \times 10^{-3}} \times 1 \times 10^{-3}\)
i.e., n = \(\frac{1}{32}\)
R = 8.31 JK-1 mol-1
∴\(\frac{PV}{T}\) = \(\frac{1}{32}\) × 8.31 = 0.26 JK-1

(d) नहीं, हाइड्रोजन गैस के लिए PV/T का मान समान नहीं रहता है। चूँकि यह द्रव्यमान पर निर्भर करता है तथा H2 का द्रव्यमान O2 से कम है।
माना हाइड्रोजन का अभीष्ट द्रव्यमान m किया है जिसमें PV/T का समान मान प्राप्त होता है।
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.4
एक ऑक्सीजन सिलिंडर जिसका आयतन 30 लीटर है, में ऑक्सीजन का आरंभिक दाब 15 atm एवं ताप 27°C है। इसमें से कुछ गैस निकाल लेने के बाद प्रमापी (गेज)दाब गिर कर 11 atm एवं ताप गिर कर 17°C हो जाता है। ज्ञात कीजिए कि सिलिंडर से ऑक्सीजन की कितनी मात्रा निकाली गई है। (R = 8.31J mol-1K-1, ऑक्सीजन का अणु द्रव्यमान O2 = 32 u)।
उत्तर:
दिया है:
ऑक्सीजन सिलिण्डर में प्रारम्भ में
V1 = 30 litres = 30 × 10-3 m3
P1 = 15 atm = 15 × 1.013 × 105 Pa
T1 = 27 + 273 = 300 K
R = 8.31 JK-1mol-1
माना सिलिण्डर में ऑक्सीजन गैस के n1 मोल हैं।
अतः सूत्र PV = nRT से,
n1 = \(\frac{P_{1} V_{1}}{R T_{1}}\)
= \(\frac{15 \times 1.013 \times 10^{5}}{8.31 \times 300}\) = 18.253
ऑक्सीजन का अणु भार
M = 32 = 32 × 10-3 kg
सिलिंडर में ऑक्सीजन का प्रारम्भिक द्रव्यमान
m1 = n1M
= 18.253 × 32 × 10-3 kg
माना अन्त में सिलिंडर में O2 के n2 मोल बचे हैं।
दिया है:
V2 = 30 × 10-3 m-3, P2 = 11 atm
= 11 × 1.013 × 105 pa
∴ n2 = \(\frac{P_{2} V_{2}}{R T_{2}}\)
= \(\frac{\left(11 \times 1.013 \times 10^{5}\right) \times\left(30 \times 10^{-3}\right)}{8.31 \times 290}\)
= 13.847 .
∴ सिलिंडर में O2 गैस का अन्तिम द्रव्यमान
m1 – m2
= (584.1 – 453.1) × 10-3 kg
= 141 × 10-3 kg = 0.141 kg

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.5
वायु का एक बुलबुला, जिसका आयतन 1.0 cm3 है, 40 m गहरी झील की तली में जहाँ ताप 12°C है, उठकर ऊपर पृष्ठ पर आता है जहाँ ताप 35°C है। अब इसका आयतन क्या होगा? उत्तर:
जब वायु का बुलबुला 40 मी० गहराई पर है तब
V1 = 1.0 cm3 = 1.0 × 10-6m3
T1 = 12°C
= 12°C – 12 + 273 = 285 K
= 1 atm + 40 m पानी की गहराई
P1 = 1 atm – h1ρg
= 1.013 × 105 + 40 × 103 × 9.8
= 493000 Pa
= 4.93 × 105 Pa
जब वायु का बुलबुला झील की सतह पर पहुँचता है तब
V2 = ?, T2 = 35°C
= 35 + 273
= 308 K
P2 = 1 atm = 1.013 × 105 Pa
सूत्र
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

प्रश्न 13.6
एक कमरे में, जिसकी धारिता 25.0 m3 है, 27°C ताप और 1 atm दाब पर, वायु के कुल अणुओं (जिनमें नाइट्रोजन, ऑक्सीजन, जलवाष्प और अन्य सभी अवयवों के कण सम्मिलित हैं) की संख्या ज्ञात कीजिए।
उत्तर:
दिया है:
V = 25.0 m3
T = 27°C = 27 + 273 = 300 K
K = 1.38 × 10-23 JK-1
P = 1 atm = 1.013 × 105 Pa
गौस समीकरण से, P = \(\frac{nRT}{V}\)
= \(\frac{n}{V}\) (Nk) T (∵\(\frac{R}{n}\) = k)
= (nN) \(\frac{kT}{V}\) = N’ \(\frac{KT}{V}\)
जहाँ N’ = nN = दी गई गैस में ऑक्सीजन अणुओं की संख्या
N’ = \(\frac{PV}{kT}\)
= \(\frac{\left(1.013 \times 10^{5}\right) \times 25}{1.38 \times 10^{-23} \times 300}\)
= 6.10 × 1026

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.7
हीलियम परमाणु की औसत तापीय ऊर्जा का आंकलन कीजिए –
(i) कमरे के ताप (27°C) पर
(ii) सूर्य के पृष्ठीय ताप (6000 K) पर
(iii) 100 लाख केल्विन ताप (तारे के क्रोड का प्रारूपिक ताप) पर।
उत्तर:
गैस के अणुगति सिद्धान्त के अनुसार, ताप T पर गैस की औसत गतिज ऊर्जा (i.e., औसत ऊष्मीय ऊर्जा) निम्नवत् है –
E = \(\frac{3}{2}\) KT
दिया है: k = 1.38 × 10-23 JK-1

(i) T = 27°C = 273 + 27 = 300 K पर,
E = \(\frac{3}{2}\) × 1.38 × 10-23 × 300
= 621 × 10-23 J
= 6.21 × 10-21 J

(ii) T = 6000K पर
∴E = \(\frac{3}{2}\) × 1.38 × 10-23 × 6000
= 1.24 × 10-19 J

(iii) T = 10 × 106 K पर,
∴ E = \(\frac{3}{2}\) × 1.38 × 10-23 × 107
= 2.07 × 10-16 J
= 2.1 × 10-16 J

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.8
समान धारिता के तीन बर्तनों में एक ही ताप और दाब पर गैसें भरी हैं। पहले बर्तन में नियॉन (एकपरमाणुक) गैस है, दूसरे में क्लोरीन (द्विपरमाणुक) गैस है और तीसरे में यूरेनियम हेक्साफ्लोराइड (बहुपरमाणुक) गैस है। क्या तीनों बर्तनों में गैसों के संगत अणुओं की संख्या समान है? क्या तीनों प्रकरणों में अणुओं की vrms (वर्गमाध्य मूल चाल) समान है।
उत्तर:
(a) हाँ, चूँकि आवोगाद्रों परिकल्पना से, समान परिस्थितियों में गैसों के समान आयतन में अणुओं की संख्या समान होती है।

(b) नहीं चूँकि Vrms = \(\sqrt{\frac{3 R T}{m}}\)
∴ Vrms ∝ \(\frac{1}{\sqrt{m}}\)
अतः तीनों गैसों के ग्राम-अणु भार अलग-अलग हैं। अतः अणुओं की वर्ग माध्य-मूल चाल अलग-अलग होगी।

प्रश्न 13.9
किस ताप पर आर्गन गैस सिलिंडर में अणुओं की vrms, 20°C पर हीलियम गैस परमाणुओं की vrms के बराबर होगी। (Ar का परमाणु द्रव्यमान = 39.91 एवं हीलियम का परमाणु द्रव्यमान = 4.0 u)।
उत्तर:
माना कि T1 व T2 K ताप पर आर्गन व हीलियम गैस की वर्ग माध्य मूल वेग क्रमश: C1 व C2 हैं।
दिया है:
M1 = 39.9 × 10-3 kg,
M2 = 4.0 × 10-3 kg, T1 = ?
T2 = -20 + 273 = 253 K
हम जानते हैं कि वर्ग माध्य मूल वेग
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
या T = 2523.7 K = 2524 K
= 2.524 × 103K

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.10
नाइट्रोजन गैस के एक सिलिंडर में, 2.0 atm दाब एवं 17°C ताप पर नाइट्रोजन अणुओं के माध्य मुक्त पथ एवं संघट्ट आवृत्ति का आंकलन कीजिए। नाइट्रोजन अणु की त्रिज्या लगभग 1.0 A लीजिए। संघट्ट काल की तुलना अणुओं द्वारा दो संघट्टों के बीच स्वतंत्रतापूर्वक चलने में लगे समय से कीजिए। (नाइट्रोजन का आण्विक द्रव्यमान = 28.0 u)।
उत्तर:
मैक्सवेल संशोधन ने गैस अणुओं का मध्य मुक्त पद
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
जहाँ d = अणु का व्यास
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
2 atm दाब पर, m द्रव्यमान गैस का आयतन
V = \(\frac{RT}{P}\), T = 273 + 17 = 290 K
∴ n = \(\frac{n}{V}\) = \(\frac{NP}{RT}\)
दिया है: N = 6.023 × 1023 mole-1
P = 2 atm = 2 × 1.013 × 105 Nm-2
R = 8.3 JK -1 mol-1
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
वर्ग माध्य मूल वग C = \(\sqrt{\frac{2 R T}{M}}\)
R = 8.31 J mol-1 K-1
T = 290 K, M = 28 × 10-3 kg रखने पर
C = \(\sqrt{\frac{3 \times 8.31 \times 290}{28 \times 10^{-3}}}\)
= 5.08 × 102 ms-1
= 5.10 × 102 ms-1
∴ संघट्ट आवृत्ति,
v = \(\frac{C}{λ}\) = \(\frac{5.1 \times 10^{2}}{1.0 \times 10^{-7}}\)
= 5.1 × 109 s-1
माना दो क्रमागत संघट्टों के मध्य र समय है।
∴ τ = \(\frac{λ}{C}\) = \(\frac{1.0 \times 10^{-7} \mathrm{m}}{5.1 \times 10^{2} \mathrm{ms}^{-1}}\)
= 2 × 10-13 s
पुनः माना संघट्ट के लिया गया समय t है।
∴ t = \(\frac{d}{C}\) = \(\frac{2 \times 10^{-10}}{5.10 \times 10^{2}}\)
= 4 × 10-13 s
समी० (i) को (ii) से भाग देने पर,
\(\frac{τ}{τ}\) = \(\frac{2.0 \times 10^{-10} \mathrm{s}}{4 \times 10^{-13} \mathrm{s}}\) = 500
या τ = 500t
अतः दो क्रमागत टक्करों के मध्य समय टक्कर में लिये गए समय का 500 गुना है। इससे यह प्रदर्शित होता है कि गैस के अणु लगभग हर समय मुक्त रूप से चलायमान रहते हैं।

Bihar Board Class 11 Physics अणुगति सिद्धांत Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 13.11
1 मीटर लंबी संकरी ( और एक सिरे पर बंद) नली क्षैतिज रखी गई है। इसमें 76 cm लंबाई भरा पारद सूत्र, वायु के 15 cm स्तंभ को नली में रोककर रखता है। क्या होगा यदि खुला सिरा नीचे की ओर रखते हुए नली को ऊर्ध्वाधर कर दिया जाए।
उत्तर:
प्रारम्भ में नली क्षैतिज है तब बंद सिरे पर रोकी गई वायु का दाब वायुमण्डलीय दाब के समान होगा।
∴ P1 = 76 सेमी पारे स्तम्भ का दाब।
माना कि नली का अनुप्रस्थ क्षेत्रफल A सेमी2 है।
वायु का आयतन = 15 × A = 15A सेमी3

जब नली का खुला सिरा नीचे की ओर रखते हैं तथा ऊर्ध्वाधर करते हैं जब खुले सिरे पर बाहर की ओर से वायुमण्डलीय दाब कार्य करता है जबकि ऊपर की ओर से 76 सेमी पारद सूत्र का दाब व बंद सिरे पर एकत्र वायु का दाब अधिक है।

अतः पारद सूत्र असंचुलित रहेगा व नीचे गिरते हुए वायु को बाहर निकाल देता है। माना कि पारद सूत्र की 2 लम्बाई नीचे नली से बाहर निकलती है।
∴ नली में पारद सूत्र की शेष लम्बाई = (76 – h) सेमी
तथा बंद सिरे पर वायु स्तम्भ की लम्बाई
= (15 + 9 + h)
= (24 + h) सेमी

तथा वायु का आयतन V2 = (24 + h) A सेमी3
माना कि इस वायु का दाब P2 है।
∴ सन्तुलन में,
P2 + (76 – h) सेमी पारद सूत्र का दाब = वायुमण्डलीय दाब
∴P2 = R सेमी पारद सूत्र का दाब
सूत्र P1V1 = P2V2 से
76 × 15A = h × (24 + h) A
या 1140 = 24h + h2
या h2 + 24h – 1140 = 0
∴ h = -24 ± \(\sqrt{24^{2}-4 \times 17-1140}\)
= 28.23 या – 4784 सेमी
परन्तु h ≠ ऋणात्मक
∴ h = 28.23 सेमी।
अतः पारद सूत्र की 28.23 सेमी लम्बाई नली से बाहर निकल जाएगी।

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.12
किसी उपकरण से हाइड्रोजन गैस 28.7 cm3 s-1 की दर से विसरित हो रही है। उन्हीं स्थितियों में कोई दूसरी गैस 7.2 cm3 s-1 की दर से विसरित होती है। इस दूसरी गैस को पहचानिए।
[संकेत : ग्राहम के विसरण नियम R1/R2 = (M2/M1)1/2 का उपयोग कीजिए, यहाँ R1, R2 क्रमशः
गैसों की विसरण दर तथा M2 एवं M2 उनके आण्विक द्रव्यमान हैं। यह नियम अणुगति सिद्धांत का एक सरल परिणाम है।]
उत्तर:
विसरण के ग्राहम के नियम से,
\(\frac{R_{1}}{R_{2}}\) = \(\sqrt{\frac{M_{2}}{M_{1}}}\) ………………. (i)
जहाँ R1 = गैस – 1 की विसरण दर = 28.7 cm3 s-1
R2 = गैस – 2 की विसरण दर = 7.2 cm2 s-1 ………………. (ii)
माना इनके संगत अणुभार M1 व M2 हैं।
∴H2 के लिए, M1 = 2
∴ समी० (i) तथा (ii) से
\(\frac{28.7}{7.2}\) = \(\sqrt{\frac{M_{2}}{2}}\)
या \(\frac{M_{2}}{2}\) = (\(\frac{28.7}{7.2}\))2
या M2 = 2 × 15.89 = 31.77 = 32 u
हम जानते हैं कि O2 का अणुभार 32 है। अत: अज्ञात गैस O2 है।

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.13
साम्यावस्था में किसी गैस का घनत्व और दाब अपने संपूर्ण आयतन में एकसमान है। यह पूर्णतया सत्य केवल तभी है जब कोई भी बाह्य प्रभाव न हो। उदाहरण के लिए, गुरुत्व से प्रभावित किसी गैस स्तंभ का घनत्व (और दाब) एकसमान नहीं होता है। जैसा कि आप आशा करेंगे इसका घनत्व ऊँचाई के साथ घटता है।

परिशुद्ध निर्भरता ‘वातावरण के नियम n2 = n1 exp \(\left[-\frac{m g}{k_{B} T}\left(h_{2}-h_{1}\right)\right]\) से दी जाती है, यहाँ n2, n1 क्रमश: h2, h1 ऊँचाइयों पर संख्यात्मक घनत्व को प्रदर्शित करते हैं।

इस संबंध का उपयोग द्रव स्तंभ में निलंबित किसी कण के अवसादन साम्य के लिए समीकरण n2 = n1 exp \(\left[-\frac{m g N_{A}}{\rho R T}\left(\rho-\rho^{\prime}\right)\left(h_{2}-h_{1}\right)\right]\) को व्युत्पन्न करने के लिए कीजिए, यहाँ निलंबित कण का घनत्व तथा ρ’ चारों तरफ के माध्यम का घनत्व है। NA आवोगाद्रो संख्या, तथा R सार्वत्रिक गैस नियतांक है। संकेत : निलंबित कण के आभासी भार को जानने के लिए आर्किमिडीज के सिद्धांत का उपयोग कीजिए।]
उत्तर:
माना कि कणों तथा अणुओं का आकार गोलाकार है। कणों का भार निम्नवत् है।
w = mg = \(\frac{4}{3}\) πr2 ρg …………… (i)
जहाँ r = कणों की त्रिज्या
तथा ρ = कणों का घनत्व है।
कणों की गति गुरुत्व के अधीन होने पर, ऊपर की ओर उत्क्षेप लगाती है जिसका मान निम्नवत् है –
B = कण का आयतन × प्रतिवेश का घनत्व × g
= \(\frac{4}{3}\) πr3 ρ’g ………………. (ii)
माना कण पर नीचे की ओर लगने वाला बल F है।
अत: F = W – B
= \(\frac{4}{3}\) πr3(ρ – ρ’) g ……………….. (iii)
पुनः n2 = n1 exp \(\left[\frac{-m g}{k_{B} T}\left(h_{2}-h_{1}\right)\right]\) ……………… (iv)
जहाँ kB = बोल्ट्जमैन नियतांक है।
तथा n1 व n2 क्रमश: h1 व h2 ऊँचाई पर संख्या घनत्व है। समीकरण (iii) में mg के स्थान पर बल F रखने पर, समीकरण (ii) व (iv) से,
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
जो कि अभीष्ट समीकरण है।
जहाँ \(\frac{4}{3}\) πr3 ρg = कण का द्रव्यमान × g = mg

Bihar Board Class 11 Physics Solutions Chapter 13 अणुगति सिद्धांत

प्रश्न 13.14
नीचे कुछ ठोसों व द्रवों के घनत्व दिए गए हैं। उनके परमाणुओं की आमापों का आंकलन (लगभग)कीजिए।
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
[संकेत : मान लीजिए कि परमाणु ठोस अथवा द्रव प्रावस्था में दृढ़ता से बंधे हैं तथा आवोगाद्रो संख्या के ज्ञात मान का उपयोग कीजिए। फिर भी आपको विभिन्न परमाण्वीय आकारों के लिए अपने द्वारा प्राप्त वास्तविक संख्याओं का बिल्कुल अक्षरशः प्रयोग नहीं करना चाहिए क्योंकि दृढ़ संवेष्टन सन्निकटन की रुक्षता के परमाणवीय आकार कुछ Å के परास में हैं।
उत्तर:
(a) कार्बन का परमाणु भार
M = 12.01 × 10-3 kg
N = 6.023 × 1023
∴ एक कार्बन परमाणु का द्रव्यमान
m = \(\frac{M}{N}\) = \(\frac{12.01 \times 10^{-3}}{6.023 \times 10^{23}}\)
या m = 1.99 × 10-26 kg
= 2 × 10-26 kg
कार्बन का घनत्व \(\rho_{\varepsilon}\) = 2.2 × 10+3 kg m-3
∴ प्रत्येक कार्बन परमाणु का आयतन
V = \(\frac{m}{\rho_{\mathrm{C}}}=\frac{2 \times 10^{-26}}{2.2 \times 10^{3}}\)
= 0.9007 × 10-29 m3
माना rC = कार्बन परमाणु की त्रिज्या
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

(b) दिया है : स्वर्ण परमाणु का परमाणु भार
M = 1.97 × 10-3 kg
∴ प्रत्येक स्वर्ण परमाणु का द्रव्यमान
= \(\frac{M}{N}\) = \(\frac{197 \times 10^{3}}{6.023 \times 10^{23}}\)
= 3.271 × 10-25 kg
ρg = 19.32 × 103 kg m-3
माना rg = गोल्ड परमाणु की त्रिज्या
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

(c) दिया है : नाइट्रोजन परमाणु का परमाणु भार
M = 14.01 × 10-3 kg
∴ प्रत्येक परमाणु का द्रव्यमान
m = \(\frac{M}{N}\) = \(\frac{14.01 \times 10^{-3} \mathrm{kg}}{6.023 \times 10^{23}}\)
= 2.3261 × 10-26 kg
माना rn = इसके प्रत्येक परमाणु की त्रिज्या
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

(d) दिया है : MLi = 6.94 × 10-3 kg
ρLi = 0.53 × 103 kg m-3
∴ mLi = mass of Li atom
= \(\frac{M_{\mathrm{Li}}}{\rho_{\mathrm{Li}}}=\frac{6.94 \times 10^{-3}}{6.023 \times 10^{23}}\)
= 1.152 × 10-26 kg
माना rLi = Li परमाणु की त्रिज्या
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

(e) दिया है : MF = 1.9 × 10-3 kg
ρF = 1.14 × 103 kg m3
∴ प्रत्येक फलुओरीन परमाणु का द्रव्यमान
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत
माना प्रत्येक फलुओरीन परमाणु की त्रिज्या rF है। अतः
Bihar Board Class 11 Physics Chapter 13 अणुगति सिद्धांत

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण Textbook Questions and Answers, Additional Important Questions, Notes.

BSEB Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

Bihar Board Class 11 Physics गुरुत्वाकर्षण Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 8.1
निम्नलिखित के उत्तर दीजिए:
(a) आप किसी आवेश का वैद्युत बलों से परिरक्षण उस आवेश को किसी खोखले चालक के भीतर रखकर कर सकते हैं। क्या आप किसी पिंड का परिरक्षण, निकट में रखे पदार्थ के गुरुत्वीय प्रभाव से, उसे खोखले गोले में रखकर अथवा किसी अन्य साधनों द्वारा कर सकते हैं?

(b) पृथ्वी के परितः परिक्रमण करने वाले छोटे अन्तरिक्षयान में बैठा कोई अन्तरिक्ष यात्री गुरुत्व बल का संसूचन नहीं कर सकता। यदि पृथ्वी के परितः परिक्रमण करने वाला अन्तरिक्ष स्टेशन आकार में बड़ा है, तब क्या वह गुरुत्व बल के संसूचन की आशा कर सकता है?

(c) यदि आप पृथ्वी पर सूर्य के कारण गुरुत्वीय बल की तुलना पृथ्वी पर चन्द्रमा के कारण गुरुत्व बल से करें, तो आप यह पाएँगे कि सूर्य का खिंचाव चन्द्रमा के खिंचाव की तुलना में अधिक है (इसकी जाँच आप स्वयं आगामी अभ्यासों में दिए गए आँकड़ों की सहायता से कर सकते हैं।) तथापि चन्द्रमा के खिंचाव का ज्वारीय प्रभाव सूर्य के ज्वारीय प्रभाव से अधिक है। क्यों?
उत्तर:
(a) नहीं।
(b) हाँ, यदि अंतरिक्ष यान का आकार उसके लिए इतना अधिक हो कि वह गुरुत्वीय त्वरण (g) के परिवर्तन का संसूचण कर सके।
(c) ज्वारीय प्रभाव दूरी के घन के व्युत्क्रमानुपाती होता है तथा इस अर्थ में यह उन बलों से भिन्न है जो दूरी के वर्ग के व्युत्क्रमानुपाती होते हैं।

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.2
सही विकल्प का चयन कीजिए:
(a) बढ़ती तुंगता के साथ गुरुत्वीय त्वरण बढ़ता/घटता है।
(b) बढ़ती गहराई के साथ (पृथ्वी को एकसमान घनत्व को गोला मानकर) गुरुत्वीय त्वरण बढ़ता/घटता है।
(c) गुरुत्वीय त्वरण पृथ्वी के द्रव्यमान/पिंड के द्रव्यमान पर निर्भर नहीं करता।
(d) पृथ्वी के केन्द्र से तथा दूरियों के दो बिन्दुओं के बीच स्थितिज ऊर्जा-अन्तर के लिए सूत्र
-GMm (1/r2 – 1/r1) सूत्र mg(r2 – r1) से अधिक/कम यथार्थ है।
उत्तर:
(a) घटता है।
(b) घटता है।
(c) पिंड के द्रव्यमान पर निर्भर नहीं करता है।
(d) अधिक।

प्रश्न 8.3
मान लीजिए एक ऐसा ग्रह है जो सूर्य के परितः पृथ्वी की तुलना में दो गुनी चाल से गति करता है, तब पृथ्वी की कक्षा की तुलना में इसका कक्षीय आमाप क्या है?
उत्तर:
माना पृथ्वी व ग्रह का परिक्रमण काल क्रमश: TE व Tp हैं।
∴ Tp = \(\frac{T_{E}}{2}\)
माना कक्षीय आमाप क्रमशः re व rp हैं।
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
अर्थात् ग्रह का आमाप पृथ्वी से 0.63 गुना छोटा है।

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.4
बृहस्पति के एक उपग्रह, आयो (lo), की कक्षीय अवधि 1.769 दिन तथा कक्षा की त्रिज्या 4.22 × 108 m है। यह दर्शाइए कि बृहस्पति का द्रव्यमान सूर्य के द्रव्यमान का लगभग 1/1000 गुना है।
उत्तर:
दिया है:
सूर्य का द्रव्यमान = Ms = 2 × 30 kg
बृहस्पति के उपग्रह का आवर्त काल = T = 1.769 दिन
= 1.769 × 24 × 3600s
= 15.2841 × 104 s
बृहस्पति के चारों ओर उपग्रह की त्रिज्या
= r = 4.22 × 8 m
G = 6.67 × 10-11 Nm2kg-2
माना बृहस्पति का द्रव्यमान MJ है।
MJ = \(\frac{1}{1000}\)Ms सिद्ध करने के लिए
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
अत: बृहस्पति का द्रव्यमान सूर्य के द्रव्यमान का लगभग (1/1000) गुना है।

प्रश्न 8.5
मान लीजिए कि हमारी आकाशगंगा में एक सौर द्रव्यमान के 2.5 × 1011 तारे हैं। मंदाकिनीय केन्द्र से 50,000 105 ly दूरी पर स्थित कोई तारा अपनी एक परिक्रमा पूरी करने में कितना समय लेगा? आकाशगंगा का व्यास 105 ly लीजिए।
उत्तर:
एक सौर द्रव्यमान = 2 × 1030 kg
एक प्रकाश वर्ष = 9.46 × 1015 m
माना M = आकाश गंगा में तारे का द्रव्यमान
= 2.5 × 1011 × 2 × 1030 kg
= 5 × 1041 kg
तारे की कक्षा की त्रिज्या = r = मंदाकिनी के केन्द्र से तारे की दूरी
= 50,000 प्रकाश वर्ष
= 50,000 × 9.46 × 1015 m
G = 6.67 × 10-11 Nm2 kg-2
एक आवृत्ति काल = T
आकाशगंगा का व्यास = 105 प्रकाश वर्ष
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.6
सही विकल्प का चयन कीजिए:
(a) यदि स्थितिज ऊर्जा का शुन्य अनन्त पर है, तो कक्षा में परिक्रमा करते किसी उपग्रह की कुल ऊर्जा इसकी गतिज/स्थितिज ऊर्जा का ऋणात्मक है।
(b) कक्षा में परिक्रमा करने वाले किसी उपग्रह को पृथ्वी के गुरुत्वीय प्रभाव से बाहर निकालने के लिए आवश्यक ऊर्जा समान ऊँचाई (जितनी उपग्रह की है) के किसी स्थिर पिंड को पृथ्वी के प्रभाव से बाहर प्रक्षेपित करने के लिए आवश्यक ऊर्जा से अधिक/कम होती है।
उत्तर:
(a) गतिज ऊर्जा
(b) कम होती है।

प्रश्न 8.7
क्या किसी पिंड की पृथ्वी से पलायन चाल –

  1. पिंड के द्रव्यमान
  2. प्रक्षेपण बिन्दु की अवस्थिति
  3. प्रक्षेपण की दिशा
  4. पिंड के प्रमोचन की अवस्थिति की ऊँचाई पर निर्भर करती है।

उत्तर:

  1. नहीं
  2. नहीं
  3. नहीं
  4. हाँ।

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.8
कोई धूमकेत सूर्य की परिक्रमा अत्यधिक दीर्घवृत्तीय कक्षा में कर रहा है। क्या अपनी कक्षा में धूमकेतु की शुरू से अन्त तक –

  1. रैखिक चाल
  2. कोणीय चाल
  3. कोणीय संवेग
  4. गतिज ऊर्जा
  5. स्थितिज ऊर्जा
  6. कुल ऊर्जा नियत रहती है। सूर्य के अति निकट आने पर धूमकेतु के द्रव्यमान में ह्रास को नगण्य मानिये।

उत्तर:

  1. नहीं
  2. नहीं
  3. हाँ
  4. नहीं
  5. नहीं
  6. हाँ।

प्रश्न 8.9
निम्नलिखित में से कौन से लक्षण अन्तरिक्ष में अन्तरिक्ष यात्री के लिए दुःखदायी हो सकते हैं?
(a) पैरों में सूजन
(b) चेहरे पर सूजन
(c) सिरदर्द
(d) दिक्विन्यास समस्या।
उत्तर:
(b), (c) व (d)।

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.10
एक समान द्रव्यमान घनत्व की अर्धगोलीय खोलों द्वारा परिभाषित ढोल के पृष्ठ के केन्द्र पर गुरुत्वीय तीव्रता की दिशा देखिए चित्र]

  1. a
  2. b
  3. c
  4. 0 में किस तीर द्वारा दर्शायी जाएगी?

Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण

उत्तर:
गोलों को पूरा करने पर, केन्द्र C पर नेट तीव्रता शून्य होगी। इसका तात्पर्य है कि केन्द्र C पर दोनों अर्धगोलों के कारण तीव्रताएँ परस्पर विपरीत व बराबर होंगी। अर्थात् दिशा (iii) C द्वारा व्यक्त होगी।

प्रश्न 8.11
उपरोक्त समस्या में किसी यादृच्छिक बिन्दु P पर गुरुत्वीय तीव्रता किस तीर –
(i) d
(ii) e
(iii) f
(iv) g द्वारा व्यक्त की जाएगी?
उत्तर:
(ii) (e) द्वारा व्यक्त होगी।

प्रश्न 8.12
पृथ्वी से किसी रॉकेट को सूर्य की ओर दागा गया है। पृथ्वी के केन्द्र से किस दूरी पर रॉकेट पर गुरुत्वाकर्षण बल शून्य है? सूर्य का द्रव्यमान = 2 × 1030 kg, पृथ्वी का द्रव्यमान = 6 × 1024 kg। अन्य ग्रहों आदि के प्रभावों की उपेक्षा कीजिए ( कक्षीय त्रिज्या = 15 × 1011 m)
उत्तर:
माना पृथ्वी के केन्द्र से दूरी पर सूर्य व पृथ्वी के कारण गुरुत्वाकर्षण बल बिन्दु P पर है। अतः रॉकेट पर गुरुत्वाकर्षण बल शून्य है।
माना सूर्य से पृथ्वी से बीच की दूरी = x = पृथ्वी की त्रिज्या
सूर्य का द्रव्यमान, Ms = 2 × 1030 किग्रा
पृथ्वी का द्रव्यमान Me = 6 × 1024 किग्रा
x = 1.5 × 1011 मीटर
माना रॉकेट का द्रव्यमान m है।
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
बिन्दु P पर, सूर्य व रॉकेट के मध्य गुरुत्वाकर्षण बल
= पृथ्वी व रॉकेट के मध्य गुरुत्वाकर्षण बल।
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.13
आप सूर्य को कैसे तोलेंगे, अर्थात् उसके द्रव्यमान का आंकलन कैसे करेंगे? सूर्य के परितः पृथ्वी की कक्षा की औसत त्रिज्या 15 × 108 km है।
उत्तर:
हम जानते हैं कि पृथ्वी, सूर्य के चारों ओर 1.5 × 1011 मीटर त्रिज्या की कक्षा में घूमती है। पृथ्वी एक चक्कर 365 दिनों में पूरा करती है।
दिया है:
पृथ्वी की त्रिज्या = R = 1.5 × 1011 मीटर
सूर्य के चारों ओर पृथ्वी और पृथ्वी का आवर्तकाल,
T = 365
दिन = 365 × 24 × 60 × 60 से०,
G = 6.67 × 1011 न्यूटन-मीटर2 प्रति किग्रा2
जहाँ Ms = सूर्य का द्रव्यमान है = ?
हम जानते हैं कि –
जहाँ Ms = सूर्य का द्रव्यमान है।
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
∴ सूर्य का द्रव्यमान = 2.0 × 1030 किग्रा।

प्रश्न 8.14
एक शनि वर्ष एक पृथ्वी-वर्ष का 29.5 गुना है। यदि पृथ्वी सूर्य से 15 × 108 km दूरी पर है, तो शनि सूर्य से कितनी दूरी पर है?
उत्तर:
केप्लर के नियम से,
i.e., T2 ∝ R3
∴ शनि के लिए \(T_{s}^{2} \propto R_{s}^{3}\) …………….. (i)
तथा पृथ्वी के लिए \(T_{e}^{2} \propto R_{c}^{3}\) ……………. (ii)
समी० (i) को (ii) से भाग देने पर,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
दिया है:
Ts = 29.5Te या \(\frac{T_{s}}{T_{e}}\) = 29.5
सूर्य से पृथ्वी की दूरी = Rs = 1.5 × 108 km
सूर्य से शनि की दूरी = Rs ……. (iv)
∴ समी० (iii) व (iv) से,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
= 1.43 × 107 किमी

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.15
पृथ्वी के पृष्ठ पर किसी वस्तु का भार 63N है। पृथ्वी की त्रिज्या की आधी ऊँचाई पर पृथ्वी के कारण इस वस्तु पर गुरुत्वीय बल कितना है?
उत्तर:
पृथ्वी के पृष्ठ से ऊँचाई = h = \(\frac{R}{2}\)
जहाँ R = पृथ्वी की त्रिज्या है।
हम जानते हैं कि gh = g[1 + \(\frac{h}{R}\))2
दिया है:
h = \(\frac{R}{2}\)
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
माना m = वस्तु का द्रव्यमान है
माना पृथ्वी के पृष्ठ व hऊँचाई पर भार क्रमश: W व Wh हैं।
अतः w = mg = 63 N दिया है।
तथा Wh = mgh
= m × \(\frac{4}{9}\)g = \(\frac{4}{9}\) mg
= \(\frac{4}{9}\) × 63 = 28 N
∴ Wh = 28 N

प्रश्न 8.16
यह मानते हुए कि पृथ्वी एकसमान घनत्व का एक गोला है तथा इसके पृष्ठ पर किसी वस्तु का भार 250N है, यह ज्ञात कीजिए कि पृथ्वी के केन्द्र की ओर आधी दूरी पर इस वस्तु का भार क्या होगा?
उत्तर:
माना कि पृथ्वी के पृष्ठ तथा पृथ्वी के पृष्ठ से d दूरी पर गुरुत्व के कारण त्वरण क्रमशः g व gd हैं।
माना कि पृथ्वी के पृष्ठ तथा पृथ्वी के पृष्ठ से d दूरी पर भार क्रमश: W व Wd है।
∴ W = mg = 250 N ……. (i)
तथा Wd = mgd ……………….. (ii)
हम जानते हैं कि gd = g(1 – \(\frac{d}{R}\)) ………………. (iii)
दिया है: d = \(\frac{R}{2}\) जहाँ R = पृथ्वी की त्रिज्या। ………………… (iv)
∴ समी० (iii) व (iv) से,
gd = g(1- \(\frac{R/2}{R}\))
= g (1 – \(\frac{1}{2}\)) = g × \(\frac{1}{2}\)
= \(\frac{g}{2}\) ……………. (v)
∴ wd = mgd = m \(\frac{g}{2}\) (समी० (v) से)
= \(\frac{1}{2}\) mg = \(\frac{1}{2}\) W
= \(\frac{1}{2}\) × 250 = 125 N
∴ पृथ्वी के केन्द्र से आधी दूरी पर वस्तु पर वस्तु का भार
= 125 N

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.17
पृथ्वी के पृष्ठ से ऊर्ध्वाधरतः ऊपर की ओर कोई रॉकेट 5 kms-1 की चाल से दागा जाता है। पृथ्वी पर वापस लौटने से पूर्व यह रॉकेट पृथ्वी से कितनी दूरी तक जाएगा? पृथ्वी का द्रव्यमान = 6.0 × 1024 kg पृथ्वी की माध्य त्रिज्या = 6.4 × 106 m तथा G = 6.67 × 10-11 Nm2 kg-2
उत्तर:
माना रॉकेट की प्रारम्भिक चाल है रॉकेट की पृथ्वी से h ऊँचाई पर वेग शून्य है।
माना रॉकेट का द्रव्यमान m है तथा पृथ्वी के पृष्ठ पर इसकी सम्पूर्ण ऊर्जा
K.E. + P.E. = \(\frac{1}{2}\) mv2 – \(\frac{GMm}{R}\) ………………… (i)
जहाँ M = पृथ्वी का द्रव्यमान
R = पृथ्वी की त्रिज्या
G = सार्वत्रिक गुरुत्वाकर्षण नियतांक
उच्चतम बिन्दु पर K.E. = 0 (∵ वेग = 0)
तथा P.E. = –\(\frac{GMm}{R}\) ………….. (ii)
h ऊँचाई पर रॉकेट की सम्पूर्ण ऊर्जा
= K.E. + P.E. = 0 + P.E. = P.E.
= \(\frac{G M_{m}}{R+h}\) ……………….. (iii)
ऊर्जा संरक्षण के नियम से,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
दिया है: v = 5 km s-1 = 5000 ms-1
दिया है: R = 6.4 × 6 m
समी० (iv) में दिया मान रखने पर,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
∴ पृथ्वी के केन्द्र से दूरी
= R + h = 6.4 × 106 + 1.6 × 106
= 8.0 × 106 मीटर।

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.18
पृथ्वी के पृष्ठ पर किसी प्रक्षेप्य की पलायन चाल 11.2 kms-1 है। किसी वस्तु को इस चाल की तीन गुनी चाल से प्रक्षेपित किया जाता है। पृथ्वीसे अत्यधिक दूर जाने पर इस वस्तु की चाल क्या होगी? सूर्य तथा अन्य ग्रहों की उपस्थिति की उपेक्षा कीजिए।
उत्तर:
माना वस्तु की प्रारम्भिक व अन्तिम चाल v व v’ है।
माना वस्तु का द्रव्यमान m है।
वस्तु की प्रारम्भिक गतिज ऊर्जा
= \(\frac{1}{2}\) mv2
वस्तु की स्थितिज ऊर्जा (पृथ्वी की सतह पर)
= \(\frac{-GMm}{R}\)
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
जहाँ M व R क्रमशः पृथ्वी के द्रव्यमान व त्रिज्या हैं।
वस्तु की अन्तिम स्थितिज ऊर्जा (अनन्त पर) = 0
वस्तु की अन्तिम गतिज ऊर्जा (अनन्त पर) = \(\frac{1}{2}\) mv2
ऊर्जा संरक्षण के नियम से,
प्रा० गतिज ऊर्जा + प्रा० PE = अन्तिम (KE + PE)
या \(\frac{1}{2}\) mv2 – \(\frac{GMm}{R}\) = \(\frac{1}{2}\) mv2 + 0
या \(\frac{1}{2}\) mv2 = \(\frac{1}{2}\) mv2 – \(\frac{GMm}{R}\) ……………….. (i)
Also Let ve = escape velocity
\(\frac{1}{2} m v_{e}^{2}\) = \(\frac{GMm}{R}\) ………….. (ii)
समी० (i) तथा (ii) से,
\(\frac{1}{2}\) mv2 = \(\frac{1}{2}\) mv2 – \(\frac{1}{2} m v_{e}^{2}\) …………….. (iii)
अब
ve = 11.2 kms-1
v = 3ve ……………… (iv) (दिया है)
समी० (iii) तथा (iv) से,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
= 31.7 kms-1

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.19
कोई उपग्रह पृथ्वी के पृष्ठ से 400 km ऊँचाई पर पृथ्वी की परिक्रमा कर रहा है। इस उपग्रह को पृथ्वी के गुरुत्वीय प्रभाव से बाहर निकालने में कितनी ऊर्जा खर्च होगी? उपग्रह का द्रव्यमान = 200 kg; पृथ्वी का द्रव्यमान = 6.0 × 1024 kg; पृथ्वी की त्रिज्या = 6.4 × 106 m तथा G = 6.67 × 10-11 Nm2 kg-2
उत्तर:
माना पृथ्वी का द्रव्यमान व त्रिज्या क्रमशः M व R है।
माना पृथ्वी पृष्ठ से L ऊँचाई पर उपग्रह का द्रव्यमान m है।
h ऊँचाई पर कक्ष में वेग = कक्षीय वेग = v
कक्ष में उपग्रह की KE = \(\frac{1}{2}\) mv2
h ऊँचाई पर उपग्रह की स्थितिज ऊर्जा
= \(\frac{-GMm}{R+h}\)
अत: चक्रण करते उपग्रह की सम्पूर्ण ऊर्जा (KE + PE)
= \(\frac{1}{2}\) mv2 – \(\frac{GMm}{R+h}\)
= \(\frac{1}{2}\)m (\(\frac{GM}{R+h}\)) – \(\frac{GMm}{R+h}\)
(∵ h ऊँचाई पर कक्षीय वेग = \(\sqrt{\frac{G M}{R+h}}\))
= – \(\frac{1}{2}\) \(\frac{GMm}{R+h}\)
उपग्रह को पृथ्वी की गुरुत्वाकर्षण से बाहर भेजने के लिए इसकी गुरुत्वाकर्षण स्थितिज ऊर्जा शून्य होगी तथा इसकी गतिज ऊर्जा भी शून्य होगी।
पृथ्वी के गुरुत्वाकर्षण से बाहर भेजने पर उपग्रह की अन्तिम ऊर्जा = 0
R ऊँचाई पर चक्रण करती वस्तु की ऊर्जा + दी गई ऊर्जा = 0 (ऊर्जा संरक्षण के नियम से)
उपग्रह को पृथ्वी के गुरुत्वाकर्षण से बाहर भेजने के लिए दी गई ऊर्जा
= E = – चक्रण करते उपग्रह की ऊर्जा
= -(\(\frac{1}{2}\) \(\frac{GMm}{R+h}\)) = \(\frac{1}{2}\) \(\frac{GMm}{R+h}\)
दिया है
h = 400 km
= 400 × 103 m, R = 6400 × 103 m,
G = 6.67 × 10-11 Nm2 kg-2
M = 6 × 1024 kg, m = 200 kg
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.20
दो तारे, जिनमें प्रत्येक का द्रव्यमान सूर्य के द्रव्यमान (2 × 1030 kg) के बराबर है, एक दूसरे की ओर सम्मुख टक्कर के लिए आ रहे हैं। जब वे 109 km की दूरी पर हैं तब इनकी चाल उपेक्षणीय है। ये तारे किस चाल से टकराएंगे? प्रत्येक तारे की त्रिज्या 104 km है। यह मानिए कि टकराने के पूर्व तक तारों में कोई विरूपण नहीं होता (G के ज्ञात मान का उपयोग कीजिए)।
उत्तर:
दिया है:
प्रत्येक तारे का द्रव्यमान
M = 2 × 1030 किग्रा
दोनों तारों के मध्य प्रा० दूरी,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
r = 109 किमी = 1012 मीटर
प्रत्येक तारे का आकार = त्रिज्या
= r = 104 किमी = 107 मीटर
माना दोनों तारे एक दूसरे से v से टकराते हैं।
माना दोनों तारे की प्रा० चाल u है।
r दूरी पर रखे एक तारे की दूसरे के सापेक्ष स्थितिज ऊर्जा
PE = \(-\frac{G m_{1} m_{2}}{r}=-\frac{G M m}{r}\)
r दूरी पर KE = 0 [∵ u = 0]
सम्पूर्ण प्रा० ऊर्जा
KE + PE = 0 – \(\frac{G M^{2}}{r}\) = \(\frac{-G M^{2}}{r}\) ……………… (i)
माना दोनों तारों के केन्द्र r’ दूरी पर जब दोनों तारे एकदम टकराने वाले होते हैं = 2R
संघट्ट के बाद दोनों तारों की KE
= \(\frac{1}{2}\) mv2 + \(\frac{1}{2}\) mv2
– Mv2
संघट्ट के समय दोनों तारों की
PE = \(\frac{-GMM}{r’}\) = \(\frac{G M^{2}}{r}\)
ऊर्जा संरक्षण के नियम से
सम्पूर्ण प्रा० ऊर्जा = अन्तिम (ICE + IPE)
या \(\frac{-G M^{2}}{r}\) = Mv2 – \(\frac{G M^{2}}{2R}\)
या Mv2 = \(\frac{G M^{2}}{2R}\) – \(\frac{-G M^{2}}{r}\)
v2 = GM(\(\frac{1}{2R}\) – \(\frac{1}{r}\))

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.21
दो भारी गोले जिनमें प्रत्येक का द्रव्यमान 100 kg, त्रिज्या 0.10 m है किसी क्षैतिज मेज पर एक दूसरे से 1.0 m दूरी पर स्थित हैं। दोनों गोलों के केन्द्रों को मिलाने वाली रेखा के मध्य बिन्दु पर गुरुत्वीय बल तथा विभव क्या है? क्या इस बिन्दु पर रखा कोई पिंड संतुलन में होगा? यदि हाँ, तो यह सन्तुलन स्थायी होगा अथवा अस्थायी?
उत्तर:
माना दोनों गोले क्रमश: A व B बिन्दु पर रखे गए हैं। दोनों गोलों के बीच की दूरी = r = AB = 1 मीटर
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
AB का मध्य बिन्दु 0 = AB × \(\frac{1}{2}\)
= \(\frac{1}{2}\) × 1m = 0.5 m
AO = OB
= \(\frac{1}{2}\) × 1m = 0.5 m
प्रत्येक गोले का द्रव्यमान = M = 100 kg
माना कि O बिन्दु पर रखी प्रत्येक वस्तु का द्रव्यमान = m
हम जानते हैं कि गुरुत्वाकर्षण बल,
F = \(\frac{G M m}{d^{2}}\)
माना A व b के कारण O पर बल क्रमश: FA व FB हैं। अतः
FA = \(\frac{G \times 100 \times m}{(0.5)^{2}}\) along OA
तथा FB = \(\frac{G \times 100 \times m}{(0.5)^{2}}\) along OB
चूँकि |\(\vec{F}\)A| = |\(\vec{F}\)B|
ये दोनों विपरीत दिशा में लगते हैं।
अतः O पर परिणामी बल = 0
इसका तात्पर्य यह है कि O बिन्दु पर रखी वस्तु पर कोई बल नहीं लगता है। अतः यह वस्तु सन्तुलन में है। लेकिन यह सन्तुलन अस्थिर है चूँकि A व B में सूक्ष्म विस्थापन से भी सन्तुलन बदला जाता है।
पुनः हम जानते हैं कि गुरुत्वाकर्षण विभव,
= – \(\frac{Gm}{d}\)
माना A व B बिन्दुओं पर रखे गोलों पर O के कारण गुरुत्वाकर्षण विभव क्रमश: VA व VB है।
अतः VA = \(\frac{G×100}{(0.5)}\) (∵d = 0.5)
तथा VB = – \(\frac{G×100}{(0.5)}\)
सम्पूर्ण विभव V = VA + VB
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
अतः मध्यबिन्दु पर रखी वस्तु अस्थिर सन्तुलन में होती है।

Bihar Board Class 11 Physics गुरुत्वाकर्षण Additional Important Questions and Answers

अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 8.22
जैसा कि आपने इस अध्याय में सीखा है कि कोई तुल्यकाली उपग्रह पृथ्वी के पृष्ठ से लगभग 36,000 km ऊँचाई पर पृथ्वी की परिक्रमा करता है। इस उपग्रह के निर्धारित स्थल पर पृथ्वी के गुरुत्व बल के कारण विभव क्या है? (अनन्त पर स्थितिज ऊर्जा शून्य लीजिए।) पृथ्वी का द्रव्यमान = 6.0 × 1024 kg; पृथ्वी की त्रिज्या = 6400 km.
उत्तर:
दिया है:
ME = 6 × 1024 किग्रा
RE = 6400 किमी = 6.4 × 106 मीटर
h = 36 × 106 मीटर
हम जानते हैं कि गुरुत्वीय विभव
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
= -9.4 × 106 जूल प्रति किग्रा

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.23
सूर्य के द्रव्यमान से 2.5 गुने द्रव्यमान का कोई तारा 12 km आमाप से निपात होकर 1.2 परिक्रमण प्रति सेकण्ड से घूर्णन कर रहा है। (इसी प्रकार के संहत तारे को न्यूट्रॉन तारा कहते हैं कुछ प्रेक्षित तारकीय पिंड, जिन्हें पल्सार कहते हैं, इसी श्रेणी में आते हैं।) इसके विषुवत् वृत्त पर रखा कोई पिंड, गुरुत्व बल के कारण, क्या इसके पृष्ठ से चिपका रहेगा? (सूर्य का द्रव्यमान = 2 × 1030 kg)
उत्तर:
तारे से चिपके तारकीय पिंड के लिए, तीर का गुरुत्वाकर्षण बल अभिकेन्द्र बल के बराबर या अधिक होगा। इस दशा में अभिकेन्द्र बल, गुरुत्वाकर्षण बल से अधिक नहीं होगा तथा पिंड नहीं उड़ेगा।
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
अतः तारे से तारकीय पिंड से चिपकने के लिये, गुरुत्व के कारण तारे पर त्वरण ≥ अभिकेन्द्रीय त्वरण
दिया है:
r = 12 km = 12 × 103 m
आवृत्ति v = 1.5 rps
w = 2πv = 2π × 1.5 = 3 × rads-1
अभिकेन्द्रीय त्वरण,
ac = \(\frac{v^{2}}{r}\) = rω2
= 12 × 103 × (3π2) …………… (i)
= 12 × 103 × 9 × 9.87
= 1065.96 × 103 ms-2
= 1.1 × 106 ms-1
पुनः हम जानते हैं कि तारे पर गुरुत्व के कारण त्वरण निम्नवत् है –
g = \(\frac{G M}{r^{2}}\) ……………… (ii)
दिया है:
M = सूर्य के द्रव्यमान का 2.5 गुना
= 2.5 × 2 × 1030 kg (∵ सूर्य का द्रव्यमान = 2 × 1030 kg)
= 5 × 1030
r = 12 km
G = 6.67 × 10-11 Nm2kg-2 …………… (iii)
समी० (ii) व (iii) से,
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
समीकरण (i).व (iv) से,
g >> a
अतः पिंड तारे से चिपका रहेगा।

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.24
कोई अन्तरिक्षयान मंगल पर ठहरा हुआ है। इस अन्तरिक्षयान पर कितनी ऊर्जा खर्च की जाए कि इसे सौरमण्डल से बाहर धकेला जा सके। अन्तरिक्षयान का द्रव्यमान = 1000 kg; सूर्य का द्रव्यमान = 2 × 1030 kg; मंगल का द्रव्यमान = 6.4 × 1023 kg; मंगल की त्रिज्या = 3395 km; मंगल की कक्षा की त्रिज्या = 2.28 × 108 km तथा G = 6.67 × 10-11 Nm2kg-2
उत्तर:
G = 6.67 × 10-11 Nm2kg-2
माना कि सूर्य के सापेक्ष मंगल का द्रव्यमान व त्रिज्या क्रमश: M व R है।
दिया है:
सूर्य का द्रव्यमान M = 2 × 1030 kg
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
व्यक्ति की सूर्य के चारों ओर त्रिज्या,
= R = 2.28 × 108 km
मंगल की त्रिज्या = R’ = 3395 km
मंगल का द्रव्यमान = M’ = 6.4 × 1023 kg
सौरमण्डल का द्रव्यमान m = 1000 किग्रा
सूर्य के गुरुत्वाकर्षण के कारण अन्तरिक्षयान की स्थितिज ऊर्जा
= \(\frac{-GMm}{R}\) ………………. (i)
मंगल के गुरुत्वाकर्षण के कारण सौरमण्डल की स्थितिज ऊर्जा
= \(\frac{-GM’m}{R’}\) …………….. (ii)
मंगल के पृष्ठ पर अन्तरिक्षयान की सम्पूर्ण स्थितिज ऊर्जा
= \(\frac{-GMm}{R}\) – \(\frac{GM’m}{R’}\) ……………. (iii)
चूँकि अन्तरिक्षयान की KE शून्य है .
∴ अन्तरिक्षयान की सम्पूर्ण ऊर्जा
= KE + PE = 0 + PE
= \(\frac{-GMm}{R}\) + \(\frac{GM’m}{R’}\)
= -Gm \(\frac{M}{R}\) + \(\frac{M’}{R’}\) ………………. (iv)
अन्तरिक्षयान को सौरमण्डल से बाहर करने के लिए, इसकी गतिज ऊर्जा इतनी बढ़ानी चाहिए जिससे इस ऊर्जा का मान, मंगल के पृष्ठ पर ऊर्जा के समान हो जाए।
अभीष्ट ऊर्जा = – (अन्तरिक्षयान की सम्पूर्ण ऊर्जा)
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण

Bihar Board Class 11 Physics Solutions Chapter 8 गुरुत्वाकर्षण

प्रश्न 8.25
किसी रॉकेट को मंगल के पृष्ठ से 2 kms-1 की चाल से ऊर्ध्वाधर ऊपर दागा जाता है। यदि मंगल के वातावरणीय प्रतिरोध के कारण इसकी 20% आरंभिक ऊर्जा नष्ट हो जाती है, तो मंगल के पृष्ठ पर वापस लौटने से पूर्व यह रॉकेट मंगल से कितनी दूरी तक जाएगा? मंगल का द्रव्यमान = 6.4 × 1023 kg; मंगल की त्रिज्या = 3395 km तथा G = 6.67 × 10-11 Nm 2kg-2
उत्तर:
माना रॉकेट का द्रव्यमान m है।
दिया है:
मंगल का द्रव्यमान, M = 6.4 × 1023 किग्रा
मंगल की त्रिज्या, R = 3395 किमी
गुरुत्वाकर्षण नियतांक
G = 6.67 × 10-11 न्यूटन-मीटर2 प्रति किग्रा2
माना कि रॉकेट मंगल से h ऊँचाई तक पहुँचता है।
माना कि मंगल के पृष्ठ से रॉकेट को प्रारम्भिक चाल v से छोड़ा जाता है।
रॉकेट की प्रारम्भिक गतिज ऊर्जा = \(\frac{1}{2}\) mv2
व रॉकेट की प्रारम्भिक स्थितिज ऊर्जा = \(\frac{-GMm}{R}\)
रॉकेट की सम्पूर्ण प्रा० ऊर्जा = K.E. + P.E.
= \(\frac{1}{2}\) mv2 – \(\frac{GMm}{R}\)
चूँकि h ऊँचाई पर 20% ऊर्जा नष्ट हो जाती है जबकि 80% ऊर्जा संचित रहती है।
संचित ऊर्जा = \(\frac{80}{100}\) × \(\frac{1}{2}\) mv2
सम्पूर्ण उपलब्ध प्रा० ऊर्जा,
= \(\frac{4}{5}\) \(\frac{1}{2}\) mv2 – \(\frac{GMm}{R}\)
= 0.4 mv2 – \(\frac{GMm}{R}\)
h ऊँचाई पर रॉकेट की स्थितिज ऊर्जा = \(\frac{-GMm}{R+h}\)
h ऊँचाई पर K.E. = 0
ऊर्जा संरक्षण के नियम से,
सम्पूर्ण प्रा० ऊर्जा = सम्पूर्ण अन्तिम ऊर्जा
∴ प्रा० (KE + PE) = अन्तिम (KE + PE)
= 0 + P.E. = P.E.
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
दिया है:
Bihar Board Class 11 Physics Chapter 8 गुरुत्वाकर्षण
= 495 × 103 m
= 495 किमी