Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3

Bihar Board Class 10 Maths निर्देशांक ज्यामिति Ex 7.3

प्रश्न 1.
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष हैं-
(i) (2, 3), (-1, 0), (2, -4)
(ii) (-5, -1), (3, -5), (5, 2)
हल
(i) त्रिभुज के शीर्ष (2, 3), (-1, 0) तथा (2, -4) हैं।
यहाँ x1 = 2, x2 = -1, x3 = 2, y1 = 3, y2 = 0, y3 = -4
∆ का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [{(2 × 0) + (-1 × -4) + (2 × 3)} – {(3 × -1) + (0 × 2) + (-4 × 2)}}
= \(\frac{1}{2}\) [{0 + 4 + 6} – {-3 + 0 – 8}]
= \(\frac{1}{2}\) [{10} – {-11}]
= \(\frac{1}{2}\) [10 + 11]
= \(\frac{21}{2}\) वर्ग मात्रक
अत: त्रिभुज का क्षेत्रफल = \(\frac{21}{2}\) वर्ग मात्रक

(ii) त्रिभुज के शीर्ष (-5, -1), (3, -5), (5, 2)
यहाँ x1 = -5, x2 = 3, x3 = 5, y1 = -1, y2 = -5, y3 = 2
∆ का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [{(5 × -5) + (3 × 2) + (5 × -1)} – {(-1 × 3) + (-5 × 5) + (2 × -5)}]
= \(\frac{1}{2}\) [{25 + 6 – 5} – {-3 – 25 – 10}]
= \(\frac{1}{2}\) [{26} – {-38}]
= \(\frac{1}{2}\) [26 + 38]
= \(\frac{1}{2}\) × 64
= 32 वर्ग मात्रक
अत: त्रिभुज का क्षेत्रफल = 32 वर्ग मात्रक

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3

प्रश्न 2.
निम्नलिखित में से प्रत्येक में ‘k’ का मान ज्ञात कीजिए ताकि तीनों बिन्दु संरेखी हों-
(i) (7, -2), (5, 1), (3, k)
(ii) (8, 1), (k, -4), (2, -5)
हल
(i) माना बिन्दु A = (7, -2); B = (5, 1) तथा C = (3, k)
यहाँ x1 = 7, x2 = 5, x3 = 3, y1 = -2, y2 = 1, y3 = k
∆ABC का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [7 × 1 + 5 × k + 3 × -2} – {-2 × 5 + 1 × 3 + k × 7}]
= \(\frac{1}{2}\) [{7 + 5k + (-6)} – {-10 + 3 + 7k}]
= \(\frac{1}{2}\) [(1 + 5k) – (-7 + 7k]
= \(\frac{1}{2}\) [1 + 5k + 7 – 7k]
= \(\frac{1}{2}\) [8 – 2k]
= \(\frac{2}{2}\) (4 – k)
= 4 – k
परन्तु यदि बिन्दु A, B, C संरेख हों तो ∆ABC का क्षेत्रफल शून्य होना चाहिए।
4 – k = 0 ⇒ k = 4
अत: k का मान = 4

(ii) माना बिन्दु A = (8, 1), B = (k, -4) तथा C = (2, -5)
यहाँ x1 = 8, x2 = k, x3 = 2, y1 = 1, y2 = -4, y3 = -5
∆ABC का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [8 × -4 + k × -5 + 2 × 1) – (1 × k – 4 × 2 – 5 × 8)]
= \(\frac{1}{2}\) [{-32 – 5k + 2} – {k – 8 – 40}]
= \(\frac{1}{2}\) [{-30 – 5k} – {k – 48}]
= \(\frac{1}{2}\) [-30 – 5k – k + 48]
= \(\frac{1}{2}\) [-6k + 18]
= \(\frac{2}{2}\) (-3k + 9)
= -3k + 9
परन्तु यदि बिन्दु A, B, C संरेख हों तो ∆ABC का क्षेत्रफल शून्य होना चाहिए।
-3k + 9 = 0 ⇒ k = 3
अत: k का मान = 3

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3

प्रश्न 3.
शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिन्दुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।
हल
माना ∆ABC के शीर्ष A = (0, -1), B = (2, 1) और C = (0, 3)
यहाँ x1 = 0, x2 = 2, x3 = 0, y1 = -1, y2 = 1, y3 = 3
∆ABC का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [{0 × 1 + 2 × 3 + 0 × -1} – {-1 × 2 + 1 × 0 + 3 × 0}]
= \(\frac{1}{2}\) [{0 + 6 + 0} – {-2 + 0 + 0}]
= \(\frac{1}{2}\) [6 – (-2)]
= \(\frac{1}{2}\) × 8
= 4 वर्ग मात्रक
भुजा AB का मध्य-बिन्दु D = \(\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)\) = (1, 0)
भुजा BC का मध्य-बिन्दु E = \(\left(\frac{2+0}{2}, \frac{1+3}{2}\right)\) = (1, 2)
भुजा CA का मध्य-बिन्दु F = \(\left(\frac{0+0}{2}, \frac{-1+3}{2}\right)\) = (0, 1)
तब, ∆DEF के शीर्ष D = (1, 0), E = (1, 2), F = (0, 1)
यहाँ, x1 = 1, y1 = 0, x2 = 1, y2 = 2, x3 = 0, y3 = 1
∆DEF का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [{1 × 2 + 1 × 1 + 0 × 0} – {0 × 1 + 2 × 0 + 1 × 1}]
= \(\frac{1}{2}\) [{2 + 1 + 0} – {0 + 0 + 1}]
= \(\frac{1}{2}\) [3 – 1]
= \(\frac{1}{2}\) × 2
= 1 वर्ग मात्रक
∴ शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य बिन्दुओं से बने त्रिभुज का क्षेत्रफल = 1 वर्ग मात्रक
पुनः दोनों त्रिभुजों के क्षेत्रफलों का अनुपात = 1 : 4

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3

प्रश्न 4.
उस चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (-4, -2), (-3, -5), (3, -2) और (2, 3) हैं।
हल
माना चतुर्भुज ABCD के शीर्ष A = (-4, -2), B = (-3, -5), C = (3, -2) तथा D = (2, 3) हैं।
यहाँ x1 = -4, x2 = -3, x3 = 3, x4 = 2, y1 = -2, y2 = -5, y3 = -2, y4 = 3
चतुर्भुज ABCD का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y4 + x4y1} – {y1x2 + y2x3 + y3x4 + y4x1}]
= \(\frac{1}{2}\) [{(-4 × -5) + (-3 × -2) + (3 × 3) + (2 × -2)} – {(-2 × -3) + (-5 × 3) + (-2 × 2) + (3 × -4)}]
= \(\frac{1}{2}\) {20 + 6 + 9 – 4} – {6 – 15 – 4 – 12}]
= \(\frac{1}{2}\) [(31) – (-25)]
= \(\frac{1}{2}\) [31 + 25]
= \(\frac{1}{2}\) [56]
= 28 वर्ग मात्रक
अत: अभीष्ट चतुर्भुज का क्षेत्रफल = 28 वर्ग मात्रक

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3

प्रश्न 5.
कक्षा IX में आपने पढ़ा है कि किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।
हल
दिए हुए, ∆ABC के शीर्ष A = (4, -6), B = (3, -2) और C = (5, 2)
माना BC का मध्य-बिन्दु D है।
तब, D = \(\left(\frac{3+5}{2}, \frac{-2+2}{0}\right)\) = (4, 0)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.3 Q5
इस प्रकार माध्यिका AD, ∆ABC को दो त्रिभुजों (∆ABD व ∆ACD) में विभाजित करती है।
यहाँ, x1 = 4, y1 = -6, x2 = 3, y2 = -2, x3 = 5, y3 = 2
∆ABC का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [{4 × -2 + 3 × 2 + 5 × -6} – {-6 × 3 – 2 × 5 + 2 × 4}]
= \(\frac{1}{2}\) [{-8 + 6 – 30} – {-18 – 10 + 8}
= \(\frac{1}{2}\) [-32 – (-20)]
= \(\frac{1}{2}\) (-32 + 20)
= \(\frac{1}{2}\) × -12
= 6 वर्ग मात्रक
इसी प्रकार ∆ABD का क्षेत्रफल = \(\frac{1}{2}\) [{-8 + 0 – 24} – {-18 – 8 + 0}]
= \(\frac{1}{2}\) [{-32} – {-26}]
= \(\frac{1}{2}\) [-32 + 26]
= 3 वर्ग मात्रक
तब, ∆ACD का क्षेत्रफल = ∆ABC का क्षेत्रफल – ∆ABD का क्षेत्रफल
= (6 – 3) वर्ग मात्रक
= 3 वर्ग मात्रक
अतः स्पष्ट है कि ∆ABC की माध्यिका AD, ∆ABC को दो समान क्षेत्रफल वाले त्रिभुज ABD व त्रिभुज ACD में विभाजित करती है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

Bihar Board Class 10 Maths त्रिभुज Ex 6.2

प्रश्न 1.
आकृति में, DE || BC है। चित्र (i) में EC और चित्र (ii) में AD ज्ञात कीजिए-
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q1
हल
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q1.1

प्रश्न 2.
किसी ∆PQR की भुजाओं PQ और PR पर क्रमशः बिन्दु E और F स्थित हैं। निम्नलिखित में से प्रत्येक स्थिति के लिए, बताइए कि क्या EF || QR है-
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm और FR = 2.4 cm
(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm और RF = 9 cm
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm और PF = 0.36 cm
हल
∆PQR में भुजा PQपर एक बिन्दु E तथा भुजा PR पर एक बिन्दु F स्थित है।
बिन्दुओं E व F को मिलाकर रेखाखण्ड EF खींचा गया है।
(i) दिया है, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm और FR = 2.4 cm
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q2.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

प्रश्न 3.
आकृति में, यदि LM || CB और LN || CD हो तो सिद्ध कीजिए कि \(\frac{A M}{A B}=\frac{A N}{A D}\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q3
हल
दिया है : रेखाखण्ड LM || CB और LN || CD है।
सिद्ध करना है : \(\frac{A M}{A B}=\frac{A N}{A D}\)
उपपत्ति : ∆ABC में भुजा AB पर एक बिन्दु M तथा भुजा AC पर एक बिन्दु L है जिससे रेखाखण्ड LM || CB
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q3.1
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q3.2

प्रश्न 4.
आकृति में, DE || AC और DF || AE है। सिद्ध कीजिए कि \(\frac{B F}{F E}=\frac{B E}{E C}\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q4
हल
दिया है : ∆ABC में भुजा AB पर एक बिन्दु D है और भुजा BC पर दो बिन्दु E व F हैं।
रेखाखण्ड DF, DE व AE खींचे गए हैं। DE || AC है और DF || AE है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q4.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

प्रश्न 5.
आकृति में, DE || OQ और DF || OR है। दर्शाइए कि EF || QR है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q5
हल
दिया है : दी गई आकृति में DE || OQ तथा DF || OR है।
सिद्ध करना है : EF || QR
उपपत्ति : ∆POQ में, DE || OQ
\(\frac{P E}{E Q}=\frac{P D}{D O}\) ……..(1)
और ∆POR में, DF || OR
\(\frac{P F}{F R}=\frac{P D}{D O}\) ………(2)
तब, समीकरण (1) व समीकरण (2) से,
\(\frac{P E}{E Q}=\frac{P F}{F R}\)
अब ∆PQR में, \(\frac{P E}{E Q}=\frac{P F}{F R}\)
तब, थेल्स प्रमेय के विलोम से, EF || QR
इति सिद्धम्

प्रश्न 6.
आकृति में क्रमशः OP, OQ और OR पर स्थित बिन्दु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q6
हल
दिया है : दिए गए चित्र में रेखाखण्डों OP, OQ और OR पर क्रमशः बिन्दु A, B और C इस प्रकार स्थित हैं कि AB || PQ और AC || PR है।
सिद्ध करना है : BC || QR
उपपत्ति : ∆POQ में, AB || PQ (दिया है)
\(\frac{O A}{A P}=\frac{O B}{B Q}\) ………(1)
इसी प्रकार ∆POR में, AC || PR (दिया है)
\(\frac{O A}{A P}=\frac{O C}{C R}\) ….(2)
तब, समीकरण (1) व समीकरण (2) से,
\(\frac{O B}{B Q}=\frac{O C}{C R}\)
अब ∆OQR में, \(\frac{O B}{B Q}=\frac{O C}{C R}\)
थेल्स प्रमेय के विलोम से, BC || QR
इति सिद्धम

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

प्रश्न 7.
आधारभूत आनुपातिक प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिन्दु से होकर दूसरी भुजा के सामान्तर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q7
हल
दिया है : ∆ABC की एक भुजा AB का मध्य-बिन्दु D है।
D से DE || BC रेखा खींची गई है जो रेखा AC को बिन्दु E पर काटती है।
सिद्ध करना है : E, AC का मध्य-बिन्दु है।
उपपत्ति : D, AB का मध्य-बिन्दु है।
AD : DB = 1 : 1 और DE || BC.
तब, थेल्स प्रमेय के अनुसार,
\(\frac{A D}{D B}=\frac{A E}{E C}\)
⇒ \(\frac{1}{1}=\frac{A E}{E C}\)
⇒ AE = EC
अत: E, AC का मध्य-बिन्दु है अथवा DE, AC को समद्विभाजित करती है।
इति सिद्धम्

प्रश्न 8.
आधारभूत आनुपातिक प्रमेय के विलोम का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिन्दुओं को मिलाने वाली रेखा तीसरी भुजा के समान्तर होती है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q8
हल
दिया है : ∆ABC में AB तथा AC के मध्य-बिन्दु क्रमश: D और E हैं।
सिद्ध करना है : DE || BC
उपपत्ति : D, AB का मध्य-बिन्दु है।
AD : BD = 1 : 1
तथा E, AC का मध्य-बिन्दु है।
AE : EC = 1 : 1
\(\frac{A D}{D B}=\frac{A E}{E C}\)
थेल्स प्रमेय के विलोम से ∆ABC में,
\(\frac{A D}{D B}=\frac{A E}{E C}\)
DE || BC
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

प्रश्न 9.
ABCD एक समलम्ब है जिसमें AB || DC है। इसके विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं। दर्शाइए कि \(\frac{A O}{B O}=\frac{C O}{D O}\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q9
हल
दिया है : ABCD एक समलम्ब है, जिसमें AC तथा BD दो विकर्ण हैं जो परस्पर बिन्दु O पर काटते हैं।
सिद्ध करना है: \(\frac{A O}{B O}=\frac{C O}{D O}\)
रचना : O से OE || CD खींचिए।
उपपत्ति : ∆ADC में, OE || DC
\(\frac{A E}{E D}=\frac{A O}{C O}\) ………(1)
समलम्ब ABCD में,
AB || CD और रचना से OE || CD ⇒ OE || AB
अब, ∆ADB में, OE ||
\(\frac{E D}{A E}=\frac{D O}{B O}\)
⇒ \(\frac{A E}{E D}=\frac{B O}{D O}\) …….(2)
समीकरण (1) व समीकरण (2) से,
\(\frac{A O}{C O}=\frac{B O}{D O}\)
⇒ AO × DO = BO × CO
⇒ \(\frac{A O}{B O}=\frac{C O}{D O}\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2

प्रश्न 10.
एक चतुर्भुज ABCD के विकर्ण परस्पर बिन्दु पर इस प्रकार प्रतिच्छेद करते हैं कि \(\frac{A O}{B O}=\frac{C O}{D O}\) है। दर्शाइए कि ABCD एक समलम्ब है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.2 Q10
हल
दिया है : ABCD एक चतुर्भुज है जिसके विकर्ण AC तथा BD बिन्दु O पर एक-दूसरे को इस प्रकार विभक्त करते हैं कि
\(\frac{A O}{B O}=\frac{C O}{D O}\)
सिद्ध करना है : ABCD एक समलम्ब है।
रचना : O से OE || DC खींचिए।
उपपत्ति : ΔBDC में, OE || DC
\(\frac{B O}{D O}=\frac{B E}{E C}\) …….(1)
परन्तु दिया गया है कि
\(\frac{A O}{B O}=\frac{C O}{D O}\)
⇒ \(\frac{A O}{C O}=\frac{B O}{D O}\) ………(2)
समीकरण (1) व समीकरण (2) से,
\(\frac{A O}{C O}=\frac{B E}{E C}\)
⇒ \(\frac{C O}{A O}=\frac{E C}{B E}\)
OE || AB (थेल्स प्रमेय के विलोम से)
AB || CD (∵ OE || CD रचना से)
अत: ABCD एक समलम्ब है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

Bihar Board Class 10 Maths त्रिभुज Ex 6.5

प्रश्न 1.
कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लम्बाई भी खिए।
(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm
हल
समकोण त्रिभुजों में सबसे लम्बी भुजा कर्ण का वर्ग शेष दोनों भुजाओं के वर्गों के योग के बराबर होता है।
(i) माना a = 7 cm, b = 24 cm तथा c = 25 cm
तब, (सबसे लम्बी भुजा)2 = c2 = (25)2 = 625
तथा a2 + b2 = (7)2 + (24)2 = 49 + 576 = 625
c2 = a2 + b2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर है।
अत: दिया गया त्रिभुज समकोण त्रिभुज है। कर्ण की लम्बाई = 25 सेमी।

(ii) माना a = 3 cm, b = 8 cm तथा c = 6 cm,
तब, b2 = (8)2 = 64
तथा a2 + c2 = 32 + 62 = 9 + 36 = 45
b2 ≠ c2 + a2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर नहीं है।
अत: दिया गया त्रिभुज समकोण त्रिभुज नहीं है।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

(iii) माना a = 50 cm, b = 80 cm तथा c = 100 cm
तब, c2 = (100)2 = 10,000
तथा a2 + b2 = (50)2 + (80)2 = 2500 + 6400 = 8900
c2 ≠ a2 + b2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर नहीं है।
अतः दिया गया त्रिभुज समकोण त्रिभुज नहीं है।

(iv) माना a = 13 cm, b = 12 cm तथा c = 5 cm
तब, a2 = (13)2 = 169
तथा b2 + c2 = (12)2 + (5)2 = 144 + 25 = 169
a2 = b2 + c2 अर्थात् सबसे लम्बी भुजा का वर्ग शेष दो भुजाओं के वर्गों के योग के बराबर है।
अत: दिया गया त्रिभुज समकोण त्रिभुज है।
कर्ण की लम्बाई = 13 सेमी।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 2.
PQR एक समकोण त्रिभुज है जिसका कोण Pसमकोण है तथा QR पर बिन्दु M इस प्रकार स्थित है कि PM ⊥ QR है। दर्शाइए कि PM2 = QM . MR है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q2
हल
दिया है : समकोण त्रिभुज PQR में ∠P समकोण है तथा PM ⊥ QR है।
सिद्ध करना है : PM2 = QM . MR
उपपत्ति : :: समकोण त्रिभुज PQR में ∠P समकोण है और इसके समकोण वाले शीर्ष P से कर्ण QR पर लम्ब खींचा गया है।
∆PQM ~ ∆RPM
\(\frac{Q M}{P M}=\frac{P M}{M R}\) (:: ∆PQM और ∆PRM की भुजाएँ आनुपातिक हैं)
PM2 = QM . MR (वज्रगुणन से)
अतः PM2 = QM . MR
इति सिद्धम्

प्रश्न 3.
दी गई आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि-
(i) AB2 = BC . BD
(ii) AC2 = BC . DC
(iii) AD2 = BD . CD
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q3
हल
दिया है : ΔABD में ∠DAB = 90° तथा AC ⊥ BD
सिद्ध करना है :
(i) AB2 = BC . BD
(ii) AC2 = BC . DC
(iii) AD2 = BD . CD
उपपत्ति : ΔABD में, ∠DAB = 90°
ΔABD समकोण त्रिभुज है जिसमें AC ⊥ BD
ΔABC ~ ΔDBA और ΔDAC ~ ΔDBA तथा ΔABC ~ ΔDAC
(i) ∵ ΔABC ~ ΔDBA
∴ ΔABC तथा ΔDBA की तुलना करने पर,
\(\frac{B C}{A B}=\frac{A B}{B D}\)
AB2 = BC . BD
इति सिद्धम्

(ii) ∵ ΔABC ~ ΔDAC
∴ ΔABC तथा ΔDAC की तुलना करने पर,
\(\frac{B C}{A C}=\frac{A C}{D C}\)
AC2 = BC · DC
इति सिद्धम्

(iii) ∵ ΔDAC ~ ΔDBA
∴ ΔDAC तथा ΔDBA की तुलना करने पर,
\(\frac{A D}{B D}=\frac{C D}{A D}\)
AD2 = BD . CD
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 4.
ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q4
हल
दिया है : ΔABC समद्विबाहु है जिसमें ∠C = 90° तथा BC = AC
सिद्ध करना है : AB2 = 2AC2
उपपत्ति : समद्विबाहु समकोण ΔABC में,
पाइथागोरस प्रमेय के अनुसार,
AB2 = AC2 + BC2
⇒ AB2 = AC2 + (AC)2
⇒ AB2 = AC2 + AC2 [∵ दिया है, BC = AC]
अत : AB2 = 2AC2
इति सिद्धम्

प्रश्न 5.
ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। यदि AB2 = 2AC2 हो तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q5
हल
दिया है : समद्विबाहु ΔABC में,
AC = BC और AB2 = 2AC2
सिद्ध करना है : ΔABC एक समकोण त्रिभुज है।
उपपत्ति : AB2 = 2AC2
⇒ AB2 = AC2 + AC2
⇒ AB2 = BC2 + AC2 (∵ AC = BC)
पाइथागोरस प्रमेय के विलोम से, ΔABC समकोण त्रिभुज होगा।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 6.
एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलम्ब की लम्बाई ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q6
हल
ΔABC समबाहु त्रिभुज है।
त्रिभुज की भुजा AB = 2a, BC = 2a तथा CA = 2a
त्रिभुज के शीर्ष A से BC पर लम्ब AD खींचा गया है।
BD = \(\frac{1}{2}\) BC
⇒ BD = \(\frac{1}{2}\) (2a) = a
तब, समकोण त्रिभुज ABD में,
AD2 + BD2 = AB2
⇒ AD2 + a2 = (2a)2
⇒ AD2 = 4a2 – a2 = 3a2
⇒ AD = a√3
शीर्षलम्ब, AD = a√3
त्रिभुज समबाहु है; अत: दो अन्य शीर्षलम्बों की लम्बाई भी a√3 होगी।

प्रश्न 7.
सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग विकर्णों के योग के बराबर होता है।
हल
दिया है : चतुर्भुज ABCD एक समचतुर्भुज है जिसमें AC तथा CD दो विकर्ण हैं जो परस्पर O पर काटते हैं।
सिद्ध करना है : AB2 + BC2 + CD2 + DA2 = AC2 + BD2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q7
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q7.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 8.
दी गई आकृति में ∆ABC के अभ्यन्तर में स्थित कोई बिन्दु O है तथा OD ⊥ BC, OE ⊥ AC और OF ⊥ AB है। दर्शाइए कि-
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q8
हल
दिया है : ∆ABC के अन्दर एक बिन्दु O है जिससे भुजाओं BC, CA तथाAD पर क्रमशः OD, OE और OF लम्ब खींचे गए हैं।
सिद्ध करना है :
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
रचना : रेखाखण्ड OA, OB तथा OC खींचिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q8.1
उपपत्ति :
(i) समकोण ∆OAF में,
AF2 + OF2 = OA2 ……(1)
समकोण ∆OBD में,
BD2 + OD2 = OB2 ……..(2)
समकोण ∆OCE में,
CE2 + OE2 = OC2 ……(3)
समीकरण (1), समीकरण (2) और समीकरण (3) को जोड़ने पर,
AF2 + BD2 + CE2 + OF2 +OD2 + OE2 = OA2 + OB2 + OC2
अत: AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2
OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
इति सिद्धम्

(ii) समकोण ∆OBD में,
OD2 + BD2 = OB2 ……(4)
समकोण ∆OCD में,
OD2 + CD2 = OC2 …….(5)
समीकरण (5) को समीकरण (4) में से घटाने पर,
BD2 – CD2 = OB2 – OC2 …..(6)
इसी प्रकार, समकोण ∆OCE व ∆OAE में,
CE2 – AE2 = OC2 – OA2 …….(7)
और समकोण ∆OAF व ∆OBF में,
AF2 – BF2 = OA2 – OB2 ……(8)
अब, समीकरण (6), समीकरण (7) और समीकरण (8) को जोड़ने पर,
BD2 + CE2 + AF2 – CD2 – AE2 – BF2 = 0
अतः AF2 + BD2 + CE2 = AE2 + CD2 + BF2
इति सिद्धम्

प्रश्न 9.
10 m लम्बी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुंचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q9
हल
दिया है : भूमि से 8 m ऊँचाई पर एक खिड़की A है जिससे खिड़की AB = 8 m सीढ़ी की लम्बाई AC = 10 m है जिसे खिड़की से लगाने पर उसका निचला सिरा भूमि पर बिन्दु C पर पड़ता है।
ज्ञात करना है : दीवार के आधार से सीढ़ी के निचले सिरे की दूरी BC
गणना : समकोण त्रिभुज ABC में,
AB2 + BC2 = AC2
⇒ (8)2 + (BC)2 = (10)2
⇒ 64 + BC2 = 100
⇒ BC2 = 100 – 64 = 36
⇒ BC2 = 36
⇒ BC = √36 = 6 m
अतः दीवार के आधार से सीढ़ी के निचले सिरे की दूरी (BC) = 6 m

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 10.
18 m ऊँचे एक ऊर्ध्वाधर खम्भे के ऊपरी सिरे से एक तार का एक सिरा जुड़ा हुआ है तथा तार का दूसरा सिरा एक खूटे से जुड़ा हुआ है। खम्भे के आधार से खुंटे को कितनी दूरी पर गाड़ा जाए कि तार तना रहे जबकि तार की लम्बाई 24 m है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q10
हल
दिया है : माना क्षैतिज धरातल पर l एक सरल रेखा है जिसके किसी बिन्दु B पर एक खम्भा AB ऊर्ध्वाधर गड़ा है। एक तार जिसकी लम्बाई 24 m है, का एक सिरा खम्भे के शिखर A से बँधा है। तार का दूसरा सिरा धरातल पर गड़े एक खूटे C से बँधा है। तार तना रहता है।
ज्ञात करना है : खम्भे के सिरे B की खूटे C से दूरी BC
विश्लेषण : माना खम्भे के आधार B से खूटे की दूरी BC = x m है।
खम्भा भूमि पर सीधा गड़ा है।
∠ABC = 90°
∆ABC समकोणीय है।
पाइथागोरस प्रमेय से,
AB2 + BC2 = CA2
⇒ 182 + x2 = 242
⇒ x2 = 242 – 182 = 576 – 324 = 252
⇒ x = √252 = \(\sqrt{6 \times 6 \times 7}\)
⇒ x = 6√7
अत: खम्भे के आधार से खूटे की दूरी x = 6√7 मीटर या 15.87 मीटर।

प्रश्न 11.
एक हवाईजहाज एक हवाई अड्डे से उत्तर की ओर 1000 किमी प्रति घण्टा की चाल से उड़ता है। इसी समय एक अन्य हवाईजहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 किमी प्रति घण्टा की चाल से उड़ता है। 1\(\frac{1}{2}\) घण्टे के बाद दोनों हवाईजहाजों के बीच की दूरी कितनी होगी?
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q11
हल
पहले हवाई जहाज द्वारा हवाई अड्डे A से उत्तर दिशा में 1\(\frac{1}{2}\) घण्टे में चली गई दूरी,
AB = 1000 × 1\(\frac{1}{2}\)
= 1000 × \(\frac{3}{2}\)
= 1500 किमी
दूसरे हवाई जहाज द्वारा हवाई अड्डे A से पश्चिम दिशा में 1\(\frac{1}{2}\) घण्टे में चली गई दूरी,
AC = 1200 × 1\(\frac{1}{2}\)
= 1200 × \(\frac{3}{2}\)
= 1800 किमी
तब, समकोण त्रिभुज ABC में,
BC2 = AB2 + AC2
⇒ BC2 = (1500)2 + (1800)2
⇒ BC2 = 2250000 + 3240000
⇒ BC2 = 5490000
⇒ BC2 = 9 × 10000 × 61
⇒ BC = \(\sqrt{9 \times 10000 \times 61}\) = 300√61 किमी
अत: 1\(\frac{1}{2}\) घण्टे बाद दोनों हवाईजहाजों के बीच की दूरी = 300√61 किमी

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 12.
दो खम्भे जिनकी ऊँचाइयाँ 6 m और 11 m हैं तथा ये समतल भूमि पर खड़े हैं। यदि इनके निचले सिरों के बीच की दूरी 12 m हो तो इनके ऊपरी सिरों के बीच की दूरी ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q12
हल
दिया है : AB = 6 m तथा CD = 11 m लम्बाई के दो खम्भे मैदान में खड़े हैं जिनके निचले सिरों B और D के बीच की दूरी BD = 12 m है।
ज्ञात करना है : ऊपरी सिरों के बीच की दूरी AC
रचना : A से CD पर लम्ब AE खींचा।
गणना : AB = 6 m, CD = 11 m, BD = 12 m
∴ AE = 12 m तथा ED = AB = 6 m
∵ CD = 11 m
CE + ED = 11 m
⇒ CE + 6 = 11 m
⇒ CE = 11 – 6 = 5 m
समकोण ∆ACE में,
AC2 = AE2 + CE2 = (12)2 + (5)2 = 144 + 25 = 169
⇒ AC = √169 = 13 m
अत: दोनों ऊपरी सिरों के बीच की दूरी AC = 13 m

प्रश्न 13.
एक ∆ABC जिसका ∠C समकोण है की भुजाओं CA और CB पर क्रमशः बिन्दु D और E पर स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q13
हल
दिया है : समकोण त्रिभुज ABC जिसमें ∠C समकोण है। बिन्दु D और E क्रमशः भुजाओं CA व CB पर स्थित हैं।
सिद्ध करना है : AE2 + BD2 = AB2 + DE2
उपपत्ति : समकोण त्रिभुज ABC में,
AC2 + BC2 = AB2 …….(1)
और समकोण त्रिभुज DEC में,
CD2 + CE2 = DE2 …….(2)
समीकरण (1) व (2) को जोड़ने पर,
AB2 + DE2 = AC2 + BC2 + CD2 + CE2 …..(3)
समकोण त्रिभुज DBC में, BD2 = BC2 + CD2 ……..(4)
समकोण त्रिभुज AEC में, AE2 = AC2 + CE2 ……(5)
समीकरण (4) व (5) को जोड़ने पर,
AE2 + BD2 = AC2 + BC2 + CE2 + CD2
समीकरण (3) व (6) से, AE2 + BD2 = AB2 + DE2
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 14.
किसी ∆ABC के शीर्ष A से भुजा BC पर डाला गया लम्ब BC को बिन्दु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है। सिद्ध कीजिए कि 2AB2 = 2AC2 + BC2 है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q14
हल
दिया है : ∆ABC में आधार BC पर शीर्ष A से AD लम्ब इस प्रकार डाला गया है कि BD = 3CD
सिद्ध करना है : 2AB2 = 2AC2 + BC2
उपपत्ति : समकोण त्रिभुज ABD में,
AB2 = AD2 + BD2
दोनों पक्षों में 2 से गुणा करने पर,
2AB2 = 2AD2 + 2BD2
⇒ 2AB2 = 2 AC2 – CD2 + 2(3CD)2 (∵ AD2 = AC2 – CD2; BD = 3CD)
⇒ 2AB2 = 2AC2 – 2CD2 + 18CD2
⇒ 2AB2 = 2AC2 + 16CD2
⇒ 2AB2 = 2AC2 + (4CD)2
⇒ 2AB2 = 2AC2 + (CD + 3CD)2
⇒ 2AB2 = 2AC2 + (CD + BD)2 (∵ 3CD = BD)
⇒ 2AB2 = 2AC2 + BC2 (∵ BC = CD + BD)
अतः 2AB2 = 2AC2 + BC2
इति सिद्धम्

प्रश्न 15.
किसी समबाहु त्रिभुज ABC की भुजा BC पर बिन्दु D इस प्रकार स्थित है कि BD = \(\frac{1}{3}\) BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q15
हल
दिया है : ∆ABC एक समबाहु त्रिभुज है जिसके आधार BC पर एक बिन्दु D इस प्रकार है कि BD = \(\frac{1}{3}\) BC
सिद्ध करना है : 9AD2 = 7AB2
रचना : A से BC पर AE लम्ब खींचिए।
उपपत्ति : समबाहु ∆ABC में, AE ⊥ BC
BE = CE = \(\frac{1}{2}\) BC
BE = \(\frac{1}{2}\)AB (∵ BC = AB) …..(1)
समकोण ∆ABE में,
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q15.1
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q15.2
दोनों पक्षों में लघुत्तम समापवर्त्य 36 से गुणा करने पर,
36 × (\(\frac{3}{4}\) AB2) + 36 × (\(\frac{1}{36}\) AB2) = 36AD2
⇒ 27AB2 + AB2 = 36AD2
⇒ 28AB2 = 36AD2
⇒ 7AB2 = 9AD2 (4 सार्वनिष्ठ है)
अतः 9AD2 = 7AB2
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 16.
किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलम्ब के वर्ग के चार गुने के बराबर होता है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q16
हल
दिया है : ABC एक समबाहु त्रिभुज है जिसकी एक भुजा AB है।
त्रिभुज के शीर्ष A से आधार BC तक शीर्ष लम्ब AD खींचा गया है।
सिद्ध करना है : भुजा2 × 3 = शीर्ष लम्ब2 × 4 अर्थात्
अर्थात 3AB2 = 4AD2
उपपत्ति : माना AB = 2a
⇒ a = \(\frac{1}{2}\) AB
∆ABC समबाहु है,
AB = BC
⇒ BC = 2a
शीर्ष A से BC पर AD लम्ब है।
समकोण ∆ABD तथा ∆ACD में,
AB = AC (समबाहु त्रिभुज की भुजाएँ हैं)
AD = AD (उभयनिष्ठ भुजा है)
∆ABD ≅ ∆ACD
BD = CD = CD
परन्तु BC = BD + CD = 2a
⇒ BD = a
तब, समकोण ∆ABD में,
AB2 = BD2 + AD2
⇒ (2a)2 = (a)2 + AD2
⇒ AD2 = 4a2 – a2 = 3a2
⇒ AD2 = 3 × \(\left(\frac{A B}{2}\right)^{2}\) (∵ a = \(\frac{1}{2}\) AB)
⇒ AD2 = \(\frac{3 A B^{2}}{4}\)
अत: 3AB2 = 4AD2
अथवा भुजा2 × 3 = शीर्षलम्ब2 × 4
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5

प्रश्न 17.
सही उत्तर चुनकर उसका औचित्य दीजिए : ∆ABC में, AB = 6√3 cm, AC = 12 cm और BC = 6 cm है। कोण B है-
(A) 120°
(B) 60°
(C) 90°
(D) 45°
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.5 Q17
हल
∆ABC में, AB = 6√3 cm, AC = 12 cm और BC = 6 cm
AB = 6√3 cm
⇒ AB2 = (6√3)2 = 36 × 3 = 108
BC = 6 cm
⇒ BC2 = (6)2 = 36
तथा AC = 12 cm
⇒ AC2 = (12)2 = 144
तब, AB2 + BC2 =108 + 36 = 144
और AC2 = 144
∴ AB2 + BC2 = AC2
∴ त्रिभुज ABC समकोणीय है जिसमें कर्ण AC है।
तथा ∠B समकोण है।
∠B = 90°
अत: विकल्प (C) सही है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

Bihar Board Class 10 Maths समांतर श्रेढ़ियाँ Ex 5.1

प्रश्न 1.
निम्नलिखित स्थितियों में से किन स्थितियों में सम्बद्ध संख्याओं की सूची A.P. है और क्यों?
(i) प्रत्येक किलोमीटर के बाद का टैक्सी का किराया, जबकि प्रथम किलोमीटर के लिए किराया ₹ 15 है और प्रत्येक अतिरिक्त किलोमीटर के लिए किराया ₹ 8 है।
(ii) किसी बेलन (cylinder) में उपस्थित हवा की मात्रा, जबकि वायु निकालने वाला पम्प प्रत्येक बार बेलन की शेष हवा का \(\frac{1}{4}\) भाग बाहर निकाल देता है।
(iii) प्रत्येक मीटर की खुदाई के बाद, एक कुआँ खोदने में आई लागत, जबकि प्रथम मीटर खुदाई की लागत ₹ 150 है और बाद में प्रत्येक मीटर खुदाई की लागत ₹ 50 बढ़ती जाती है।
(iv) खाते में प्रत्येक वर्ष का मिश्रधन, जबकि ₹ 10000 की राशि 8% वार्षिक की दर से चक्रवृद्धि ब्याज पर जमा की जाती है।
हल
(i) टैक्सी के प्रथम किमी का किराया = ₹ 15
अगले प्रत्येक किमी का किराया = ₹ 8
2 किमी का किराया = ₹ (15 + 8) = ₹ 23
3 किमी का किराया = ₹ (23 + 8) = ₹ 31
4 किमी का किराया = ₹ (31 + 8) = ₹ 39
a1 = ₹ 15, a2 = ₹ 23, a3 = ₹ 31, a4 = ₹ 39
दो क्रमागत पदों का अन्तर,
a2 – a1 = ₹ (23 – 15) = ₹ 8
a3 – a2 = ₹ (31 – 23) = ₹ 8
a4 – a3 = ₹ (39 – 31) = ₹ 8
दो क्रमागत पदों का अन्तर नियत है,
अत: किमी में टैक्सी का किराया A.P. में है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(ii) माना बेलन में हवा का प्रारम्भिक आयतन = V
पहली बार पम्प \(\frac{V}{4}\) भाग हवा निकाल देगा।
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q1
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q1.1
दो क्रमागत पदों का अन्तर नियत नहीं है,
अत: हवा के आयतन A.P. में नहीं हैं।

(iii) कुएं के प्रथम मीटर की खुदाई की लागत = ₹ 150
बाद में प्रत्येक मीटर की खुदाई ₹ 50 बढ़ जाती है।
पहले 2 मीटर की खुदाई = ₹ (150 + 50) = ₹ 200
पहले 3 मीटर की खुदाई = ₹ (150 + 50 + 50) = ₹ 250
पहले 4 मीटर की खुदाई = ₹ (150 + 50 + 50 + 50) = ₹ 300
a1 = ₹ 150, a2 = ₹ 200, a3 = ₹ 250, a4 = ₹ 300
दो क्रमागत पदों का अन्तर,
a2 – a1 = ₹ (200 – 150) = ₹ 50
a3 – a2 = ₹ (250 – 200) = ₹ 50
a4 – a3 = ₹ (300 – 250) = ₹ 50
चूँकि दो क्रमागत पदों का अन्तर नियत (₹ 50) है।
अत: कुआँ खोदने में आई लागत ₹ 150, ₹ 200, ₹ 250, ₹ 300, …… A.P. में हैं।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(iv) खाते में जमा किए गए धन के लिए भिन्न वर्षों के मिश्रधन :
मूलधन, P = ₹ 10000, ब्याज की दर, R = 8%
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q1.2 Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q1.3
निरीक्षण से ही स्पष्ट है कि A2 – A1 ≠ A3 – A2
अत: मिश्रधन A.P. में नहीं हैं।

प्रश्न 2.
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्वान्तर d निम्नलिखित हैं-
(i) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = -3
(iv) a = -1, d = \(\frac{1}{2}\)
(v) a = -1.25, d = -0.25
हल
(i) प्रथम पद (a) = 10 तथा सार्वान्तर (d) = 10
दूसरा पद = a + d = 10 + 10 = 20
तीसरा पद = a + 2d = 10 + (2 × 10) = 30
चौथा पद = a + 3d = 10 + (3 × 10) = 40
अत: दी गई A.P. के प्रथम चार पद : 10, 20, 30, 40

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(ii) प्रथम पद (a) = -2 तथा सार्वान्तर (d) = 0
दूसरा पद = a + d = -2 + 0 = -2
तीसरा पद = a + 2d = -2 + (2 × 0) = -2
चौथा पद = a + 3d = -2 + (3 × 0) = -2
अतः दी गई A.P. के प्रथम चार पद : -2, -2, -2, -2

(iii) प्रथम पद (a) = 4 तथा सार्वान्तर (d) = -3
दूसरा पद = a + d = 4 + (-3) = 1
तीसरा पद = a + 2d = 4 + 2 × (-3) = 4 + (-6) = -2
चौथा पद = a + 3d = 4 + 3 × (-3) = 4 + (-9) = -5
अत: दी गई A.P. के प्रथम चार पद : 4, 1, -2, -5

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(iv) प्रथम पद (a) = -1 तथा सार्वान्तर (d) = \(\frac{1}{2}\)
दूसरा पद = a + d = -1 + \(\frac{1}{2}\) = \(\frac{-1}{2}\)
तीसरा पद = a + 2d = -1 + (2 × \(\frac{1}{2}\)) = -1 + 1 = 0
चौथा पद = a + 3d = -1 + (3 × \(\frac{1}{2}\)) = -1 + \(\frac{3}{2}\) = \(\frac{1}{2}\)
अत: दी गई A.P. के प्रथम चार पद : -1, \(\frac{-1}{2}\), 0, \(\frac{1}{2}\)

(v) प्रथम पद (a) = -1.25 तथा सार्वान्तर (d) = -0.25
दूसरा पद = a + d = -1.25 + (-0.25) = -1.50
तीसरा पद = a + 2d = -1.25 + 2 × (-0.25) = -1.25 – 0.50 = -1.75
चौथा पद = a + 3d = -1.25 + 3 × (-0.25) = -1.25 – 0.75 = -2.00
अतः दी गई A.P. के प्रथम चार पद : -1.25, -1.50, -1.75, -2.00

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

प्रश्न 3.
निम्नलिखित में से प्रत्येक A.P. के लिए प्रथम पद तथा सार्वान्तर लिखिए :
(i) 3, 1, -1, -3,…….
(ii) -5, -1, 3, 7,……….
(iii) \(\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots \ldots\)
(iv) 0.6, 1.7, 2.8, 3.9,……
हल
(i) दी गई A.P. = 3, 1, -1, -3,…….
a1 = 3, a2 = 1, a3 = -1, a4 = -3
प्रथम पद (a) = a1 = 3
सार्वान्तर (d) = a2 – a1 = 1 – 3 = -2
अत: प्रथम पद = 3 तथा सार्वान्तर = -2

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(ii) दी गई A.P. = -5, -1, 3, 7,…….
a1 = -5, a2 = -1, a3 = 3, a4 = 7
प्रथम पद (a) = a1 = -5
सार्वान्तर (d) = a2 – a1 = -1 – (-5) = -1 + 5 = 4
अत: प्रथम पद = -5 तथा सार्वान्तर = 4

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q3

(iv) दी गई A.P. = 0.6, 1.7, 2.8, 3.9,……
a1 = 0.6, a2 = 1.7, a3 = 2.8, a4 = 3.9
प्रथम पद (a) = a1 = 0.6
सार्वान्तर (d) = a2 – a1 = 1.7 – 0.6 = 1.1
अतः प्रथम पद = 0.6 तथा सार्वान्तर = 1.1

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

प्रश्न 4.
निम्नलिखित में से कौन-कौन A.P. हैं? यदि कोई A.P. है, तो इसका सार्वान्तर ज्ञात कीजिए और इनके तीन और पद लिखिए।
(i) 2, 4, 8, 16, …….
(ii) 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\),……
(iii) -1.2, -3.2, -5.2, -7.2,…..
(iv) -10, -6, -2, 2,…….
(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2,….
(vi) 0.2, 0.22, 0.222, 0.2222,….
(vii) 0, -4, -8, -12,……
(viii) \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots \ldots\)
(ix) 1, 3, 9, 27,……
(x) a, 2a, 3a, 4a,……
(xi) a, a2, a3, a4,……
(xii) √2, √8, √18, √32,……
(xiii) √3, √6, √9, √12,…..
(xiv) 12, 32, 52, 72,…..
(xv) 12, 52, 72, 73,……
हल
यहाँ प्रत्येक अनुक्रम के प्रथम 4 पद ज्ञात हैं। यदि कोई अनुक्रम A.P. में है, तो उसके अगले तीन पद और ज्ञात करने हैं अर्थात् 5 वाँ, छठा और 7 वाँ पद और ज्ञात करना है।
(i) दिया हुआ अनुक्रम : 2, 4, 8, 16, ……..
a1 = 2, a2 = 4, a3 = 8, a4 = 16
दो क्रमागत पदों के अन्तर,
a2 – a1 = 4 – 2 = 2
a3 – a2 = 8 – 4 = 4
दो क्रमागत पदों का अन्तर नियत नहीं है।
अतः दिया गया अनुक्रम A.P. में नहीं है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(ii) दिया हुआ अनुक्रम,
2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\),……
a1 = 2, a2 = \(\frac{5}{2}\), a3 = 3, a4 = \(\frac{7}{2}\)
दो क्रमागत पदों का अन्तर,
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q4
दो क्रमागत पदों का अन्तर नियत (\(\frac{1}{2}\)) है।
सार्वान्तर (d) = \(\frac{1}{2}\)
अतः दिया गया अनुक्रम एक A.P. में है।
तब, पाँचवाँ पद (a5) = चौथा पद (a4) + सार्वान्तर (d)
\(=\frac{7}{2}+\frac{1}{2}=\frac{7+1}{2}=\frac{8}{2}=4\)
छठा पद (a6) = पाँचवाँ पद (a5) + सार्वान्तर (d)
\(=4+\frac{1}{2}=\frac{8+1}{2}=\frac{9}{2}\)
सातवाँ पद (a7) = छठा पद (a6) + सार्वान्तर (d)
\(=\frac{9}{2}+\frac{1}{2}=\frac{9+1}{2}=\frac{10}{2}=5\)
अत: दिए गए अनुक्रम के अगले तीन पद : 4, \(\frac{9}{2}\) , 5 होंगे।

(iii) दिया हुआ अनुक्रम : -1.2, -3.2, -5.2, -7.2, ……
a1 = -1.2, a2 = -3.2, a3 = -5.2, a4 = -7.2
दो क्रमागत पदों का अन्तर,
a2 – a1 = -3.2 – (-1.2) = -3.2 + 1.2 = -2.0
a3 – a2 = -5.2 – (-3.2) = -5.2 + 3.2 = -2.0
a4 – a3 = -7.2 – (-5.2) = -7.2 + 5.2 = -2.0
दो क्रमागत पदों का अन्तर नियत (-2.0) है।
सार्वान्तर d = -2.0 और दिया गया अनुक्रम एक A.P. है।
तब, पाँचवाँ पद (a5) = चौथा पद (a4) + सार्वान्तर (d) = -7.2 + (-2) = -9.2
छठा पद (a6) = पाँचवाँ पद (a5) + सार्वान्तर (d) = -9.2 + (-2) = -11.2
सातवाँ पद (a7) = छठा पद (a6) + सार्वान्तर (d) = -11.2 + (-2)= -13.2
अत: दिए गए अ6नुक्रम के अगले तीन पद : -9.2, -11.2, -13.2 होंगे।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(iv) दिया हुआ अनुक्रम : -10, -6, -2, 2,…..
a1 = -10, a2 = -6, a3 = -2, a4 = 2
दो क्रमागत पदों का अन्तर,
a2 – a1 = -6 – (-10) = -6 + 10 = 4
a3 – a2 = -2 – (-6) = -2 + 6 = 4
a4 – a3 = 2 – (-2) = 2 + 2 = 4
दो क्रमागत पदों का अन्तर नियत (4) है।
सार्वान्तर (d) = 4 और दिया गया अनुक्रम एक A.P. है।
तब, पाँचवाँ पद (a5) = चौथा पद (a4) + सार्वान्तर (d) = 2 + 4 = 6
छठा पद (a6) = पाँचवाँ पद (a5) + सार्वान्तर (d) = 6 + 4 = 10
सातवाँ पद (a7) = छठा पद (a6) + सार्वान्तर (d) = 10 + 4 = 14
अत: दिए गए अनुक्रम के अगले तीन पद : 6, 10, 14 होंगे।

(v) दिया हुआ अनुक्रम : 3, 3 + √2, 3 + 2√2, 3 + 3√2, ……
a1 = 3, a2 = 3 + √2, a3 = 3 + 2√2, a4 = 3 + 3√2
दो क्रमागत पदों का अन्तर,
a2 – a1 = (3 + √2) – 3 = √2
a3 – a2 = (3 + 2√2) – (3 + √2) = √2
a4 – a3 = (3 + 3√2) – (3 + 2√2) = √2
दो क्रमागत पदों का अन्तर नियत (√2) है।
सार्वान्तर (d) = √2 और दिया गया अनुक्रम एक A.P. में है।
तब, पाँचवाँ पद (a5 ) = a4 + d = 3 + 3√2 + √2 = 3 + √2(3 + 1) = 3 + 4√2
छठा पद (a6) = a5 + d = 3 + 4√2 + √2 = 3 + √2(4 + 1) = 3 + 5√2
सातवाँ पद (a7) = a6 + d = 3 + 5√2 + √2 = 3 + √2(5 + 1) = 3 + 6√2
अतः दिए गए अनुक्रम के अगले तीन पद हैं :
3 + 4√2, 3 + 5√2, 3 + 6√2

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(vi) दिया हुआ अनुक्रम : 0.2, 0.22, 0.222, 0.2222, ….
a1 = 0.2, a2 = 0.22, a3 = 0.222, a4 = 0.2222
दो क्रमागत पदों का अन्तर,
a2 – a1 = 0.22 – 0.2 = 0.02
a3 – a2 = 0.222 – 0.22 = 0.002
a4 – a3 = 0.222 – 0.222 = 0.0002
दो क्रमागत पदों का अन्तर नियत नहीं है।
अत: दिया गया अनुक्रम A.P. में नहीं है।

(vii) दिया हुआ अनुक्रम : 0, -4, -8, -12, ……
a1 = 0, a2 = -4, a3 = -8, a4 = -12
दो क्रमागत पदों का अन्तर,
a2 – a1 = -4 – 0 = -4
a3 – a2 = -8 – (-4) = -8 + 4 = -4
a4 – a3 = -12 – (-8) = -12 + 8 = -4
दो क्रमागत पदों का अन्तर नियत (-4) है।
सार्वान्तर (d) = -4 और दिया गया अनुक्रम एक A.P. में है।
तब, पाँचवाँ पद (a5) = चौथा पद (a4) + सार्वान्तर (d) = -12 + (-4) = -16
छठा पद (a6) = पाँचवाँ पद (a5) + सार्वान्तर (d) = -16 + (-4) = -20
सातवाँ पद (a7) = छठा पद (a6) + सार्वान्तर (d) = -20 + (-4) = -24
अत: दिए गए अनुक्रम के अगले तीन पद : -16, -20, -24 होंगे।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(viii) दिया हुआ अनक्रम :
\(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots \ldots\)
a1 = \(-\frac{1}{2}\), a2 = \(-\frac{1}{2}\), a3 = \(-\frac{1}{2}\), a4 = \(-\frac{1}{2}\)
दो क्रमागत पदों का अन्तर,
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1 Q4.1
दो क्रमागत पदों का अन्तर नियत (शून्य) है।
सार्वान्तर (d) = 0 और दिया गया अनुक्रम एक A.P. में है।
सार्वान्तर (d) = 0 है; अत: इस A.P. का प्रत्येक पद \(-\frac{1}{2}\) ही होगा।
अत: दिए गए अनुक्रम के अगले तीन पद : \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\) होंगे।

(ix) दिया हुआ अनुक्रम : 1, 3, 9, 27,……
a1 = 1, a2 = 3, a3 = 9, a4 = 27
दो क्रमागत पदों का अन्तर,
a2 – a1 = 3 – 1 = 2
a3 – a2 = 9 – 3 = 6
a4 – a3 = 27 – 9 = 18
दो क्रमागत पदों का अन्तर नियत नहीं है।
अत: दिया गया अनुक्रम एक A.P. में नहीं है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(x) दिया हुआ अनुक्रम : a, 2a, 3a, 4a, ……
a1 = a, a2 = 2a, a3 = 3a, a4 = 4a
दो क्रमागत पदों का अन्तर,
a2 – a1 = 2a – a = a
a3 – a2 = 3a – 2a = a
a4 – a3 = 4a – 3a = a
दो क्रमागत पदों का अन्तर नियत (a) है।
अतः सार्वान्तर (d) = a और दिया गया अनुक्रम एक A.P. में है।
तब, पाँचवाँ पद (a5) = चौथा पद (a4) + सार्वान्तर (d) = 4a + a = 5a
छठा पद (a6) = पाँचवाँ पद (a5) + सार्वान्तर (d) = 5a + a = 6a
सातवाँ पद (a7) = छठा पद (a6) + सान्तिर (d) = 6a + a = 7a
अतः दिए गए अनुक्रम के अगले तीन पद : 5a, 6a, 7a होंगे।

(xi) दिया हुआ अनुक्रम : a, a2, a3, a4,……
a1 = a, a2 = a2, a3 = a3, a4 = a4
दो क्रमागत पदों का अन्तर,
a2 – a1 = a2 – a = a(a – 1)
a3 – a2 = a3 – a2 = a2(a – 1)
a4 – a3 = a4 – a3 = a3(a – 1)
दो क्रमागत पदों का अन्तर नियत नहीं है।
अतः दिया गया अनुक्रम एक A.P. में नहीं है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(xii) दिया हुआ अनुक्रम : √2, √8, √18, √32,……
a1 = √2, a2 = √8, a3 = √18, a4 = √32
दो क्रमागत पदों का अन्तर,
a2 – a1 = √8 – √2 = √2(√4 – 1) = √2(2 – 1) = √2
a3 – a2 = √18 – √8 = √2(√9 – √4) = √2(3 – 2) = √2
a4 – a3 = √32 – √18 = √2(√16 – √9) = √2(4 – 3) = √2
दो क्रमागत पदों का अन्तर नियत (√2) है।
अत: सार्वान्तर (d) = √2 और दिया गया अनुक्रम एक A.P. में है।
तब, पाँचवाँ पद (a5) = चौथा पद (a4) + सार्वान्तर (d)
= √32 + √2
= √2(√16 + 1)
= √2(4 + 1)
= 5√2
= √25 × √2
= √50
छठाँ पद (a6) = पाँचवाँ पद (a5) + सार्वान्तर (d)
= √50 + √2
= √2 (√25 + 1)
= √2(5 + 1)
= 6√2
= √36 × √2
= √72
सातवाँ पद (a7) = छठाँ पद (a6) + सार्वान्तर (d)
= √72 + √2
= √2(√36 + 1)
= √2(6 + 1)
= 7√2
= √49 × √2
= √98
अत: दिए गए अनुक्रम के अगले तीन पद : √50, √72, √98 होंगे।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(xiii) दिया हुआ अनुक्रम : √3, √6, √9, √12,…..
a1 = √3, a2 = √6, a3 = √9, a4 = √12
दो क्रमागत पदों का अन्तर,
a2 – a1 = √6 – √3 = √3(√2 – 1)
a3 – a2 = √9 – √6 = √3(√3 – √2)
a4 – a3 = √12 – √9 = 2√3 – 3
दो क्रमागत पदों का अन्तर नियत नहीं है।
अत: दिया गया अनुक्रम एक A.P. में नहीं है।

(xiv) दिया हुआ अनुक्रम : 12, 32, 52, 72,…..
a1 = 12, a2 = 32, a3 = 52, a4 = 72
दो क्रमागत पदों का अन्तर,
a2 – a1 = 32 – 12 = 9 – 1 = 8
a3 – a2 = 52 – 32 = 25 – 9 = 16
a4 – a3 = 72 – 52 = 49 – 25 = 24
दो क्रमागत पदों का अन्तर नियत नहीं है।
अत: दिया गया अनुक्रम एक A.P. में नहीं है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1

(xv) दिया हुआ अनुक्रम : 12, 52, 72, 73, ……
a1 = 12, a2 = 52, a3 = 72, a4 = 73,
दो क्रमागत पदों का अन्तर,
a2 – a1 = 52 – 12 = 25 – 1 = 24
a3 – a2 = 72 – 52 = 49 – 25 = 24
a4 – a3 = 73 – 72 = 73 – 49 = 24
दो क्रमागत पदों का अन्तर नियत (24) है।
सार्वान्तर (d) = 24 और दिया गया अनुक्रम एक A.P. में है।
तब, पाँचवाँ पद = चौथा पद + सार्वान्तर (d) = 73 + 24 = 97
छठाँ पद = पाँचवाँ पद + सार्वान्तर (d) = 97 + 24 = 121 = (11)2
सातवाँ पद = छठा पद + सार्वान्तर (d) = (11)2 + 24 = 121 + 24 = 145
अत: दिए गए अनुक्रम के अगले तीन पद : 97, 112, 145 होंगे।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1

Bihar Board Class 10 Maths त्रिभुज Ex 6.1

प्रश्न 1.
कोष्ठकों में दिए शब्दों में से सही शब्दों का प्रयोग करते हुए, रिक्त स्थानों को भरिए-
(i) सभी वृत्त _________ होते हैं। (सर्वांगसम, समरूप)
(ii) सभी वर्ग ___________ होते हैं। (समरूप, सर्वांगसम)
(iii) सभी __________ त्रिभुज समरूप होते हैं। (समद्विबाहु, समबाहु)
(iv) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि
(a) उनके संगत कोण ______ हों तथा
(b) उनकी संगत भुजाएँ __________ हों। (बराबर, समानुपाती)
हल
(i) सभी वृत्त समरूप होते हैं।
(ii) सभी वर्ग समरूप होते हैं।
(iii) सभी समबाहु त्रिभुज समरूप होते हैं।
(iv) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि
(a) उनके संगत कोण बराबर हों तथा
(b) उनकी संगत भुजाएँ समानुपाती हों।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1

प्रश्न 2.
निम्नलिखित युग्मों के दो भिन्न-भिन्न उदाहरण दीजिए-
(i) समरूप आकृतियाँ
(ii) ऐसी आकृतियाँ जो समरूप नहीं हैं।
हल
(i) समरूप आकृतियों के दो उदाहरण
(a) संकेन्द्रीय वृत्त
(b) विभिन्न भुजाओं वाले सभी वर्ग अथवा समबाहु त्रिभुज अथवा समबहुभुज।

(ii) ऐसी आकृतियों के उदाहरण जो समरूप नहीं हैं :
(a) एक वर्ग तथा एक आयत
(b) एक वर्ग तथा एक समचतुर्भुज।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1

प्रश्न 3.
बताइए कि निम्नलिखित चतुर्भुज समरूप हैं या नहीं
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1 Q3
हल
चतुर्भुज PQRS तथा ABCD में,
PQ = QR = RS = SP = 1.5 cm
तथा AB = BC = CD = DA = 3.0 cm
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.1 Q3.1
अत: दो चतुर्भुजों की भुजाएँ समानुपात में हैं।
परन्तु देखने से ही प्रतीत होता है कि संगत कोण बराबर नहीं हैं।
अत: चतुर्भुज PQRS तथा चतुर्भुज ABCD समरूप नहीं हैं।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

Bihar Board Class 10 Maths समांतर श्रेढ़ियाँ Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
किसी A.P. में, यदि d = -4, n = 7 और an = 4 है, तो a का मान है
(i) 6
(ii) 7
(iii) 20
(iv) 28
हल
(iv) 28

प्रश्न 2.
किसी A.P. में, यदि a = 3.5, d = 0 और n = 101 है, तो, an बराबर है
(i) 0
(ii) 3.5
(iii) 103.5
(iv) 104.5
हल
(ii) 3.5

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 3.
संख्याओं -10, -6, -2, 2,….की सूची
(i) d = -16 वाली एक A.P. है
(ii) d = 4 वाली एक A.P. है
(iii) d = -4 वाली एक A.P. है
(iv) एक A.P. नहीं है
हल
(iii) d = 4 वाली एक A.P. है।

प्रश्न 4.
A.P.: -5, \(\frac{-5}{2}\), 0, \(\frac{5}{2}\),…… का 11वाँ पद है
(i) -20
(ii) 20
(iii) -30
(iv) 30
हल
(ii) 20

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 5.
उस A.P., जिसका प्रथम पद -2 और सार्वान्तर -2 है के प्रथम चार पद हैं
(i) -2, 0, 2, 4
(ii) -2, 4, -8, 16
(iii) -2, -4, -6, -8
(iv) -2, -4, -8, -16
हल
(iii) -2, -4, -6, -8

प्रश्न 6.
उस A.P., जिसके प्रथम दो पद -3 और 4 हैं, का 21वाँ पद है
(i) 17
(ii) 137
(iii) 143
(iv) -143
हल
(ii) 137

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 7.
यदि किसी A.P. का दूसरा पद 13 और 5वाँ पद 25 है, तो उसका 7वाँ पद क्या है?
(i) 30
(ii) 33
(iii) 37
(iv) 38
हल
(ii) 33

प्रश्न 8.
A.P.: 21, 42, 63, 84,… का कौन-सा पद 210 है?
(i) 9वाँ
(ii) 10वाँ
(iii) 11वाँ
(iv) 12वाँ
हल
(ii) 10वाँ

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 9.
यदि किसी A.P. का सार्वान्तर 5 है, a18 – a13 क्या है?
(i) 5
(ii) 20
(iii) 25
(iv) 30
हल
(iii) 25

प्रश्न 10.
उस A.P. का सार्वान्तर क्या है, जिसमें a18 – a14 = 32 है?
(i) 8
(ii) -8
(iii) -4
(iv) 4
हल
(i) 8

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 11.
दो समान्तर श्रेढ़ियों का एक ही सार्वान्तर है। इनमें से एक का प्रथम पद -1 और दसरी का प्रथम पद -8 है। तब, इनके चौथे पदों के बीच का अन्तर है
(i) -1
(ii) -8
(iii) 7
(iv) -9
हल
(iii) 7

प्रश्न 12.
यदि किसी A.P. के 7वें पद का 7 गुना उसके 11वें पद के 11 गुने के बराबर हो,तो उसका 18वाँ पद होगा
(i) 7
(ii) 11
(iii) 18
(iv) 0
हल
(iv) 0

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 13.
A.P.: -11, -8, -5,…, 49 के अन्त से चौथा पद है
(i) 37
(ii) 40
(iii) 43
(iv) 58
हल
(ii) 40

प्रश्न 14.
यदि किसी A.P. का प्रथम पद -5 और सार्वान्तर 2 है तो उसके प्रथम 6 पदों का योग है
(i) 0
(ii) 5
(iii) 6
(iv) 15
हल
(i) 0

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 15.
A.P.: 10, 6, 2,… के प्रथम 16 पदों का योग है
(i) -320
(ii) 320
(iii) -352
(iv) -400
हल
(i) -320

प्रश्न 16.
किसी A.P. में, यदि a = 1, an = 20 और Sn = 399 हों तो n बराबर है
(i) 19
(ii) 21
(iii) 38
(iv) 42
हल
(iii) 38

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 17.
3 के प्रथम पाँच गुणजों का योग है
(i) 45
(ii) 55
(iii) 65
(iv) 75
हल
(i) 45

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
समान्तर श्रेढ़ी -4 + 3 + 10 +……..+ 52 में कितने पद हैं?
हल
माना समान्तर श्रेढ़ी -4 + 3 + 10 +………+ 52 में n पद हैं।
यहाँ, a = -4 तथा d = 3 – (-4) = 3 + 4 = 7
n वा पद = 52
⇒ a + (n – 1)d = 52
⇒ -4 + (n – 1)7 = 52
⇒ 7n – 7 = 52 + 4 = 56
⇒ 7n = 56 + 7 = 63
⇒ n = 9
अत: श्रेढ़ी में 9 पद हैं।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 2.
समान्तर श्रेढी 2, 7, 12, ……. का 20 वाँ पद निकालिए।
हल
दी हुई समान्तर श्रेढ़ी
2, 7, 12, ……
यहाँ, प्रथम पद (a) = 2, सार्वान्तर (d) = 7 – 2 = 5 तथा n = 20
n वाँ पद, an = a + (n – 1)d
20 वाँ पद, a20 = 2 + (20 – 1) 5
= 2 + 19 × 5
= 2 + 95
= 97
अत : श्रेढ़ी का 20 वाँ पद = 97

प्रश्न 3.
प्रथम दस प्राकृतिक संख्याओं का योग ज्ञात कीजिए।
हल
प्रथम दस प्राकृतिक संख्याएँ :
1, 2, 3, 4, ………., 10
यहाँ, a = 1, d = 2 – 1 = 1, तथा n = 10
S10 = \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{10}{2}\) [2 × 1 + (10 – 1)1]
= 5[2 + 9]
= 55
अतः प्रथम दस प्राकृतिक संख्याओं का योग = 55

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 4.
प्रथम 1000 धन पूर्णांकों का योग ज्ञात कीजिए।
हल
प्रथम 1000 धन पूर्णांकों की सूची है :
1, 2, 3,…..,1000
यह एक समान्तर श्रेढ़ी है जिसके लिए
a = 1, d = 2 – 1 = 1, n = 1000
सूत्र Sn = \(\frac{n}{2}\) [2a + (n – 1) d] से
1000 पदों का योग, S1000 = \(\frac{1000}{2}\) [2(1) + (1000 – 1) (1)]
= 500 × 1001
= 500500
अत: प्रथम 1000 धन पूर्णांकों का योग = 500500

प्रश्न 5.
समान्तर श्रेढी,\(\frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}\),…. के लिए प्रथम पद ‘a’ और सार्वान्तर लिखिए।
हल
दी हुई समान्तर श्रेढ़ी है :
\(\frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}\),………
प्रथम पद (a) = \(\frac{3}{2}\)
तथा सार्वान्तर (d) = \(\frac{1}{2}-\frac{3}{2}\) = -1

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 6.
समान्तर श्रेढ़ी 21, 18, 15, …….. का आठवाँ पद ज्ञात कीजिए।
हल
दी हुई श्रेढ़ी 21, 18, 15,……..
यहाँ प्रथम पद (a) = 21, सार्वान्तर (d) = 18 – 21 = -3
श्रेढ़ी का n वाँ पद = a + (n – 1)d
श्रेढ़ी का 8 वाँ पद = 21 + (8 – 1) (-3) = 21 – 21 = 0
अत: श्रेढ़ी का आठवाँ पद शून्य है।

लघु उत्तरीय प्रश्न

प्रश्न 1.
किसी समान्तर श्रेढी का दूसरा पद एवं पाँचवाँ पद क्रमशः 3 एवं -3 है, तो श्रेढी का सार्वान्तर एवं प्रथम पद ज्ञात कीजिए।
हल
माना श्रेढ़ी का प्रथम पद a तथा सार्वान्तर d है
श्रेढ़ी का दूसरा पद = a + d = 3 ……..(1)
पाँचवाँ पद = a + (5 – 1)d = -3
⇒ a + 4d = -3 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
(a + 4d) – (a + d) = -3 – 3
⇒ a + 4d – a – d = -6
⇒ 3d = -6
⇒ d = -2
d का मान समीकरण (1) में रखने पर,
a – 2 = 3
⇒ a = 3 + 2 = 5
अतः श्रेढ़ी का सार्वान्तर -2 तथा प्रथम पद 5 है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 2.
किसी समान्तर श्रेढ़ी का n वाँ पद 2n + 5 है, तो श्रेढी के सात पदों तक योगफल ज्ञात कीजिए।
हल
दिया है, समान्तर श्रेढ़ी का n वाँ पद, (an) = 2n + 5
n = 1 रखने पर, प्रथम पद, (a1) = 2 × 1 + 5 = 7
n = 2 रखने पर, दूसरा पद, (a2) = 2 × 2 + 5 = 9
n = 3 रखने पर, तीसरा पद, (a3) = 2 × 3 + 5 = 11
प्रथम पद (a) = 7, सार्वान्तर (d) = a2 – a1 = 9 – 7 = 2
सूत्र : Sn = \(\frac{n}{2}\) [2a + (n – 1)d] से,
7 पदों तक योगफल, S7 = \(\frac{7}{2}\) [2 × 7 + (7 – 1)2]
= \(\frac{7}{2}\) × 2[7 + 6]
= 7 × 13
= 91
अतः 7 पदों तक योगफल = 91

प्रश्न 3.
किसी समान्तर श्रेढ़ी का 7वाँ पद 32 और 13वाँ पद 62 है। समान्तर श्रेढी ज्ञात कीजिए।
हल
माना किसी समान्तर श्रेढ़ी का पहला पद a तथा सार्वान्तर d है।
दिया है, श्रेढ़ी का 7वाँ पद = 32
a + (7 – 1)d = 32
⇒ a + 6d = 32 ……(1)
इसी प्रकार, श्रेढ़ी का 13वाँ पद = 62
a + (13 – 1)d = 62
⇒ a + 12d = 62 ……..(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
6d = 62 – 32 = 30
d = \(\frac{30}{6}\) = 5
समीकरण (1) में d का मान रखने पर,
a + 6 × 5 = 32
⇒ a + 30 = 32
⇒ a = 32 – 30 = 2
तब, श्रेढ़ी : a, a + d, a + 2d, a + 3d,………
या 2, 2 + 5, 2 + 10, 2 + 15,………
या 2, 7, 12, 17, ………
अत: अभीष्ट समान्तर श्रेढ़ी : 2, 7, 12, 17, ……

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 4.
समान्तर श्रेढ़ी 3, 5, 7, 9,…………, 201 का अन्तिम पद से (प्रथम पद की ओर) 15वाँ पद ज्ञात कीजिए।
हल
दी गई श्रेढ़ी 3, 5, 7, 9, …….., 201
प्रथम पद (a) = 3, दूसरा पद = 5, अन्तिम पद (l) = 201
सार्वान्तर (d) = दूसरा पद – पहला पद = 5 – 3 = 2
अन्त से nवाँ पद = l – (n – 1)d से,
n = 15 रखने पर,
अन्त से 15वाँ पद = l – (15 – 1)d (∵ l = 201)
= l – 14d
= 201 – (14 × 2)
= 201 – 28
= 173
अतः श्रेढ़ी का अन्त से 15वाँ पद = 173

प्रश्न 5.
किसी श्रेढी काn वाँ पद (2n + 1) है तो इस श्रेढी का सातवाँ (7th) पद ज्ञात कीजिए।
हल
माना समान्तर श्रेढ़ी का प्रथम पद a तथा सार्वान्तर d है।
दिया है, n वाँ पद an = 2n + 1
n = 1 रखने पर, प्रथम पद a = a1 = 2 × 1 + 1 = 3
n = 2 रखने पर, दूसरा पद a2 = 2 × 2 + 1 = 5
n = 3 रखने पर, तीसरा पद a3 = 2 × 3 + 1 = 7
यहाँ पर a = 3, सार्वान्तर d = 5 – 3 = 2
सूत्र an = a + (n – 1)d से,
श्रेढ़ी का 7 वाँ पद a7 = 3 + (7 – 1)2
= 3 + 6 × 2
= 15
अतः श्रेढी का 7 वाँ पद = 15

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 6.
किसी समान्तर श्रेदी केn पदों का योग n(2n – 1) है, श्रेढ़ी का प्रथम पद, सार्वान्तर एवं श्रेढी ज्ञात कीजिए।
हल
दिया है, समान्तर श्रेढ़ी के n पदों तक योगफल,
Sn = n(2n – 1) = 2n2 – n
n = 1 के लिए, प्रथम पद का योगफल S1 = 2(1)2 – 1 = 1
प्रथम पद (a) = 1
n = 2 के लिए, S2 = 2(2)2 – 2 = 8 – 2 = 6
दूसरा पद (a2) = S2 – S1 = 6 – 1 = 5
n = 3 के लिए, S3 = 2(3)2 – 3 = 18 – 3 = 15
तीसरा पद (a3) = S3 – S2 = 15 – 6 = 9
अतः श्रेढ़ी 1, 5, 9,…………
सार्वान्तर d = 5 – 1 = 4 तथा प्रथम पद a = 1.

प्रश्न 7.
श्रेढ़ी 21, 18, 15,…….. का कौन-सा पद -81 है? क्या इस श्रेढी का कोई पद शून्य है? यदि है तो कौन-सा पद?
हल
दी गई A. P. : 21, 18, 15,……..
पहला पद (a) = 21 तथा सार्वान्तर (d) = 18 – 21 = -3
माना nवाँ पद -81 है
nवाँ पद = -81
⇒ a + (n – 1)d = -81
⇒ 21 + (n – 1) (-3) = -81
⇒ 21 – 3n + 3 = -81
⇒ -3n = -81 – 24 = -105
⇒ n = \(\frac{105}{3}\) = 35
अत: श्रेढ़ी का 35 वाँ पद -81 है।
पुनः माना श्रेढ़ी का n वाँ पद शून्य है।
n वाँ पद = 0
⇒ a + (n – 1)d = 0
⇒ 21 + (n – 1) (-3) = 0
⇒ 21 – 3n + 3 = 0
⇒ -3n = -24
⇒ n = 8
अत: श्रेढ़ी का 8 वाँ पद शून्य है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 8.
2 अंकों वाली कितनी संख्याएँ 3 से विभाज्य हैं?
हल
2 अंकों वाली संख्याएँ जो 3 से विभाज्य हैं :
12, 15, 18,…, 99
स्पष्ट है कि ये संख्याएँ समान्तर श्रेढ़ी में हैं जिसके लिए
a = 12 तथा d = 15 – 12 = 3, l = 99
माना संख्याएँ n हैं।
l = a + (n – 1)d
⇒ 99 = 12 + (n – 1)3
⇒ 3(n – 1) = 99 – 12 = 87
⇒ n – 1 = \(\frac{87}{3}\) = 29
⇒ n = 29 + 1 = 30
अत: 2 अंकों वाली 30 संख्याएँ हैं जो 3 से विभाज्य हैं।

प्रश्न 9.
0 से 50 के मध्य कितनी सम संख्याएँ हैं? उनका योगफल ज्ञात कीजिए।
हल
0 से 50 के मध्य सम संख्याएँ 2, 4, 6, 8,…, 48 तक माना n संख्याएँ हैं।
यहाँ a = 2 तथा d = 4 – 2 = 2
nवाँ पद = 48
⇒ 2 + (n – 1)2 = 48
⇒ 2 + 2n – 2 = 48
⇒ 2n = 48
⇒ n = 24
0 से 50 के मध्य 24 सम संख्याएँ होंगी।
24 संख्याओं का योगफल = \(\frac{24}{2}\) [2 × 2 + (24 – 1)2]
= 12 × 2(2 + 23)
= 24 × 25
= 600

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
एक आदमी पहले दिन ₹ 32, दूसरे दिन ₹ 36 तथा तीसरे दिन ₹ 40 बचाता है। यदि वह अपनी बचतों को इसी क्रम में जारी रखता है, तो कितने दिनों में उसकी कुल बचत ₹ 2000 होगी?
हल
पहले दिन बचत a1 = ₹ 32
दूसरे दिन बचत a2 = ₹ 36
तीसरे दिन बचत a3 = ₹ 40
a2 – a1 = 36 – 32 = 4
a3 – a2 = 40 – 36 = 4
अन्तर नियत है
बचत समान्तर श्रेढ़ी में हैं।
प्रथम पद (a) = a1 = 32 तथा सार्वान्तर (d) = 4
माना उसकी बचत n दिनों में ₹ 2000 होगी।
Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
⇒ 2000 = \(\frac{n}{2}\) [2 × 32 + (n – 1)4]
⇒ 2000 = \(\frac{n}{2}\) × 2[32 + (n – 1)2]
⇒ 2000 = n[32 + 2n – 2]
⇒ 2000 = 30n + 2n2
⇒ 2n2 + 30n – 2000 = 0
⇒ n2 + 15n – 1000 = 0
⇒ n2 + (40 – 25)n – 1000 = 0
⇒ n2 + 40n – 25n – 1000 = 0
⇒ n(n + 40) – 25(n + 40) = 0
⇒ (n + 40)(n – 25) = 0
यदि n + 40 = 0 तो n = -40 असम्भव
(क्योंकि दिनों की संख्या ऋणात्मक नहीं हो सकती)
यदि n – 25 = 0 तो n = 25
अत: आदमी की बचत 25 दिनों में ₹ 2000 होगी।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions

प्रश्न 2.
श्रेढ़ी 18, 15, 12, …….. का कौन-सा पद -87 है? क्या इस श्रेढ़ी का कोई पद शून्य है? यदि हाँ, तो कौन-सा पद?
हल
दी हुई श्रेढ़ी 18, 15, 12, ……
पहला पद (a) = 18 तथा सार्वान्तर (d) = 15 – 18 = -3
माना n वाँ पद -87 है।
n वाँ पद = -87
⇒ a + (n – 1)d = -87 [∵ n वाँ पद = a + (n – 1)d]
⇒ 18 + (n – 1)(-3) = -87
⇒ 18 – 3n + 3 = -87
⇒ -3n = -87 – 18 – 3 = -108
⇒ n = \(\frac{108}{3}\) = 36
अत: श्रेढ़ी का 36 वाँ पद -87 है।
पुनः माना श्रेढ़ी का nवाँ पद शून्य है।
nवाँ पद = 0
⇒ a + (n – 1)d = 0
⇒ 18 + (n – 1) (-3) = 0
⇒ -3(n – 1) = -18
⇒ n – 1 = \(\frac{18}{3}\) = 6
⇒ n = 6 + 1 = 7
अत: श्रेढ़ी का 7 वाँ पद शून्य है।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4

Bihar Board Class 10 Maths त्रिभुज Ex 6.4

प्रश्न 1.
मान लीजिए ΔABC ~ ΔDEF है और इनके क्षेत्रफल क्रमशः 64 cm2 और 121 cm2 हैं। यदि EF = 15.4 cm2 हो तो BC ज्ञात कीजिए।
हल
त्रिभुजों के क्षेत्रफलों का अनुपात = संगत भुजाओं के वर्गों का अनुपात
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q1
⇒ 11BC = 8 × 15.4
⇒ BC = \(\frac{8 \times 15.4}{11}\) = 11.2
अत: BC = 11.2 cm

प्रश्न 2.
एक समलम्ब ABCD जिसमें AB || CD है, के विकर्ण परस्पर बिन्दु O पर प्रतिच्छेद करते हैं। यदि AB = 2CD हो तो त्रिभुजों AOB और COD के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q2
हल
AB || CD और AC तिर्यक रेखा है।
∠CAB = ∠ACD या ∠OAB = ∠OCD
AB || CD और DB तिर्यक रेखा है।
∠DBA = ∠BDC या ∠OBA = ∠ODC
अब, ∆AOB तथा ∆COD में,
∠OAB = ∠OCD (एकान्तर कोण)
∠OBA = ∠ODC (एकान्तर कोण)
तथा ∠AOB = ∠COD (शीर्षाभिमुख कोण)
∆OAB ~ ∆OCD
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q2.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4

प्रश्न 3.
दी गई आकृति में एक ही आधार BC पर दो त्रिभुज ABC और DBC बने हुए हैं। यदि AD, BC को O पर प्रतिच्छेद करे, तो दर्शाइए कि \(\frac { ar(ABC) }{ ar(DBC) } =\frac { AO }{ DO }\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q3
हल
दिया है : ∆ABC तथा ∆DBC एक ही आधार BC पर स्थित दो त्रिभुज हैं। AD, BC को बिन्दु O पर प्रतिच्छेद करता है।
सिद्ध करना है : \(\frac { ar(ABC) }{ ar(DBC) } =\frac { AO }{ DO }\)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q3.1
रचना : शीर्ष A से BC पर AE तथा शीर्ष D से BC पर DF लम्ब खींचा।
उपपत्ति : शीर्षों A तथा D से BC पर AE तथा DF लम्ब खींचे गए हैं।
अत: ∆AEO तथा ∆DFO समकोणीय हैं।
समकोण ∆AEO तथा ∆DFO में,
∠AEO = ∠DFO (प्रत्येक 90°)
∠AOE = ∠DOF (शीर्षाभिमुख कोण हैं)
∆AEO ~ ∆DFO (उप-गुणधर्म AA से)
\(\frac{A E}{D F}=\frac{A O}{D O}\) ……(1)
अब, ∆ABC का क्षेत्रफल = \(\frac {1}{2}\) × BC × AE
और ∆DBC का क्षेत्रफल = \(\frac {1}{2}\) × BC × DF
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q3.2

प्रश्न 4.
यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हों तो सिद्ध कीजिए कि वे सर्वांगसम होते हैं।
हल
दिया है: ∆ABC तथा ∆DEF समरूप हैं और ∆ABC का क्षेत्रफल = ∆DEF का क्षेत्रफल
सिद्ध करना है: ∆ABC = ∆DEF
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q4
उपपत्ति: चूँकि समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के वर्गों के अनुपात के बराबर होता है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q4.1
अब, ∆ABC और ∆DEF में,
∠ABC = ∠DEF (∵ ∆ABC ~ ∆DEF)
∠ACB = ∠DFE (∵ ∆ABC ~ ∆DEF)
अतः BC = EF (ऊपर सिद्ध किया है)
∆ABC = ∆DEF
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4

प्रश्न 5.
एक ∆ABC की भुजाओं AB, BC और CA के मध्य-बिन्दु क्रमश: D, E और F हैं। ∆DEF और ∆ABC के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q5
हल
दिया है : ABC की भुजाओं BC, CA, AB के मध्य-बिन्दु क्रमशः D, E, F हैं जिनको मिलाने से ∆DEF बना है।
ज्ञात करना है : ∆DEF का क्षेत्रफल : ∆ABC का क्षेत्रफल
गणना : D, E, F क्रमश: BC, CA, AB के मध्य-बिन्दु हैं।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q5.1
अत: ∆DEF का क्षेत्रफल : ∆ABC का क्षेत्रफल = 1 : 4

प्रश्न 6.
सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात इनकी संगत माध्यिकाओं के अनुपात का वर्ग होता है।
हल
दिया है : दो समरूप ∆ABC और ∆DEF हैं, जिनमें AP तथा DQ संगत माध्यिकाएँ हैं।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q6
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q6.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4

प्रश्न 7.
सिद्ध कीजिए कि एक वर्ग की किसी भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का
आधा होता है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q7
हल
दिया है : चतुर्भुज ABCD एक वर्ग है जिसकी एक भुजा AB तथा विकर्ण AC है।
AB तथा AC पर समबाहु ∆ABE तथा ∆ACF बनाए गए हैं।
सिद्ध करना है : ∆ABE का क्षेत्रफल = \(\frac {1}{2}\) ∆ACF का क्षेत्रफल
उपपत्ति : वर्ग ABCD की भुजा = AB
वर्ग ABCD का विकर्ण AC = AB√2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q7.1
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4 Q7.2
अत: ∆ABE का क्षेत्रफल = \(\frac{1}{2}\) ∆ACF का क्षेत्रफल
इति सिद्धम्

सही उत्तर चुनिए और अपने उत्तर का औचित्य दीजिए-

प्रश्न 8.
ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिन्दु है। त्रिभुजों ABC और BDE के क्षेत्रफलों का अनुपात है-
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4
हल
∆ABC और ∆BDE समरूप त्रिभुज हैं जिनमें D, भुजा BC का मध्य-बिन्दु है।
BD = \(\frac{1}{2}\) BC
⇒ BD : BC = 1 : 2
⇒ BC : BD = 2 : 1
तब, ∆ABC का क्षेत्रफल : ∆BDE का क्षेत्रफल = BC2 : BD2 = (2)2 : (1)2 = 4 : 1
अत: विकल्प (C) सही है।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.4

प्रश्न 9.
दो समरूप त्रिभुजों की भुजाएँ 4 : 9 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात है-
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81
हल
दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात = भुजाओं के अनुपात का वर्ग
= (4)2 : (9)2
= 16 : 81
अत: विकल्प (D) सही है।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4

Bihar Board Class 10 Maths समांतर श्रेढ़ियाँ Ex 5.4

प्रश्न 1.
A.P.: 121, 117, 113,…… का कौन-सा पद सबसे पहला ऋणात्मक पद होगा?
[संकेत : an < 0 के लिए n ज्ञात कीजिए।]
हल
दी गई A.P.: 121, 117, 113, ………
प्रथम पद (a) = 121
तथा सार्वान्तर (d) = 117 – 121 = -4
मान लिया n वाँ पद प्रथम ऋणात्मक पद होगा।
an < 0
⇒ a + (n – 1)d < 0
⇒ 121 + (n – 1) × (-4) < 0
⇒ -(n – 1) 4 < -121
⇒ n – 1 < \(\frac{121}{4}\)
⇒ n < \(\frac{121}{4}\) + 1
⇒ n < \(\frac{125}{4}\)
⇒ n < 31.25
n < 32 क्योंकि n = एक पूर्णांक है।
अत: 32 वाँ पद पहला ऋणात्मक पद होगा।

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4

प्रश्न 2.
किसी A.P. के तीसरे और सातवें पदों का योग 6 है और उनका गणनफल 8 है। इस A.P. के प्रथम 16 पदों का योग ज्ञात कीजिए।
हल
माना दी गई A.P. का पहला पद a तथा सार्वान्तर d है।
तीसरा पद (a3) = a + (3 – 1)d = a + 2d
सातवाँ पद (a7) = a + (7 – 1)d = a + 6d
प्रश्नानुसार, तीसरे + सातवें पद का योग = 6
⇒ a3 + a7 = 6
⇒ a + 2d + a + 6d = 6
⇒ 2a + 8d = 6
⇒ a + 4d = 3 ……(1)
पुनः प्रश्नानुसार,
a3 × a7 = 8
⇒ (a + 2d) × (a + 6d) = 8
⇒ a2 + 8ad + 12d2 = 8 ……..(2)
समीकरण (1) के वर्ग में से समीकरण (2) को घटाने पर,
(a + 4d)2 – (a2 + 8ad + 12d2) = (3)2 – 8
⇒ a2 + 8ad + 16d2 – a2 – 8ad – 12d2 = 9 – 8
⇒ 4d2 = 1
⇒ d = \(\pm \frac{1}{2}\)
समीकरण (1) में d = \(\frac{1}{2}\) रखने पर,
a + 4d = 3
⇒ a + 4 × \(\frac{1}{2}\) = 3
⇒ a + 2 = 3
⇒ a = 1
समीकरण (1) में पुन: d = \(-\frac{1}{2}\) रखने पर,
a + 4d = 3
⇒ a + 4 × (\(-\frac{1}{2}\)) = 3
⇒ a – 2 = 3
⇒ a = 5
पहली स्थिति में, a = 1, d = \(\frac{1}{2}\)
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q2
अतः प्रथम 16 पदों का योग = 20 अथवा 76

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4

प्रश्न 3.
संलग्न चित्र में, एक सीढ़ी के क्रमागत डण्डे परस्पर 25 cm की दूरी पर हैं। डण्डों की लम्बाई एकसमान रूप से घटती जाती है तथा 25 cm सबसे निचले डण्डे की लम्बाई 45 cm है और सबसे ऊपर वाले डण्डे की लम्बाई 25 सेमी है। यदि ऊपरी और निचले डण्डे के बीच की दूरी 2\(\frac{1}{2}\) m है, तो डण्डों को बनाने के लिए लकड़ी की कितनी लम्बाई की आवश्यकता होगी?
[संकेत : डण्डों की संख्या = \(\frac{250}{25}\) + 1 है।]
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q3
हल
प्रथम व अन्तिम डण्डे के बीच की क्षैतिज दूरी
= 2\(\frac{1}{2}\) m
= \(\frac{5}{2}\) m
= \(\frac{5 \times 100}{2}\) cm
= 250 cm
और दो क्रमागत डण्डों के बीच की दूरी = 25 cm
सीढ़ी में डण्डों की संख्या = \(\frac{250}{25}\) + 1 = 11
प्रथम डण्डे की लम्बाई (a) = 25 cm और अन्तिम डण्डे की लम्बाई (l) = 45 cm
11 डण्डों में प्रयुक्त लकड़ी की कुल माप = \(\frac{n}{2}\) [a + l]
= \(\frac{11}{2}\) [25 + 45] cm
= 5.5 × 70 cm
= 385 cm
= 3.85 m
अत: सीढ़ी के डण्डों में प्रयुक्त लकड़ी की लम्बाई = 385 cm या 3.85 m

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4

प्रश्न 4.
एक पंक्ति के मकानों को क्रमागत रूप से संख्या 1 से 49 तक अंकित किया गया है। दर्शाइए कि x का एक ऐसा मान है कि x से अंकित मकान से पहले के मकानों की संख्याओं का योग उसके बाद वाले मकानों की संख्याओं के योग के बराबर है। x का मान ज्ञात कीजिए।
[संकेत : Sx-1 = S49 – Sx है]
हल
दिया है, मकानों पर अंकित संख्याएँ : 1, 2, 3, 4, 5, 6, ……., 47, 48, 49 हैं।
x एक ऐसी संख्या है कि x के एक ओर की संख्याओं का योग = x के दूसरी ओर की संख्याओं का योग
अर्थात् 1 से x – 1 तक की संख्याओं का योग = x – 1 से 49 तक की सभी संख्याओं का योग
अनुक्रम की सभी संख्याओं में सार्वान्तर, d = 1
तब, 1 से x – 1 तक की संख्याओं का योग
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q4
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q4.1
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q4.2

Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4

प्रश्न 5.
संलग्न चित्र में एक फुटबाल के मैदान में एक छोटा चबूतरा है जिसमें 15 सीढ़ियाँ बनी हुई हैं। इन सीढ़ियों में से प्रत्येक की लम्बाई 50 m है और वह ठोस कंक्रीट (concrete) की बनी है। प्रत्येक सीढ़ी में \(\frac{1}{4}\) m की चढ़ाई है और \(\frac{1}{2}\) m का फैलाव (चौड़ाई) है। इस चबूतरे को बनाने में लगी कंक्रीट का कुल आयतन परिकलित कीजिए।
[संकेत : पहली सीढ़ी को बनाने में लगी कंक्रीट का आयतन = \(\frac{1}{4} \times \frac{1}{2} \times 50\) m3 है।]
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q5
हल
दिया है, प्रत्येक सीढ़ी की लम्बाई 50m तथा चौड़ाई \(\frac{1}{2}\) m है।
सीढ़ियों की संख्या 15 है। प्रत्येक सीढ़ी की जमीन से ऊँचाई एक समान्तर श्रेढ़ी (A.P.) का अनुक्रम है जो निम्नवत् है :
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q5.1
Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4 Q5.2
अत: चबूतरे में लगी कंक्रीट का आयतन = 750 m3

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

Bihar Board Class 10 Maths त्रिभुज Ex 6.3

प्रश्न 1.
बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q1
हल
(i) आकृति में दिए गए दोनों त्रिभुजों में,
∠A = 60°, ∠B = 80°, ∠C = 40° तथा ∠P = 60°, ∠Q = 80°, ∠R = 40°
∠A = ∠P, ∠B = ∠Q, ∠C = ∠R
अतः दो त्रिभुजों की समरूपता की कसौटी AAA से,
∆ABC ~ ∆PQR

(ii) आकृति में दिए गए दोनों त्रिभुजों में,
AB = 2, BC = 2.5, CA = 3.0
तथा PQ = 6, QR = 4, RP = 5
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q1.1
अत: दो त्रिभुजों की समरूपता की कसौटी SSS से,
∆ABC ~ ∆QRP

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

(iii) निम्न आकृति में दिए गए दोनों त्रिभुजों में,
LM = 2.7, MP = 2, PL = 3
तथा DE = 4, EF = 5, FD = 6
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q1.2
या दोनों त्रिभुजों की भुजाएँ समानुपात में नहीं हैं।
अतः दोनों त्रिभुज समरूप नहीं हैं।

(iv) दिए गए दोनों त्रिभुजों में,
∠M = 70°, NM = 2.5, ML = 5 तथा ∠Q = 70°, PQ = 6, QR = 10
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q1.3
अतः दोनों त्रिभुज समरूप नहीं हैं।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

(v) दिए गए दोनों त्रिभुजों में,
∠A = 80°, AB = 2.5, AC = अनिश्चित तथा ∠F = 80°, FD = 5, FE = 6
स्पष्ट है कि ∠A व ∠F को अन्तर्विष्ट करने वाली भुजाएँ AB और FD तथा AC और FE आनुपातिक नहीं हैं।
अतः दोनों त्रिभुज समरूप नहीं हैं।

(vi) ∆DEF में, ∠D = 70°, ∠E = 80°
∴ ∠F = 180° – (70° + 80°) = 30°
और ∆PQR में ∠Q = 80°, ∠R = 30°
∴ ∠P = 180° – (80° + 30°) = 70°
तब, ∆DEF और ∆PQR की तुलना करने पर,
∠D = ∠P, ∠E = ∠Q, ∠F = ∠R,
अत: दो त्रिभुजों की समरूपता की उप-कसौटी AA से,
∆DEF ~ ∆PQR

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 2.
आकृति में, ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° है। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q2
हल
दी गई आकृति में, DB एक ऋजु रेखा है और उससे OC, बिन्दु O पर मिलती है जिससे ∠DOC और ∠BOC एक रैखिक युग्म के कोण हैं।
∠DOC + ∠BOC = 180°
∠DOC + 125° = 180° (∵ ∠BOC = 125°)
∠DOC = 180° – 125° = 55°
तब, ∆DOC में,
∠CDO + ∠DOC + ∠DCO = 180°
70° + 55° + ∠DCO = 180° (∵ ∠CDO = 70°)
∠DCO = 180° – (70° + 55°)
∠DCO = 55°
∵ ∆ODC ~ ∆OBA
∴ ∠DCO = ∠OAB
∠OAB = 55° (∵ ∠DCO = 55°)
अत: ∠DOC = 55°, ∠DCO = 55°, ∠OAB = 55°

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 3.
समलम्ब ABCD जिसमें AB || DC है, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दो त्रिभुजों की समरूपता कसौटी का प्रयोग करते हुए, दर्शाइए कि \(\frac{O A}{O C}=\frac{O B}{O D}\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q3
हल
दिया है : ABCD एक समलम्ब है जिसमें AB || CD तथा उसके विकर्ण AC और BD बिन्दु O पर काटते हैं।
सिद्ध करना है : \(\frac{O A}{O C}=\frac{O B}{O D}\)
उपपत्ति : AB || CD और AC तिर्यक रेखा है।
∠OAB = ∠OCD (एकान्तर कोण युग्म)
और ∠AOB = ∠COD (शीर्षाभिमुख कोण)
अब, ∆AOB और ∆OCD में,
∠AOB = ∠COD
तथा ∠OAB = ∠OCD (ऊपर सिद्ध किया)
∴ त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆AOB ~ ∆OCD
\(\frac{O A}{O C}=\frac{O B}{O D}\) (भुजाओं की आनुपातिकता से)
इति सिद्धम्

प्रश्न 4.
दी गई आकृति में, \(\frac{Q R}{Q S}=\frac{Q T}{P R}\) तथा ∠1 = ∠2 है। दर्शाइए कि ∆PQS ~ ∆TQR है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q4
हल
दिया है : दी गई आकृति में,
\(\frac{Q R}{Q S}=\frac{Q T}{P R}\) तथा ∠1 = ∠2 है।
सिद्ध करना है : ∆PQS ~ ∆TQR
उपपत्ति : ∆PQR में,
∠1 = ∠2
∠PQR = ∠PRQ
भुजा QP = भुजा PR …….(1)
अब, \(\frac{Q R}{Q S}=\frac{Q T}{P R}\) (दिया है)
\(\frac{Q R}{Q S}=\frac{Q T}{Q P}\) [समीकरण (1) से]
तब, ∆PQS और ∆TQR में,
∠Q उभयनिष्ठ है और इस कोण को अंतर्विष्ट करने वाली भुजाएँ (QP व QT) तथा (QS व QR) आनुपातिक हैं।
अत: दो त्रिभुजों की समरूपता की कसौटी SAS से,
∆PQS ~ ∆TQR
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 5.
∆PQR की भुजाओं PR और QR पर क्रमशः बिन्दु S और T इस प्रकार स्थित हैं कि ∠P = ∠RTS है। दर्शाइए कि ∆RPQ ~ ∆RTS है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q5
हल
दिया है : दी गई आकृति में, ∠P = ∠RTS
सिद्ध करना है : ∆RPQ ~ ∆RTS
उपपत्ति : ∆RPQ तथा ∆RTS में,
∠P = ∠RTS (दिया है)
तथा ∠R = ∠SRT
तब, त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆RPQ ~ ∆RTS
इति सिद्धम्।

प्रश्न 6.
दी गई आकृति में, यदि ∆ABE ≅ ∆ACD है तो दर्शाइए कि ∆ADE ~ ∆ABC है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q6
हल
दिया है : दी गई आकृति में, ∆ABE और ∆ACD सर्वांगसम हैं।
सिद्ध करना है : ∆ADE ~ ∆ABC
उपपत्ति : ∆ABE ≅ ∆ACD (दिया है)
भुजा AB = भुजा AC
और भुजा AE = भुजा AD
अब, ∆ADE और ∆ABC की तुलना करने पर,
AB = AC और AE = AD
\(\frac{A D}{A B}=\frac{A E}{A C}\) अर्थात् ∆ADE और ∆ABC की भुजाएँ (AD व AB) तथा (AE व AC) आनुपातिक हैं और ये दोनों ही भुजा-युग्म प्रत्येक त्रिभुज के लिए ∠A को अन्तर्विष्ट करते हैं।
दो त्रिभुजों की समरूपता के गुणधर्म (कसौटी) SAS से,
∆ADE ~ ∆ABC
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 7.
दी गई आकृति में, ∆ABC के शीर्ष लम्ब AD और CE परस्पर बिन्दु P पर प्रतिच्छेद करते हैं। दर्शाइए कि-
(i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q7
हल
दिया है : ∆ABC में AD और CE शीर्षलम्ब हैं जो एक-दूसरे को बिन्दु P पर काटते हैं।
सिद्ध करना है :
(i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC
उपपत्ति : ∆ABC में AD और CE शीर्षलम्ब हैं।
AD ⊥ BC तथा CE ⊥ AB
(i) ∆AEP और ∆CDP में,
∠AEP = ∠CDP (प्रत्येक 90° है)
∠APE = ∠CPD (शीर्षाभिमुख कोण)
अत: त्रिभुज की समरूपता के उप-गुणधर्म AA से,
∆AEP ~ ∆CDP
इति सिद्धम्

(ii) ∆ABD और ∆CBE में,
∠ADB = ∠CEB (प्रत्येक 90° है)
∠ABD = ∠CBE (दोनों त्रिभुजों में उभयनिष्ठ है)
अत: त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABD ~ ∆CBE
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

(iii) ∆AEP और ∆ADB में,
∠AEP = ∠ADB (प्रत्येक 90° है)
∠PAE = ∠DAB (दोनों त्रिभुजों में उभयनिष्ठ हैं)
अतः त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆AEP ~ ∆ADB
इति सिद्धम्

(iv) ∆PDC और ∆BEC में,
∠PDC = ∠BEC (प्रत्येक 90° है)
∠DCP = ∠BCE (दोनों त्रिभुजों में उभयनिष्ठ है)
अत: त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆PDC ~ ∆BEC
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 8.
समान्तर चतुर्भुज ABCD की बढ़ाई गई भुजा AD पर स्थित E एक बिन्दु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है। दर्शाइए कि ∆ABE ~ ∆CFB हैं।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q8
हल
दिया है : ABCD एक समान्तर चतुर्भुज है जिसकी भुजा AD को किसी बिन्दु E तक बढ़ाया गया है। रेखाखण्ड BE, भुजा CD को बिन्दु F पर प्रतिच्छेदित करता है।
सिद्ध करना है : ∆ABE ~ ∆CFB
उपपत्ति : ABCD एक समान्तर चतुर्भुज है।
BC || AD ⇒ BC || AE
BC || AE और BE तिर्यक रेखा है।
∠EBC = ∠AEB ⇒ ∠AEB = ∠FBC
अब, ∆ABE और ∆CFB में,
∠A = ∠C (समान्तर चतुर्भुज ABCD के सम्मुख कोण हैं)
∠AEB = ∠FBC (ऊपर सिद्ध किया है)
तब, त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABE ~ ∆CFB
इति सिद्धम्

प्रश्न 9.
दी गई आकृति में, ABC और AMPदो समकोण त्रिभुज हैं, जिनके कोण B और M समकोण हैं। सिद्ध कीजिए कि-
(i) ∆ABC ~ ∆AMP
(ii) \(\frac{C A}{P A}=\frac{B C}{M P}\)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q9
हल
दिया है : ∆ABC और ∆AMP दो समकोण त्रिभुज हैं, जिनमें ∠B तथा ∠M समकोण हैं।
सिद्ध करना है :
(i) ∆ABC ~ ∆AMP
(ii) \(\frac{C A}{P A}=\frac{B C}{M P}\)
उपपत्ति :
(i) समकोण ∆ABC तथा समकोण ∆AMP की तुलना करने पर,
∠B = ∠M (∵ प्रत्येक समकोण है)
∠A = ∠A (उभयनिष्ठ है)
तब, दो त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABC ~ ∆AMP
इति सिद्धम्

(ii) ∆ABC और ∆AMP समरूप हैं।
दोनों त्रिभुजों की संगत भुजाएँ आनुपातिक होंगी।
\(\frac{A B}{A M}=\frac{B C}{M P}=\frac{C A}{P A} \Rightarrow \frac{C A}{P A}=\frac{B C}{M P}\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 10.
CD और GH क्रमशः ∠ACB और ∠EGF के ऐसे समद्विभाजक हैं कि बिन्दु D औरत क्रमशः ∆ABC और ∆FEG की भुजाओं AB और FE पर स्थित हैं। यदि ∆ABC ~ ∆FEG हो तो दर्शाइए कि-
(i) \(\frac{C D}{G H}=\frac{A C}{F G}\)
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q10
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q10.1
हल
दिया है : ∆ABC और ∆EGF में CD, ∠ACB का समद्विभाजक है और GH, ∠EGF का समद्विभाजक है तथा ∆BC ~ ∆FEG
सिद्ध करना है :
(i) \(\frac{C D}{G H}=\frac{A C}{F G}\)
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF
उपपत्ति:
∆ABC में CD, ∠ACB का समद्विभाजक है।
∠ACD = ∠DCB = \(\frac{1}{2}\) ∠ACB
इसी प्रकार, ∆EGF में GH, ∠FGE का समद्विभाजक है।
∠FGH = ∠HGE = \(\frac{1}{2}\) ∠FGE
∠ACD = ∠FGH तथा ∠DCB = ∠HGE
(∵ ∆ABC ~ ∆FEG जिससे ∠ACB = ∠FGE)
अब, ∆DCA तथा ∆HGF में,
∠ACD = ∠FGH (ऊपर सिद्ध किया है)
और ∠A = ∠F (∵ ∆ABC ~ ∆FEG)
अतः समरूपता के उप-गुणधर्म AA से,
∆DCA ~ ∆HGF
इति सिद्धम् (iii)
तब, ∆DCA और ∆HGF में,
\(\frac{C D}{G H}=\frac{A C}{F G}\)
इति सिद्धम् (i)
अब, ∆DCB और ∆HGE में,
∠DCB = ∠HGE (ऊपर सिद्ध किया है।)
∠B = ∠E (∆ABC ~ ∆FEG)
समरूपता के उप-गुणधर्म AA से,
∆DCB ~ ∆HGE
इति सिद्धम् (ii)

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 11.
दी गई आकृति में, AB = AC वाले, एक समद्विबाहु त्रिभुज ABC की बढ़ाई गई भुजा CB पर स्थित E एक बिन्दु है। यदि AD ⊥ BC और EF ⊥ AC है तो सिद्ध कीजिए कि ∆ABD ~ ∆ECF है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q11
हल
दिया है : एक समद्विबाहु ∆ABC है जिसमें AB = AC है।
भुजा CB को किसी बिन्दु E तक इस प्रकार बढ़ाया गया है कि EF ⊥ AC और AD ⊥ BC
सिद्ध करना है : ∆ABD ~ ∆ECF
उपपत्ति : ∆ABC में, AB = AC
∠ABD = ∠ACD …..(1)
AD ⊥ BC
∠ADB = ∠ADC = 90° ……(2)
EF ⊥ AC
∠EFC = 90° ……(3)
अब, ∆ABD तथा ∆ECF में,
∠ADB = ∠EFC [समीकरण (2) व (3) से]
∠ABD = ∠ACD [समीकरण (1) से]
परन्तु ∠ACD = ∠ECF (दोनों त्रिभुजों में उभयनिष्ठ है)
∠ABD = ∠ECF
तब, त्रिभुजों की समरूपता के उप-गुणधर्म AA से,
∆ABD ~ ∆ECF
इति सिद्धम्

प्रश्न 12.
एक त्रिभुज ABC की भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती हैं। दर्शाइए कि ∆ABC ~ ∆PQR है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q12
हल
दिया है : ∆ABC तथा ∆PQR दो त्रिभुज हैं जिनमें
\(\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}\)
जबकि AD तथा PM माध्यिकाएँ हैं अर्थात BD = \(\frac{1}{2}\) BC तथा QM = \(\frac{1}{2}\) QR
सिद्ध करना है : ∆ABC और ∆PQR समरूप हैं।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q12.1
तब, त्रिभुजों की समरूपता की कसौटी SAS से,
अत: ∆ABC और ∆PQR समरूप हैं।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 13.
किसी त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है। दर्शाइए कि CA2 = CB . CD
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q13
हल
दिया है : ∆ABC में BC पर एक बिन्दु D इस प्रकार है कि ∠ADC = ∠BAC
सिद्ध करना है : CA2 = CB . CD
उपपत्ति : ∆CDA और ∆CAB में,
∠ADC = ∠BAC (दिया है)
∠ACD = ∠ACB
∠CAD = ∠ABC (उभयनिष्ठ कोण हैं)
∆CDA ~ ∆CAB (स्वतः समान हैं)
अतः \(\frac{C A}{C D}=\frac{C B}{C A}\)
⇒ CA2 = CB . CD
इति सिद्धम्

प्रश्न 14.
एक त्रिभुज ABC की भुजा AB और AC तथा माध्यिका AD, एक अन्य त्रिभुज PQR की भुजाओं PQ और PR तथा माध्यिका PM के समानुपाती हैं। दर्शाइए कि ∆ABC ~ ∆PQR है।
हल
दिया है : ∆ABC और ∆PQR में BC की माध्यिका AD तथा QR की माध्यिका PM है जिससे
\(\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}\)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q14
∆ABC और ∆PQR की संगत भुजाएँ आनुपातिक हैं।
अत: ∆ABC ~ ∆PQR
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 15.
लम्बाई 6 m वाले एक ऊर्ध्वाधर स्तम्भ की भूमि पर छाया की लम्बाई 4 m है, जबकि उसी समय एक मीनार की छाया की लम्बाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q15
हल
दिया है : 6 मीटर लम्बे स्तम्भ CD की छाया DE = 4 m प्राप्त होती है। उसी समय एक मीनार AB = h m की छाया BE = 28 m प्राप्त होती है।
ज्ञात करना है : मीनार की ऊँचाई h का मान।
गणना : समरूप ∆CDE और ∆ABE में,
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q15.1
अतः मीनार की ऊँचाई = 42 m

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 16.
AD और PM त्रिभुजों ABC और PQR की क्रमशः माध्यिकाएँ हैं, जबकि ∆ABC ~ ∆PQR है। सिद्ध कीजिए कि \(\frac{A B}{P Q}=\frac{A D}{P M}\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q16
हल
दिया है : ∆ABC और ∆PQR दो समरूप त्रिभुज हैं। AD, त्रिभुज ABC की और PM, त्रिभुज PQR की माध्यिकाएँ हैं।
सिद्ध करना है : \(\frac{A B}{P Q}=\frac{A D}{P M}\)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.3 Q16.1
∠B और ∠Q को अन्तर्विष्ट करने वाली ∆ABD और ∆PQM की संगत भुजाएँ आनुपातिक हैं।
अत: दो त्रिभुजों की समरूपता की कसौटी SAS से,
∆ABD ~ ∆PQM
तब, समरूप त्रिभुजों की संगत भुजाओं के आनुपातिकता के गुणधर्म से,
\(\frac{A B}{P Q}=\frac{A D}{P M}\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

Bihar Board Class 10 Maths द्विघात समीकरण Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
निम्नलिखित में से कौन-सा द्विघात समीकरण है?
(i) x2 + 2x + 1 = (4 – x)2 + 3
(ii) -2x2 = (5 – x) (2x – \(\frac{2}{5}\))
(iii) (k + 1)x2 + \(\frac{3}{2}\)x = 7, जहाँ, k = -1
(iv) x3 – x2 = (x – 1)3
हल
(iv) x3 – x2 = (x – 1)3

प्रश्न 2.
निम्नलिखित में से किस समीकरण का एक मूल 2 है?
(i) x2 – 4x + 5 = 0
(ii) x2 + 3x – 12 = 0
(iii) 2x2 – 7x + 6 = 0
(iv) 3x2 – 6x – 2 = 0
हल
(iii) 2x2 – 7x + 6 = 0

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 3.
यदि समीकरण x2 + kx – \(\frac{5}{4}\) = 0 का एक मूल \(\frac{1}{2}\) है, तो k का मान है
(i) 2
(ii) -2
(iii) \(\frac{1}{4}\)
(iv) \(\frac{1}{2}\)
हल
(i) 2

प्रश्न 4.
k के वे मान, जिनके लिए द्विघात समीकरण 2x2 – kx + k = 0 के मूल बराबर होंगे, निम्नलिखित हैं
(i) केवल 0
(ii) 4
(iii) केवल 8
(iv) 0, 8
हल
(iv) 0, 8

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 5.
पूर्ण वर्ग बनाने की विधि द्वारा द्विघात समीकरण 9x2 + \(\frac{3}{4}\)x – √2 = 0 को हल करने के लिए, इसमें किस अचर को जोड़ना और घटाना चाहिए?
(i) \(\frac{1}{8}\)
(ii) \(\frac{1}{64}\)
(iii) \(\frac{1}{4}\)
(iv) \(\frac{9}{64}\)
हल
(ii) \(\frac{1}{64}\)

प्रश्न 6.
द्विघात समीकरण 2x2 – √5x + 1 = 0 के
(i) दो भिन्न वास्तविक मूल हैं
(ii) दो बराबर वास्तविक मूल हैं
(iii) कोई वास्तविक मूल नहीं है
(iv) दो से अधिक वास्तविक मूल हैं
हल
(iii) कोई वास्तविक मूल नहीं है

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 7.
निम्नलिखित में से किस समीकरण के कोई वास्तविक मूल नहीं हैं?
(i) x2 – 4x + 3√2 = 0
(ii) x2 + 4x – 3√2 = 0
(iii) x2 – 4x – 3√2 = 0
(iv) 3x2 + 4√3x + 4 = 0
हल
(i) x2 – 4x + 3√2 = 0

प्रश्न 8.
समीकरण (x2 + 1)2 – x2 = 0
(i) के चार वास्तविक मूल हैं
(ii) के दो वास्तविक मूल हैं
(iii) के कोई वास्तविक मूल नहीं हैं
(iv) का एक वास्तविक मूल है
हल
(iii) के कोई वास्तविक मूल नहीं हैं

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
द्विघात समीकरण x2 + kx + 3 = 0 का एक मूल 1 हो तो k का मान ज्ञात कीजिए।
हल
द्विघात समीकरण का एक मूल 1 है।
x = 1 द्विघात समीकरण को सन्तुष्ट करेगा।
द्विघात समीकरण में x = 1 रखने पर,
(1)2 + k(1) + 3 = 0
⇒ k + 4 = 0
⇒ k = -4

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 2.
समीकरण a2x2 – 3abx + 2b2 = 0 को हल कीजिए।
हल
दिया गया समीकरण a2x2 – 3abx + 2b2 = 0
⇒ a2x2 – 2abx – abx + 2b2 = 0
⇒ ax(ax – 2b) – b(ax – 2b) = 0
⇒ (ax – 2b) (ax – b) = 0
यदि (ax – 2b) = 0, तो x = \(\frac{2 b}{a}\)
और यदि (ax – b) = 0 , तो x = \(\frac{b}{a}\)
∴ x = \(\frac{2 b}{a}\), \(\frac{b}{a}\)

प्रश्न 3.
बिना हल किए b2x2 + abx – a2 = 0 के मूलों के लक्षण ज्ञात कीजिए।
हल
दिया गया समीकरण : b2x2 + abx – a2 = 0
उपर्युक्त समीकरण की तुलना मानक द्विघात समीकरण Ax2 + Bx + C = 0 से करने पर,
A = b2, B = ab, C = -a2
विविक्तकर, D = B2 – 4AC
= (ab)2 – 4b2(-a2)
= a2b2 + 4a2b2
= 5a2b2 > 0 परन्तु पूर्ण वर्ग नहीं है
अत: मूल वास्तविक, अपरिमेय और असमान होंगे।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 4.
p के वे मान ज्ञात कीजिए जिससे समीकरण 2px2 – 8x + p = 0 के मूल बराबर व वास्तविक हों।
हल
दिया गया समीकरण : 2px2 – 8x + p = 0
उपर्युक्त समीकरण की तुलना मानक द्विघात समीकरण, ax2 + bx + c = 0 से करने पर,
a = 2p, b = -8, c = p
विविक्तकर, D = b2 – 4ac
= (-8)2 – 4 × 2p × p
= 64 – 8p2
मूल बराबर व वास्तविक हैं।
64 – 8p2 = 0
⇒ p2 = 8
⇒ p = ±2√2

प्रश्न 5.
सिद्ध कीजिए कि द्विघात समीकरण 3x2 + 2√5x – 5 = 0 के मूल वास्तविक और असमान हैं। मूलों की प्रकृति भी ज्ञात कीजिए।
हल
दी गई समीकरण : 3x2 + 2√5x – 5 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 3, b = 2√5 तथा c = -5
विविक्तिकर, D = b2 – 4ac
= (2√5)2 – 4 × 3 × (-5)
= 20 + 60
= 80 धनात्मक परन्तु पूर्ण वर्ग नहीं
अत: समीकरण के मूल वास्तविक, असमान व अपरिमेय होंगे।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 6.
द्विघात समीकरण 4x2 – 8 = 0 के मूल ज्ञात कीजिए।
हल
4x2 – 8 = 0
⇒ 4(x2 – 2) = 0
⇒ (x + √2) (x – √2) = 0
x2 – 2 = 0 होने के लिए, .
x + √2 = 0 ⇒ x = -√2
तथा x – √2 = 0 ⇒ x = √2
अत: द्विघात समीकरण के मूल -√2 तथा √2 हैं।

प्रश्न 7.
द्विघात समीकरण x2 – 4x + 4 = 0 के मूलों की प्रकृति ज्ञात कीजिए।
हल
द्विघात समीकरण x2 – 4x + 4 = 0 की तुलना द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 1, b = -4, c = 4
विविक्तकर, D = b2 – 4ac
= (-4)2 – 4 × 1 × 4
= 16 – 16
= 0
विविक्तकर, D का मान शून्य है।
अत: द्विघात समीकरण x2 – 4x + 4 = 0 के मूल बराबर हैं।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 8.
जाँच कीजिए कि (x – 2)2 + 1 = 2x + 3 द्विघात समीकरण है या नहीं।
हल
दी हुई समीकरण (x – 2)2 + 1 = 2x + 3
⇒ x2 – 4x + 4 + 1 = 2x + 3
⇒ x2 – 4x – 2x + 5 – 3 = 0
⇒ x2 – 6x + 2 = 0
यह समीकरण x में दो घात है तथा इनके गुणांक वास्तविक हैं।
अत: दी हुई समीकरण द्विघात समीकरण है।

प्रश्न 9.
द्विघात समीकरण 2x2 – 4x + 3 = 0 का विविक्तकर ज्ञात कीजिए और मूलों की प्रकृति बताइए।
हल
दिया गया द्विघात समीकरण है :
2x2 – 4x + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = -4, c = 3
विविक्तकर, D = b2 – 4ac
= (-4)2 – 4(2)(3)
= 16 – 24
= -8 (ऋणात्मक)
विविक्तकर ऋणात्मक है।
समीकरण के मूल अधिकल्पित हैं।

लघु उत्तरीय प्रश्न

प्रश्न 1.
राम की आयु श्याम की आयु के वर्ग की पाँच गुनी है। यदि दोनों की आयु का अन्तर 18 वर्ष हो तो उनकी आयु अलग-अलग ज्ञात कीजिए।
हल
माना श्याम की आयु x वर्ष तथा राम की आयु y वर्ष है।
राम की आयु श्याम की आयु के वर्ग की पाँच गुनी है।
y = 5x2 ……..(1)
दोनों की आयु का अन्तर 18 वर्ष है।
y – x = 18 …….(2)
समीकरण (1) से y का मान समीकरण (2) में रखने पर,
5x2 – x = 18
⇒ 5x2 – x – 18 = 0
⇒ 5x2 – (10 – 9)x – 18 = 0
⇒ 5x2 – 10x + 9x – 18 = 0
⇒ 5x(x – 2) + 9(x – 2) = 0
⇒ (x – 2) (5x + 9) = 0
⇒ (x – 2) (5x + 9) = 0 होगा यदि,
x – 2 = 0 ⇒ x = 2
5x + 9 = 0 ⇒ 5x = -9 ⇒ x = \(\frac{-9}{5}\) असम्भव
x = 2 वर्ष
x = 2 समीकरण (1) में रखने पर,
y = 5(2)2 = 5 × 4 = 20
राम की आयु = 20 वर्ष तथा श्याम की आयु = 2 वर्ष।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 2.
‘a’ का मान ज्ञात कीजिए ताकि द्विघात समीकरण (a – 12)x2 + 2(a – 12)x + 2 = 0 के मूल समान हों।
हल
द्विघात समीकरण Ax2 + Bx + C = 0 के मूल समान हों तो B2 – 4AC = 0
द्विघात समीकरण Ax2 + Bx + C = 0 की तुलना दी हुई द्विघात समीकरण (a – 12)x2 + 2(a – 12)x + 2 = 0 से करने पर,
A = (a – 12), B = 2(a – 12), C = 2
B2 – 4AC = 0 से,
⇒ [2(a – 12)]2 – 4 × (a – 12) × 2 = 0
⇒ 4(a – 12)(a – 12 – 2) = 0
⇒ (a – 12)(a – 14) = 0
⇒ (a – 12)(a – 14) = 0 होने के लिए,
a – 12 = 0 ⇒ a = 12 असम्भव
तथा a – 14 = 0 ⇒ a = 14

प्रश्न 3.
हंसों की एक टोली में से हंसों की कुल संख्या के वर्गमूल के \(\frac{7}{2}\) गुना हंस तालाब के किनारे खेल रहे हैं। यदि शेष 2 हंस तालाब के पानी में स्नान कर रहे हैं तो हंसों की कुल संख्या ज्ञात कीजिए।
हल
माना हंसों की कुल संख्या x है।
तब, तालाब के किनारे खेलने वाले हंसों की संख्या = \(\frac {7}{2}\) × कुल संख्या का वर्गमूल
= \(\frac {1}{2}\) × √x
= \(\frac{7}{2} \sqrt{x}\)
शेष हंस जो पानी में स्नान कर रहे हैं = x – \(\frac{7}{2} \sqrt{x}\)
परन्तु पानी में स्नान करने वाले शेष हंसों की संख्या = 2
2 = x – \(\frac{7}{2} \sqrt{x}\) या \(\frac{7}{2} \sqrt{x}\) = x – 2
दोनों पक्षों का वर्ग करने पर,
\(\frac{49}{4}\) x = (x – 2)2
⇒ 49x = 4(x – 2)2
⇒ 49x = 4(x2 – 4x + 4)
⇒ 49x = 4x2 – 16x + 16
⇒ 4x2 – 65x + 16 = 0
⇒ (4x – 1) (x – 16) = 0
⇒ (4x – 1)(x – 16) = 0 होगा यदि,
x – 16 = 0 ⇒ x = 16
तथा 4x – 1 = 0 ⇒ x = \(\frac{1}{4}\)
परन्तु हंसों की संख्या भिन्नात्मक नहीं हो सकती।
अत: हंसों की कुल संख्या = 16

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 4.
किसी आयताकर मैदान का विकर्ण उसकी छोटी भुजा से 60 मी अधिक लम्बा है। यदि उसकी बड़ी भुजा छोटी भुजा से 30 मी अधिक हो, तो मैदान का परिमाप ज्ञात कीजिए।
हल
माना मैदान की छोटी भुजा = x मी
बड़ी भुजा = (x + 30) मी
तथा विकर्ण = (x + 60) मी
परन्तु (विकर्ण)2 = (बड़ी भुजा)2 + (छोटी भुजा)2
⇒ (x + 60)2 = (x + 30)2 + x2
⇒ x2 + 3600 + 120x = x2 + 900 + 60x + x2
⇒ x2 – 60x – 2700 = 0
⇒ x2 – 90x + 30x – 2700 = 0
⇒ x(x – 90) + 30(x – 90) = 0
⇒ (x – 90) (x + 30) = 0
⇒ x = 90 या -30 (मान्य नहीं)
मैदान की छोटी भुजा = 90 मी
तथा बड़ी भुजा = 90 + 30 = 120 मी
मैदान का परिमाप = 2(बड़ी भुजा + छोटी भुजा)
= 2(120 + 90)
= 420 मी

प्रश्न 5.
दो क्रमागत धन सम संख्याओं के वर्गों का योग 244 है। संख्याएँ ज्ञात कीजिए।
हल
माना दो क्रमागत धन सम संख्याएँ 2x व (2x + 2) हैं।
तब प्रश्नानुसार,
(2x)2 + (2x + 2)2 = 244
⇒ 4x2 + 4x2 + 4 + 8x = 244
⇒ 8x2 + 8x – 240 = 0
⇒ x2 + x – 30 = 0
⇒ x2 + 6x – 5x – 30 = 0
⇒ x(x + 6) – 5(x + 6) = 0
⇒ (x + 6) (x – 5) = 0
यदि x + 6 = 0 तो x = -6 जोकि मान्य नहीं है।
यदि x – 5 = 0 तो x = 5
धन सम संख्याएँ क्रमश:
2 × 5 = 10 व 10 + 2 = 12 हैं।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
पूर्ण वर्ग बनाने की विधि से समीकरण 5x2 – 6x – 2 = 0 के मूल ज्ञात कीजिए।
हल
दिया गया समीकरण है : 5x2 – 6x – 2 = 0
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q1
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q1.1
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q1.2

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 2.
ऊँटों के झुण्ड का एक-चौथाई जंगल में देखा जाता है। झुण्ड के वर्गमूल का दोगुना पहाड़ी पर चला गया और शेष 15 ऊँटों को एक नदी के किनारे देखा जाता है। ऊँटों की कुल संख्या ज्ञात कीजिए।
हल
माना झुण्ड के कुल ऊँटों की संख्या x है।
तब, प्रश्नानुसार जंगल में गए ऊँटों की संख्या = \(\frac{x}{4}\)
तथा पहाड़ी पर गए ऊँटों की संख्या = 2√x
शेष ऊँटों की संख्या = x – \(\frac{x}{4}\) – 2√x = \(\frac{3 x}{4}\) – 2√x
परन्तु प्रश्नानुसार शेष ऊँटों की संख्या 15 है।
\(\frac{3 x}{4}\) – 2√x = 15
⇒ \(\frac{3 x}{4}\) – 15 = 2√x
⇒ \(\frac{3 x-60}{4}\) = 2√x
⇒ 3x – 60 = 8√x
⇒ (3x – 60)2 = (8√x)2 |दोनों पक्षों का वर्ग करने पर]
⇒ 9x2 – 360x + 3600 = 64x
⇒ 9x2 – 360x + 3600 – 64x = 0
⇒ 9x2 – 424x + 3600 = 0
⇒ 9x2 – (324 + 100)x + 3600 = 0
⇒ 9x2 – 324x – 100x + 3600 = 0
⇒ 9x(x – 36) – 100(x – 36) = 0
⇒ (9x – 100)(x – 36) = 0
तब, (9x – 100) अथवा (x – 36) में से एक शून्य अवश्य होगा।
अब यदि 9x – 100 = 0 हो, तो x = \(\frac{100}{9}\) (एक भिन्नात्मक संख्या)
ऊँटों की संख्या पूर्ण ही हो सकती है, भिन्नात्मक नहीं; अत: x का मान \(\frac{100}{9}\) स्वीकार्य नहीं है।
तब, x – 36 का मान शून्य अवश्य होगा, अर्थात्
x – 36 = 0 ⇒ x = 36
अतः झुण्ड में ऊँटों की संख्या = 36

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 3.
निम्नलिखित समीकरण को द्विघात समीकरण में समानीत करके हल कीजिए
\(8\left(x^{2}+\frac{1}{x^{2}}\right)-42\left(x-\frac{1}{x}\right)+29=0\)
हल
दिया गया समीकरण
\(8\left(x^{2}+\frac{1}{x^{2}}\right)-42\left(x-\frac{1}{x}\right)+29=0\)
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q3
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q3.1

प्रश्न 4.
मुम्बई से पूना तक की 192 किमी की दूरी तय करने में एक तेज चलने वाली गाड़ी, धीरे चलने वाली गाड़ी से 2 घण्टा कम समय लेती है। यदि धीरे चलने वाली गाड़ी की औसत चाल तेज चलने वाली गाड़ी की औसत चाल से 16 किमी/घण्टा कम हो, तो प्रत्येक गाड़ी की औसत चाल ज्ञात कीजिए।
हल
माना तेज चलने वाली गाड़ी की औसत चाल = x किमी/घण्टा
धीरे चलने वाली गाड़ी की औसत चाल = (x – 16) किमी/घण्टा
तेज चलने वाली गाड़ी द्वारा 192 किमी दूरी तय करने में लगा समय = \(\frac{192}{x}\) घण्टा
धीरे चलने वाली गाड़ी द्वारा 192 किमी दूरी तय करने में लगा समय = \(\frac{192}{x-16}\) घण्टा
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q4
⇒ x2 – 16x = 96 × 16
⇒ x2 – 16x – 1536 = 0
⇒ x2 – 48x + 32x – 1536 = 0
⇒ x(x – 48) + 32(x – 48) = 0
⇒ (x – 48)(x + 32) = 0
यदि x – 48 = 0, तो x = 48
और यदि x + 32 = 0, तो x = -32 जो अग्राह्य है।
अत: x = 48 किमी/घण्टा
अत: तेज चलने वाली गाड़ी की औसत चाल = 48 किमी/घण्टा
तथा धीरे चलने वाली गाड़ी की औसत चाल = 48 – 16 = 32 किमी/घण्टा

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions

प्रश्न 5.
एक नाव को जिसकी शान्त जल में चाल 15 किमी/घण्टा है, धारा की दिशा में 30 किमी जाने और फिर धारा के विपरीत दिशा में लौटने में कुल 4 घण्टा 30 मिनट लगता है। धारा की चाल ज्ञात कीजिए।
हल
शान्त जल में नाव की चाल = 15 किमी/घण्टा
माना, नदी की चाल = x किमी/घण्टा
धारा के अनुकूल नाव की चाल = (15 + x) किमी/घण्टा
धारा के विपरीत नाव की चाल = (15 – x) किमी/घण्टा
धारा के अनुकूल 30 किमी जाने में लगा समय = \(\left(\frac{30}{15+x}\right)\) घंटा
धारा के विपरीत 30 किमी जाने में लगा समय = \(\left(\frac{30}{15-x}\right)\) घंटा
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Additional Questions Q5
⇒ 225 – x2 = 200
⇒ x2 = 225 – 200
⇒ x2 = 25
⇒ x = ±5
परन्तु x ≠ -5, चूँकि चाल ऋणात्मक नहीं हो सकती।
अत: x = 5
अतः धारा की चाल 5 किमी/घण्टा है।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4

Bihar Board Class 10 Maths द्विघात समीकरण Ex 4.4

प्रश्न 1.
निम्न द्विघात समीकरणों के मूलों की प्रकृति ज्ञात कीजिए। यदि मूलों का अस्तित्व हो, तो उन्हें ज्ञात कीजिए :
(i) 2x2 – 3x + 5 = 0
(ii) 3x2 – 4√3x + 4 = 0
(iii) 2x2 – 6x + 3 = 0
हल
(i) दिया गया समीकरण :
2x2 – 3x + 5 = 0
उपर्युक्त समीकरण, की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = -3 तथा c = 5
विविक्तकर, D = b2 – 4ac
=(-3)2 – 4 × 2 × 5
= 9 – 40
= -31 (ऋणात्मक)
∵ विविक्तकर D ऋणात्मक है।
∵ समीकरण के मूल काल्पनिक हैं।
अतः समीकरण के मूल अधिकल्पित हैं या मूलों का अस्तित्व नहीं है।

(ii) दिया गया समीकरण :
3x2 – 4√3x + 4 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 3, b = -4√3 तथा c = 4
विविक्तकर, D = b2 – 4ac
=(-4√3)2 – 4 × 3 × 4
= 48 – 48
= शून्य
विविक्तकर D = 0; अत: समीकरण के मूल वास्तविक और समान हैं।
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4 Q1
मूल दो हैं जो परस्पर समान हैं;
अत: समीकरण के मूल = \(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\)

(iii) दिया गया समीकरण :
2x2 – 6x + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = -6 तथा c = 3
विविक्तकर, D = b2 – 4ac
= (-6)2 – 4 × 2 × 3
= 36 – 24
= 12
विविक्तकर, D > 0; अत: समीकरण के मूल वास्तविक और असमान हैं।
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4 Q1.1

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4

प्रश्न 2.
निम्न प्रत्येक द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
(i) 2x2 + kx + 3 = 0
(ii) kx(x – 2) + 6 = 0
हल
(i) दिया गया समीकरण : 2x2 + kx + 3 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 2, b = k तथा c = 3
विविक्तकर, D = b2 – 4ac
= k2 – 4 × 2 × 3
= k2 – 24
समीकरण के मूल समान हैं। तब, विविक्तकर, D = 0
k2 – 24 = 0
⇒ k2 = 24
⇒ k = ±√24 = ±2√6
अत: मूल बराबर होने के लिए k = ±2√6 होना चाहिए।

(ii) दिया गया समीकरण :
kx(x – 2) + 6 = 0
⇒ kx2 – 2kx + 6 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = k, b = -2k तथा c = 6
विविक्तकर, D = b2 – 4ac
= (-2k)2 – 4 × k × 6
= 4k2 – 24k
= 4k(k – 6)
समीकरण के मूल बराबर हैं, तब विविक्तकर, D = 0
4k(k – 6) = 0
यदि 4k = 0 तो k = 0
और यदि (k – 6) = 0 तो k = 6
अत: समीकरण के मूल बराबर होने के लिए k = 6 होना चाहिए क्योंकि k = 0 प्रतिबन्धित होता है।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4

प्रश्न 3.
क्या एक ऐसी आम की बगिया बनाना सम्भव है जिसकी लम्बाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लम्बाई और चौड़ाई ज्ञात कीजिए।
हल
माना आम की बगिया की चौड़ाई x m है।
लम्बाई, चौड़ाई की दुगुनी है।
लम्बाई = 2x m
बगिया का क्षेत्रफल = लम्बाई × चौड़ाई = 2x × x = 2x2 m2
परन्तु, दिया है कि बगिया का क्षेत्रफल = 800 m2
2x2 = 800
⇒ x2 = 400
⇒ x = ±√400 = ± 20 m
तब, बगिया की चौड़ाई = 20 m (∵ चौड़ाई ऋणात्मक नहीं हो सकती)
बगिया की लम्बाई = 2x = 2 × 20 = 40 m
अत: आम की बगिया सम्भव है और उसकी लम्बाई 40 m व चौड़ाई 20 m होगी।

प्रश्न 4.
क्या निम्न स्थिति सम्भव है? यदि है, तो उनकी वर्तमान आयु ज्ञात कीजिए :
दो मित्रों की आयु का योग 20 वर्ष है। चार वर्ष पूर्व उनकी आयु (वर्षों में) का गुणनफल 48 था।
हल
माना एक मित्र की आयु x वर्ष है।
दोनों का आयु का योग 20 वर्ष है।
दूसरे मित्र की आयु = (20 – x) वर्ष
4 वर्ष पूर्व पहले मित्र की आयु = (x – 4) वर्ष
तथा 4 वर्ष पूर्व दूसरे मित्र की आयु = (20 – x – 4) = (16 – x) वर्ष
तब, 4 वर्ष पूर्व दोनों की आयु का गुणनफल = (x – 4) (16 – x)
= 16x – x2 – 64 + 4x
= -x2 + 20x – 64
दिया है, गुणनफल = 48
48 = -x2 + 20x – 64
⇒ x2 – 20x + 64 + 48 = 0
⇒ x2 – 20x + 112 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 1, b = -20 तथा c = 112
तब, विविक्तकर, D = b2 – 4ac
= (-20)2 – 4 × 1 × 112
= 400 – 448
= -48
विविक्तकर D ऋणात्मक है।
समीकरण के मूल अधिकल्पित हैं।
अत: ऐसी स्थिति सम्भव नहीं है।

Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4

प्रश्न 5.
क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना सम्भव है? यदि है, तो उसकी लम्बाई और चौड़ाई ज्ञात कीजिए।
हल
माना पार्क की लम्बाई x m है।
दिया है, पार्क का परिमाप = 80 m
⇒ 2 (लम्बाई + चौड़ाई) = 80 m
⇒ 2(x + चौड़ाई) = 80
⇒ x + चौड़ाई = 40
⇒ चौड़ाई = (40 – x) m
तब, पार्क का क्षेत्रफल = लम्बाई × चौड़ाई
= x(40 – x)
= (40x – x2) m2
परन्तु प्रश्नानुसार पार्क का क्षेत्रफल 400 m2 है।
400 = 40x – x2
⇒ x2 – 40x + 400 = 0
उपर्युक्त समीकरण की तुलना व्यापक द्विघात समीकरण ax2 + bx + c = 0 से करने पर,
a = 1, b = -40 तथा c = 400
विविक्तकर, D = b2 – 4ac
= (-40)2 – 4 × 1 × 400
= 1600 – 1600
= 0
विविक्तकर, D = 0;
अत: समीकरण के मूल समान हैं।
Bihar Board Class 10 Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.4 Q5
प्रत्येक मूल 20 है।
अत: ऐसा पार्क सम्भव है और उसकी लम्बाई व चौड़ाई में से प्रत्येक 20 m होगी।