Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

Bihar Board Class 10 Maths वृत्त Ex 10.2

प्रश्न सं० 1, 2, 3 में सही विकल्प चुनिए एवं उचित कारण दीजिए।

प्रश्न 1.
एक बिन्दु से एक वृत्त पर स्पर्श रेखा की लम्बाई 24 cm तथा Q की केन्द्र से दूरी 25 cm है। वृत्त की त्रिज्या है :
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q1
माना वृत्त की त्रिज्या R cm है।
दिया है, स्पर्श रेखा की लम्बाई (PQ) = 24 cm
और बिन्दु Q से वृत्त के केन्द्र की दूरी (OP) = 25 cm
समकोण ΔOPQ में, पाइथागोरस प्रमेय से,
OQ2 = OP2 + PQ2
⇒ OP2 = OQ2 – PQ2
⇒ R2 = (25)2 – (24)2
⇒ R2 = 625 – 576
⇒ R2 = 49
⇒ R = 7
अत: विकल्प (A) सही है।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 2.
आकृति में, यदि TP, TQ केन्द्र O वाले किसी वृत्त पर दो स्पर्श रेखाएँ इस प्रकार हैं कि ∠POQ = 110°, तो ∠PTQ बराबर है-
(A) 60°
(B) 70°
(C) 80°
(D) 90°
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q2
हल
दिया है, दिए हुए वृत्त में OP तथा OQ त्रिज्याएँ हैं और TP तथा TQ स्पर्श रेखाएँ हैं।
तथा ∠POQ = 110°
∵ OP ⊥ PT तथा OQ ⊥ QT
∴ ∠P = 90° तथा ∠Q = 90°
चतुर्भुज OPTQ में,
∠POQ + ∠PTQ = 180°
या 110° + ∠PTQ = 180°
या ∠PTQ = 180° – 110° = 70°
अत: विकल्प (B) सही है।

प्रश्न 3.
यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 80° के कोण पर झुकी हों तो ∠POA बराबर है-
(A) 50°
(B) 60°
(C) 70°
(D) 80°
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q3
वृत्त का केन्द्र O है और बिन्दु P से PA व PB वृत्त पर स्पर्श रेखाएँ हैं जिनके बीच का कोण ∠APB = 80°
∵ ∠A = 90° व ∠B = 90°
⇒ ∠AOB व ∠APB सम्पूरक हैं।
∴ ∠AOB + ∠APB = 180° ……(1)
समीकरण (1) में ∠APB = 80° रखने पर,
∠AOB + 80° = 180°
⇒ ∠AOB = 100°
रेखा OP, ∠AOB को समद्धिभाजित करती है,
∠POB = \(\frac {1}{2}\) ∠AOB = \(\frac {1}{2}\) × 100° = 50°
अत: विकल्प (A) सही है।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 4.
सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समान्तर होती हैं।
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q4
दिया है : एक वृत्त का केन्द्र O तथा व्यास AB है। व्यास के सिरों A तथा B से वृत्त पर स्पर्श रेखाएँ PAQ तथा RBS खींची गई हैं।
सिद्ध करना है : PQ || RS
उपपत्ति : दिया है, AB वृत्त का व्यास है और PAQ तथा RBS बिन्दुओं A तथा B पर वृत्त की स्पर्श रेखाएँ हैं।
∴ ∠PAB = 90° तथा ∠ABS = 90°
परन्तु ∠PAB तथा ∠ABS ऋजु रेखाओं PQ तथा RS को तिर्यक रेखा AB के द्वारा काटने से बने समान एकान्तर कोण हैं।
PQ || RS
इति सिद्धम्

प्रश्न 5.
सिद्ध कीजिए कि स्पर्श बिन्दु से स्पर्श रेखा पर खींचा गया लम्ब वृत्त के केन्द्र से होकर जाता है।
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q5
दिया है : एक वृत्त का केन्द्र O है और AB वृत्त की स्पर्श रेखा है जो वृत्त को बिन्दु P पर स्पर्श करती है।
P से वृत्त की स्पर्श रेखा AB पर PQ लम्ब खींचा गया है।
सिद्ध करना है : लम्ब PQ वृत्त के केन्द्र O से जाता है।
उपपत्ति: ∵ AP,वृत्त के स्पर्श बिन्दु P पर स्पर्श-रेखा है।
∴ AP, वृत्त की त्रिज्या पर लम्ब होगी।
∵ PQ ⊥ AP
∴ PQ रेखा में वृत्त की त्रिज्या समाहित होगी।
∵ त्रिज्या का एक सिरा P है, तब दूसरा सिरा केन्द्र O होगा।
∴ रेखा PQ में केन्द्र O भी समाहित है।
अतः लम्ब PQ वृत्त के केन्द्र O से होकर जाता है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 6.
एक बिन्दु A से, जो एक वृत्त के केन्द्र से 5 cm दूरी पर है, वृत्त पर स्पर्श रेखा की लम्बाई 4 cm है। वृत्त की त्रिज्या ज्ञात कीजिए।
हल
बिन्दु A से वृत्त के केन्द्र की दूरी (D) = 5 cm
और वृत्त की स्पर्श रेखा की लम्बाई (T) = 4 cm
माना वृत्त की त्रिज्या R cm है।
∵ बिन्दु A से,
(वृत्त की स्पर्श रेखा की लम्बाई)2 = (वृत्त के केन्द्र से दूरी)2 – (त्रिज्या)2
⇒ T2 = D2 – R2
⇒ (4)2 = (5)2 – R2
⇒ R2 = 52 – 42 = 25 – 16 = 9
⇒ R = 3 cm
अत: वृत्त की त्रिज्या (R) = 3 cm

प्रश्न 7.
दो संकेन्द्रीय वृत्तों की त्रिज्याएँ 5 cm तथा 3 cm हैं। बड़े वृत्त की उस जीवा की लम्बाई ज्ञात कीजिए जो छोटे वृत्त को स्पर्श करती हो।
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q7
माना O केन्द्र वाले दो संकेन्द्रीय वृत्त हैं जिनकी त्रिज्याएँ OA तथा OP क्रमश: 5 cm व 3 cm हैं।
बड़े वृत्त की एक जीवा AB है जो छोटे वृत्त को बिन्दु P पर स्पर्श करती है।
∴ OP ⊥ AB (OP वृत्त की त्रिज्या है)
∴ ∆OAP समकोणीय त्रिभुज है।
तब, पाइथागोरस प्रमेय से,
AP2 + OP2 = OA2
⇒ AP2 + (3)2 = (5)2
⇒ AP2 = (5)2 – (3)2 = 25 – 9 = 16
⇒ AP = 4 cm
परन्तु बड़े वृत्त में, जीवा AB पर केन्द्र O से OP लम्ब है।
∴ P, AB को अर्धित करता है
∴ AP = BP
⇒ BP = 4 cm
तब, जीवा AB की लम्बाई = AP + BP = 4 + 4 = 8 cm

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 8.
एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है। सिद्ध कीजिए-
AB + CD = AD + BC
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q8
हल
दिया है : O केन्द्र वाले वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है जिसकी भुजाएँ AB, BC, CD तथा DA वृत्त को क्रमशः बिन्दुओं P, Q, R और S पर स्पर्श करती हैं।
सिद्ध करना है : AB + CD = AD + BC
उपपत्ति: ∴ AB तथा AD वृत्त को P तथा S पर स्पर्श करती हैं।
AP= AS
पुन: AB तथा BC वृत्त को P तथा Q पर स्पर्श करती हैं।
∴ PB = BQ
∵ BC तथा CD वृत्त को Q तथा R पर स्पर्श करती हैं।
∴ QC = CR
और CD तथा DA वृत्त को R तथा S पर स्पर्श करती हैं।
∴ DR = SD
AB + CD = AP + PB + DR + CR (आकृति देखिए)
= AS + BQ + SD + QC
= (AS + SD) + (BQ + QC)
= AD + BC
अत: AB + CD = AD + BC
इति सिद्धम्

प्रश्न 9.
संलग्न आकृति में, XY और X’Y’, O केन्द्र के वाले एक वृत्त की दो समान्तर स्पर्श रेखाएँ हैं और स्पर्श बिन्दु C पर स्पर्श रेखा AB, XY को A पर तथा X’Y’ को B पर प्रतिच्छेद करती है। सिद्ध कीजिए कि ∠AOB = 90° है।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q9
हल
दिया है : O केन्द्र वाले वृत्त की XY तथा X’Y’ दो समान्तर स्पर्श रेखाएँ हैं। वृत्त पर एक बिन्दु C से स्पर्श रेखा AB खींची गई है जो XY को A पर तथा X’Y’ को B पर काटती है। OA तथा OB को मिलाया गया है।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q9.1
सिद्ध करना है : ∠AOB = 90°
रचना : रेखाखण्ड OC खींचा।
उपपत्ति : ∵ XY और X’Y’ वृत्त की दो समान्तर स्पर्श रेखाएँ हैं जो वृत्त को (माना) P तथा Q पर स्पर्श करती हैं। C से वृत्त की एक स्पर्श रेखा AB, XY को A पर तथा X’Y’ को B पर काटती है।
∴ बिन्दु A से वृत्त पर AP व AC स्पर्श रेखाएँ हैं।
तब, ∆OPA व ∆OCA में,
OP = OC (वृत्त की त्रिज्याएँ हैं)
AP = AC (बाह्य बिन्दु से वृत्त की स्पर्श रेखाएँ हैं)
OA = OA (उभयनिष्ठ भुजा है)
∆OPA ≅ ∆OCA
∠POA = ∠AOC …….(1)
इसी प्रकार, बिन्दु B से वृत्त पर BQ और BC स्पर्श रेखाएँ हैं।
तब, ∆OQB तथा ∆OBC में,
OQ = OC (वृत्त की त्रिज्याएँ हैं)
BQ = BC (बिन्दु B से वृत्त की स्पर्श रेखाएँ हैं)
OB = OB (उभयनिष्ठ भुजा है)
∆OQB ≅ ∆OBC
∠BOQ = ∠COB …….(2)
∵ ∠POA + ∠AOC + ∠COB + ∠BOQ = 180°
⇒ ∠AOC + ∠AOC + ∠COB + ∠COB = 180° [समीकरण (1) व समीकरण (2) से]
⇒ 2(∠AOC + ∠COB) = 180°
⇒ ∠AOC + ∠COB = 90°
अतः ∠AOB = 90°
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 10.
सिद्ध कीजिए कि किसी बाह्य बिन्दु से किसी वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण स्पर्श बिन्दुओं को मिलाने वाले रेखाखण्ड द्वारा केन्द्र पर अन्तरित कोण का सम्पूरक होता है।
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q10
दिया है : O केन्द्र वाले वृत्त के बाहर एक बिन्दु P है। Pसे वृत्त पर PA तथा PB दो स्पर्श रेखाएँ खींची गई हैं। स्पर्श रेखाओं के बीच का ∠APB है। स्पर्श बिन्दुओं को रेखा AB मिलाती है जो वृत्त के केन्द्र पर ∠AOB बनाती है।
सिद्ध करना है : ∠APB, ∠AOB का सम्पूरक है।
उपपत्ति: ∵ OA वृत्त की त्रिज्या है और बाह्य बिन्दु P से PA स्पर्श रेखा है जो वृत्त को बिन्दु A पर स्पर्श करती है।
∴ ∠OAP = 90° …….(1)
इसी प्रकार, OB वृत्त की त्रिज्या है और बाह्य बिन्दु P से PB वृत्त की स्पर्श रेखा है जो वृत्त को बिन्दु B पर स्पर्श करती है।
∴ ∠OBP = 90° …….(2)
समीकरण (1) व (2) को जोड़ने पर,
∠OAP + ∠OBP = 180°
तब, चतुर्भुज OAPB में,
∠AOB + ∠OAP + ∠OBP + ∠APB = 360°
⇒ ∠AOB + 180° + ∠APB = 360°
⇒ ∠AOB + ∠APB = 360° – 180° = 180°
⇒ ∠AOB + ∠APB = 180°
अत: ∠APB, ∠AOB का सम्पूरक है।
इति सिद्धम्

प्रश्न 11.
सिद्ध कीजिए कि किसी वृत्त के परिगत समान्तर चतुर्भुज, समचतुर्भुज होता है।
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q11
दिया है : केन्द्र O वाले वृत्त के परिगत खींचा गया समान्तर चतुर्भुज ABCD जिसकी भुजाएँ वृत्त को क्रमशः P, Q, R और S बिन्दुओं पर स्पर्श करती हैं।
सिद्ध करना है : ABCD एक समचतुर्भुज है।
रचना : AC, OP और OQ को मिलाया।
उपपत्ति : चूँकि बाह्य बिन्दु से वृत्त पर खींची गई दोनों स्पर्श रेखाएँ लम्बाई में बराबर होती हैं,
∴ AP = AS, BP = BQ, CQ = CR तथा DR = DS
अब, ∆OAP और ∆OCQ में,
OP = OQ (एक ही वृत्त की त्रिज्याएँ हैं)
∠OAP = ∠OCQ (समान्तर चतुर्भुज के सम्मुख कोणों के अर्द्धक हैं)
∠OPA = ∠OQC (प्रत्येक समकोण है)
दोनों त्रिभुज सर्वांगसम हैं अर्थात् ∆OAP ≅ ∆OCQ
⇒ AP = CQ
⇒ AP + BP = CQ + BQ (∵ BP = BQ)
⇒ AB = BC
इसी प्रकार सिद्ध कर सकते हैं कि AD = AB तथा BC = CD
∴ समान्तर चतुर्भुज ABCD में,
AB = CD = BC = AD
अत: ABCD एक समचतुर्भुज है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 12.
4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखण्ड BD और DC (जिनमें स्पर्श बिन्दु Dद्वारा BC विभाजित है) की लम्बाइयाँ क्रमशः 8 cm और 6 cm हैं। भुजाएँ AB और AC ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q12
हल
चित्र में, ABC एक त्रिभुज है जिसके अन्तर्वृत्त का केन्द्र O है तथा अन्तर्वृत्त की त्रिज्याएँ OD = OE = OF = 4 cm हैं।
स्पर्श बिन्दु D से BC के खण्ड BD = 6 cm तथा DC = 8 cm हैं।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q12.1
तब, BF = 6 cm तथा CE = 8 cm
माना AF = AE = x cm
तब, AB = AF + BF = (x + 6) cm
⇒ c = (x + 6) cm [∵ ∆ABC से BC = a, AB = c, CA = b]
BC = 8 + 6 = 14 cm
⇒ a = 14 cm
तथा CA = AE + CE = (x + 8) cm
⇒ b = (x + 8) cm
∵ s = \(\frac{a+b+c}{2}\)
s = \(\frac{14+(x+8)+(x+6)}{2}=\frac{2 x+28}{2}\) = (x + 14)
(s – a) = (x + 14) – 14 = x
(s – b) = (x + 14) – (x + 8) = 6
(s – c) = (x + 14) – (x + 6) = 8
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q12.2 (1)
दोनों पक्षों का वर्ग करने पर,
3x2 + 42x = (x + 14)2
⇒ 3x2 + 42x = x2 + 28x + 196
⇒ 3x2 + 42x – x2 – 28x – 196 = 0
⇒ 2x2 + 14x – 196 = 0
⇒ x2 + 7x – 98 = 0
⇒ x2 + (14 – 7)x – 98 = 0
⇒ x2 + 14x – 7x – 98 = 0
⇒ (x2 + 14x) – (7x + 98) = 0
⇒ x(x + 14) – 7(x + 14) = 0
⇒ (x + 14) (x – 7) = 0
यदि x + 14 = 0, तो x = -14
और यदि x – 7 = 0, तो x = 7
x का मान -14 ऋणात्मक है जो लम्बाई नहीं हो सकता। अत: यह स्वीकार्य नहीं है।
तब, x = 7
∴ भुजा AB = x + 6 = 7 + 6 = 13 cm
तथा भुजा CA = x + 8 = 7 + 8 = 15 cm
अत: त्रिभुज की अन्य दो भुजाएँ AB व CA क्रमश: 13 cm व 15 cm हैं।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2

प्रश्न 13.
सिद्धं कीजिए कि वृत्त के परिगत बने चतुर्भुज की आमने-सामने की भुजाएँ केन्द्र पर सम्पूरक कोण अन्तरित करती हैं।
हल
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.2 Q13
दिया है : केन्द्र O वाले वृत्त के परिगत चतुर्भुज ABCD खींचा गया है जिसकी भुजाएँ AB, BC, CD व DA वृत्त को क्रमशः बिन्दुओं M, P, Q व N पर स्पर्श करती हैं।
सिद्ध करना है : ∠AOB + ∠COD = 180°
रचना : स्पर्श बिन्दु M और N को केन्द्र O से मिलाया।
उपपत्ति : माना ∠A = 2α, ∠B = 2β, ∠C = 2γ, ∠D = 2δ
∆OAM और ∆OAN में,
∠OMA = ∠ONA (प्रत्येक समकोण है)
OM = ON (एक ही वृत्त की त्रिज्या है)
OA = OA
∴ दोनों त्रिभुज सर्वांगसम हैं अर्थात् ∆OAM ≅ ∆OAN
⇒ ∠OAM = ∠OAN = \(\frac{1}{2}\) (∠A) = \(\frac{1}{2}\) (2α) = α
⇒ ∠OAB = ∠OAD = α
इसी प्रकार, ∠OBA = ∠OBC = β
∠OCB = ∠OCD = γ
तथा ∠ODA = ∠ODC = δ
अब, ∆AOB में,
∠AOB = 180° – ∠OAB – ∠OBA = 180° – α – β = 180° – (α + β)
तथा ∠COD = 180° – ∠OCD – ∠ODC = 180° – γ – δ = 180° – (γ + δ)
समीकरण (1) व (2) को जोड़ने पर,
∠AOB + ∠COD = {180° – (α + β)} + {180° – (γ + δ)}
⇒ ∠AOB + ∠COD = 360° – (α + β + γ + δ)
परन्तु ∠A + ∠B + ∠C + ∠D = 360°
⇒ 2α + 2β + 2γ + 2δ = 360°
⇒ α + β + γ + δ = 180°
अत: समीकरण (3) से,
∠AOB + ∠COD = 360° – 180° = 180°
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1

Bihar Board Class 10 Maths वृत्त Ex 10.1

प्रश्न 1.
एक वृत्त की कितनी स्पर्श रेखाएँ हो सकती हैं?
हल
किसी वृत्त की परिधि पर स्थित प्रत्येक बिन्दु से एक स्पर्श रेखा खींची जा सकती है। चूंकि वृत्त की परिधि पर बिन्दुओं की संख्या असंख्य है; अत: एक वृत्त की असंख्य स्पर्श रेखाएँ सम्भव हैं।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1

प्रश्न 2.
रिक्त स्थानों की पूर्ति कीजिए

  1. किसी वृत्त की स्पर्श रेखा उसे ___________ बिन्दुओं पर प्रतिच्छेद करती है।
  2. वृत्त को दो बिन्दुओं पर प्रतिच्छेद करने वाली रेखा को ____________ कहते हैं।
  3. एक वृत्त की ____________ समान्तर स्पर्श रेखाएँ हो सकती हैं।
  4. वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिन्दु को _____________ कहते हैं।

हल

  1. किसी वृत्त की स्पर्श रेखा उसे एक बिन्दु पर प्रतिच्छेद करती है।
  2. वृत्त को दो बिन्दुओं पर प्रतिच्छेद करने वाली रेखा को छेदक रेखा कहते हैं।
  3. एक वृत्त की दो समान्तर स्पर्श रेखाएँ हो सकती हैं।
  4. वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिन्दु को स्पर्श बिन्दु कहते हैं।

प्रश्न 3.
5 सेमी त्रिज्या वाले एक वृत्त के बिन्दु P पर स्पर्श रेखा PR केन्द्र O से जाने वाली एक रेखा से बिन्दु Q पर इस प्रकार मिलती है कि OQ = 12 सेमी PQ की लम्बाई है-
(A) 12 सेमी
(B) 13 सेमी
(C) 8.5 सेमी
(D) √119 सेमी
हल
दिया है, त्रिज्या OP = 5 सेमी है तथा OQ = 12 सेमी
हम जानते हैं कि वृत्त के किसी बिन्दु पर स्पर्श रेखा स्पर्श बिन्दु से जाने वाली त्रिज्या पर लम्ब होती है।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1 Q3
∴ OP ⊥ PQ
समकोण ∆OPQ में, पाइथागोरस प्रमेय से,
OP2 + PQ2 = OQ2
⇒ (5)2 + PQ2 = (12)2
⇒ PQ2 = 122 – 52 = 144 – 25 = 119
⇒ PQ = √119 सेमी
अत: विकल्प (D) सही है।

Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1

प्रश्न 4.
एक वृत्त खींचिए और एक दी गई रेखा के समान्तर दो ऐसी रेखाएँ खींचिए कि उनमें से एक स्पर्श रेखा हो तथा दूसरी छेदक रेखा हो।
हल
एक वृत्त बनाया जिसका केन्द्र O है और माना AB एक दी गई रेखा है।
हमें AB के समान्तर दो रेखाएँ (माना PQ व RS) खींचनी हैं जिनमें PQ स्पर्श रेखा और RS छेदक रेखा हो।
रचना विधि :
(i) रेखा AB पर केन्द्र-बिन्दु से लम्ब ON खींचा जो वृत्त को बिन्दु P पर काटता है।
(ii) त्रिज्या OP के बिन्दु P पर लम्ब PQ खींचिए। PQ स्पर्श रेखा है।
(iii) OP पर एक बिन्दु M लेकर M से OP पर लम्ब RS खींचा। RS छेदक रेखा है।
Bihar Board Class 10 Maths Solutions Chapter 10 वृत्त Ex 10.1 Q4

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

Bihar Board Class 10 Maths त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 1.
सर्कस का एक कलाकार एक 20 m लम्बी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खम्भे के शिखर से बँधी हुई है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण 30° का हो, तो खम्भे की ऊँचाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q1 (1)
माना AB एक खम्भा है जिसका सिरा B भूमि पर गड़ा है।
खम्भे के शिखर A से एक तनी हुई डोरी AC भूमि पर एक स्थान (बिन्दु) C से बँधी है। डोरी AC की लम्बाई 20 m है।
डोरी भूमि स्तर BC के साथ बिन्दु C पर ∠ACB = 30° बनाती है।
माना AB = h m
दिया है, AC = 20 m
समकोण ΔABC में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q1.1
अत: खम्भे की ऊँचाई 10 m है।

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 2.
आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है कि पेड़ का शिखर जमीन को छूने लगता है और इसके साथ 30° का कोण बनाता है। पेड़ के पाद-बिन्दु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है, 8 m है। पेड़ की ऊँचाई ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q2
माना PQ एक पेड़ है जो बिन्दु R से टूटकर भूमि पर गिर गया है।
पेड़ के ऊपरी भाग RP का ऊपरी सिरा P भूमि पर बिन्दु S को छू रहा है।
बिन्दु S की पेड़ से दूरी SQ = 8 m है।
पेड़ का टूटा हुआ भाग PR, भूमि पर बिन्दु S से ∠QSR = 30° बनाता है।
तब, समकोण ΔQSR में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q2.1
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q2.2

प्रश्न 3.
एक ठेकेदार बच्चों को खेलने के लिए एक पार्क में दो फिसलनपट्टी लगाना चाहती है। 5 वर्ष से कम उम्र के बच्चों के लिए वह एक ऐसी फिसलनपट्टी लगाना चाहती है जिसका शिखर 1.5 m की ऊँचाई पर हो और भूमि के साथ 30° के कोण पर झुका हुआ हो, जबकि इससे अधिक उम्र के बच्चों के लिए वह 3 m की ऊँचाई पर एक अधिक ढाल की फिसलनपट्टी लगाना चाहती है, जो भूमि के साथ 60° का कोण बनाती हो। प्रत्येक स्थिति में फिसलनपट्टी की लम्बाई क्या होनी चाहिए?
हल
जब ठेकेदार 5 वर्ष से कम उम्र के बच्चों के लिए फिसलनपट्टी लगाता है तो उसकी ऊँचाई AB = 1.5 m तथा फिसलनपट्टी का भूमि के साथ कोण ∠ACB = 30° है।
माना इस स्थिति में फिसलनपट्टी की लम्बाई AC m है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q3
तब, समकोण ΔABC में,
sin 30° = \(\frac{A B}{A C}\)
⇒ sin 30° = \(\frac{1.5}{A C}\)
⇒ \(\frac{1}{2}=\frac{1.5}{A C}\)
⇒ AC = 2 × 1.5 = 3 m
⇒ AC = 3 m
जब ठेकेदार 5 वर्ष से अधिक उम्र के बच्चों के लिए फिसलनपट्टी लगाता है, तो उसकी ऊँचाई A’B’ = 3 m होती है और फिसलनपट्टी भूमि के साथ कोण ∠A’C’B’ = 60° बनाती है।
माना इस स्थिति में फिसलनपट्टी की लम्बाई A’C’ m है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q3.1 (1)
तब समकोण ΔA’B’C’ में,
sin 60° = \(\frac{A^{\prime} B^{\prime}}{A^{\prime} C^{\prime}}\)
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q3.2
अत: 5 वर्ष से कम उम्र के बच्चों के लिए फिसलनपट्टी की लम्बाई = 3 m तथा इससे अधिक उम्र के बच्चों के लिए फिसलनपट्टी की लम्बाई = 2√3 m

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 4.
भूमि के एक बिन्दु से जो मीनार के पाद-बिन्दु से 30 m की दूरी पर है, मीनार के शिखर का उन्नयन कोण 30° है। मीनार की ऊँचाई ज्ञात कीजिए। (√3 = 1.73)
हल
मान लिया, भूमि तल पर एक मीनार AB है जिसकी चोटी (शिखर) A तथा आधार (नीव) B है। मीनार के आधार Bसे 30 m दूर भूमि पर स्थित कोई बिन्दु C है। बिन्दु C से मीनार के शिखर A का उन्नयन कोण ∠ACB = 30° है।
माना मीनार AB की ऊँचाई h m है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q4
तब, समकोण ΔABC में, tan C = \(\frac{A B}{B C}\)
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q4.1
अत: मीनार AB की ऊँचाई = 10√3 m = 10 × 1.73 = 17.3 m

प्रश्न 5.
भूमि से 60 m की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिन्दु से बाँध दिया गया और भूमि के साथ डोरी का झकाव 60° है। यह मानकर कि डोरी में कोई ढील नहीं है, डोरी की लम्बाई ज्ञात कीजिए।
हल
माना AX एक क्षैतिज रेखा है जिस पर स्थित एक बिन्दु C से BC = 60 m की ऊँचाई पर एक पतंग B उड़ रही है।
यह पतंग B, क्षैतिज भूमि पर स्थित एक बिन्दु A से तनी हुई डोरी AB द्वारा संयोजित है।
डोरी AB का भूमि के साथ कोण (झुकाव) 60° है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q5
अत: डोरी की लम्बाई 40√3 या 69.2 m है। (उन्नयन कोण)

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 6.
1.5 m लम्बा एक लड़का 30 m ऊँचे एक भवन से कुछ दूरी पर खड़ा है। जब वह ऊँचे भवन की ओर जाता है तब उसकी आँख से भवन के शिखर का उन्नयन कोण 30° से 60° हो जाता है। बताइए कि वह भवन की ओर कितनी दूरी तक चलकर गया है?
हल
माना PQ एक भवन है जिसकी ऊँचाई 30 m है। भवन के आधार से x m दूर बिन्दु R पर एक लड़का OR खड़ा है, जिसकी ऊँचाई OR = 1.5 m है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q6
तब, OS || QR
∴ OR = SQ = 1.5 m
माना मीनार की चोटी P का लड़के की आँख O पर उन्नयन कोण ∠POS = 30° है।
तब, PS = PQ – SQ = 30 – 1.5 = 28.5 m
तब, समकोण ∆POS में, tan 30° = \(\frac{P S}{O S}\)
⇒ \(\frac{1}{\sqrt{3}}=\frac{28.5}{x}\)
⇒ x = 28.5 × √3
⇒ x = 28.5 × 1.732 = 53.496 m
माना लड़का d दूरी चलकर बिन्दु T पर पहुँचता है जहाँ से उसकी आँख का कोण ∠PTS = 60° हो जाता है।
तब, समकोण ∆PTS में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q6.1
अत: लड़का भवन की ओर 19√3 m चलकर गया।

प्रश्न 7.
भूमि के एक बिन्दु से एक 20 m ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमशः 45° और 60° हैं। मीनार की ऊँचाई ज्ञात कीजिए।
हल
माना क्षैतिज भूमितल पर स्थित BQ एक भवन है जिसकी ऊँचाई BQ = 20 m है।
भवन की चोटी के ऊपर एक संचार मीनार BH स्थित है। भवन के आधार Q से किसी दूरी PQ पर एक बिन्दु P है।
बिन्दु P से संचार मीनार के तल का उन्नयन कोण ∠BPQ = 45° तथा शिखर H का उन्नयन कोण ∠HPQ = 60° है।
माना संचार मीनार की भूमि से ऊँचाई HQ है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q7
तब, समकोण ∆BQP में, tan BPQ = \(\frac{B Q}{P Q}\)
⇒ tan 45° = \(\frac{20}{P Q}\)
⇒ 1 = \(\frac{20}{P Q}\)
⇒ PQ = 20 m
पुनः समकोण ∆HQP में, tan HPQ = \(\frac{H Q}{P Q}\)
⇒ tan 60° = \(\frac{H B+B Q}{P Q}\) [∵ HQ = HB + BQ]
⇒ √3 = \(\frac{H B+20}{20}\) [∵ PQ = 20 m]
⇒ HB + 20 = 20√3
⇒ HB = 20√3 – 20 = 20(√3 – 1) m
अत: मीनार की ऊँचाई = 20(√3 – 1) m

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 8.
एक पेडस्टल के शिखर पर एक 1.6 m ऊँची मूर्ति लगी है। भूमि के एक बिन्दु से मूर्ति के शिखर का उन्नयन कोण 60° है और उसी बिन्दु से पेडस्टल के शिखर का उन्नयन कोण 45° है। पेडस्टल की ऊँचाई ज्ञात कीजिए।
हल
माना PQ एक x m ऊँची पेडस्टल है जिसकी चोटी P पर एक मूर्ति PS लगी है। मूर्ति की ऊँचाई PS = 1.6 m है।
क्षैतिज भूमि पर स्थित एक बिन्दु R से मूर्ति के ऊपरी सिरे S का उन्नयन कोण ∠QRS = 60° है तथा इसी बिन्दु R से पेडस्टल के शिखर P का उन्नयन कोण ∠PRQ = 45° है।
मूर्ति PS की लम्बाई 1.6 m है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q15
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q8.1
अत: मूर्ति की ऊँचाई 0.8(√3 + 1) m है।

प्रश्न 9.
एक मीनार के पाद-बिन्दु से एक भवन के शिखर का उन्नयन कोण 30° है और भवन के पाद-बिन्दु से मीनार के शिखर का उन्नयन कोण 60° है। यदि मीनार 50 m ऊँची हो, तो भवन की ऊँचाई ज्ञात कीजिए।
हल
माना AB एक मीनार है जिसकी ऊँचाई 50 m है। मीनार के पाद-बिन्दु B से एक भवन CD की चोटी D का उन्नयन कोण 30° है, जबकि भवन के आधार-बिन्दु C से मीनार की चोटी A का उन्नयन कोण 60° है। मीनार के आधार B से भवन के आधार C की दूरी BC है।
माना भवन की ऊँचाई CD = x m
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q9

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 10.
एक 80 m चौड़ी सड़क के दोनों ओर आमने-सामने समान ऊँचाई वाले दो खम्भे लगे हुए हैं। इन दोनों खम्भों के बीच सड़क के एक बिन्दु से खम्भों के शिखर के उन्नयन कोण क्रमश: 60° और 30° हैं। खम्भों की ऊँचाई और खम्भों से बिन्द की दूरी ज्ञात कीजिए।
हल
माना, PA तथा QB समान ऊँचाई h m के दो खम्भे हैं जो सड़क की चौड़ाई AB के सिरों क्रमश: A व B पर स्थित हैं।
खम्भों की सीध में सड़क के किसी बिन्दु R से दोनों खम्भों के शिखर क्रमश: 60° व 30° के उन्नयन कोण बनाते हैं।
सड़क की चौड़ाई AB = 80 m तथा माना बिन्दु R की पहले खम्भे PA से दूरी x m है।
अत: बिन्दु R की खम्भे QB से दूरी = (80 – x) m
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q10
समीकरण (1) व (2) से,
√3x = \(\frac{80-x}{\sqrt{3}}\)
⇒ 3x = 80 – x
⇒ 4x = 80 m
⇒ x = 20 m
समीकरण (1) में x का मान रखने पर,
h = √3 × 20 = 1.73 × 20 = 34.60 m
अतः खम्भे की ऊँचाई = 34.60 m और पहले खम्भे से प्रेक्षण बिन्दु की दूरी = 20 m
तथा दूसरे खम्भे से प्रेक्षण बिन्दु की दूरी = 80 – 20 = 60 m.

प्रश्न 11.
एक नहर के एक तट पर एक टीवी टॉवर ऊर्ध्वाधरतः खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिन्दु से टॉवर के शिखर का उन्नयन कोण 60° है। इसी तट पर इस बिन्दु से 20 m दूर और इस बिन्द को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिन्द से टॉवर के शिखर का उन्नयन कोण 30° है (चित्र देखिए)। टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q11
हल
माना BC चौड़ाई की एक नहर है जिसके एक तट B पर एक टीवी टॉवर AB खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक बिन्दु C से टॉवर के शिखर का उन्नयन कोण ∠ACB = 60° है। इसी तट पर इस बिन्दु से 20 m दूर तथा बिन्दु C और टॉवर के आधार B को मिलाने वाली रेखा की सीध में एक बिन्दु D है। बिन्दु D से टॉवर के शिखर का उन्नयन कोण 30° है।
माना टॉवर AB की ऊँचाई h m तथा नहर की चौड़ाई BC = x m है।
तब, समकोण ΔABC में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q11.1
समीकरण (1) में x का मान रखने पर, h = 10√3 m
अत: टीवी टॉवर की ऊँचाई = 10√3 m तथा नहर की चौड़ाई = 10 m

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 12.
7 m ऊँचे भवन के शिखर से एक केबल टॉवर के शिखर का उन्नयन कोण 60° है और इसके पाद का अवनमन कोण 45° है। टॉवर की ऊँचाई ज्ञात कीजिए।
हल
माना AB एक केबल टॉवर है और उसी धरातल में एक भवन CD है जिसकी ऊँचाई 7 m है।
भवन के शिखर C से क्षैतिज धरातल के समान्तर एक रेखा CE है। भवन के शिखर C से केबल टॉवर के शिखर A का उन्नयन कोण ∠ACE = 60° है और केबल टॉवर के पाद B का अवनमन कोण ∠ECB = 45° है।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q12
∵ DB || CE और ∠DCE = 90°
तथा ∠EBD = 90° ⇒ CD || EB
चतुर्भुज CDBE एक समान्तर चतुर्भुज है।
∴ EB = CD ⇒ EB = 7 m
अब समकोण ΔBEC में, tan 45° = \(\frac{E B}{C E}\)
⇒ 1 = \(\frac{7}{C E}\)
⇒ CE = 7 m
पुनः समकोण ΔAEC में, tan 60° = \(\frac{A E}{C E}\)
⇒ √3 = \(\frac{A E}{7}\)
⇒ AE = 7√3 m
तब, केबल टॉवर AB की ऊँचाई = AE + EB = 7√3 + 7 = 7(√3 + 1) m
अत: केबल टॉवर की ऊँचाई 7(√3 + 1) m है।

प्रश्न 13.
समुद्र-तल से 75 m ऊँची लाइट हाउस के शिखर से देखने पर दो समुद्री जहाजों के अवनमन कोण 30° और 45° हैं। यदि लाइट हाउस के एक ही ओर एक जहाज दूसरे जहाज के ठीक पीछे हो तो दो जहाजों के बीच की दूरी ज्ञात कीजिए।
हल
माना 75 m ऊँचे एक प्रकाश स्तम्भ PQ के शिखर P से, A और B जहाजों के अवनमन कोण क्रमश: 30° और 45° हैं।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q13
∴ ∠SPA = 30° = ∠PAQ (एकान्तर कोण)
तथा ∠SPB = 45° = ∠PBQ (एकान्तर कोण)
माना जहाजों के बीच की दूरी AB = x m
तब, समकोण ΔPQB में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q13.1

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 14.
1.2 m लम्बी एक लड़की भूमि से 88.2 m की ऊँचाई पर एक क्षैतिज रेखा में हवा में उड़ रहे गुब्बारे को देखती है। किसी भी क्षण लड़की की आँख से गुब्बारे का उन्नयन कोण 60° है। कुछ समय बाद उन्नयन कोण घटकर 30° हो जाता है। इस अन्तराल के दौरान गुब्बारे द्वारा तय की गई दूरी ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q14
हल
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q14.1

प्रश्न 15.
एक सीधा राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को 30° के अवनमन कोण पर देखता है जो कि मीनार के पाद की ओर एकसमान चाल से जाता है। छ: सेकण्ड बाद कार का अवनमन कोण 60° हो गया। इस बिन्दु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।
हल
माना BCQ एक सीधा राजमार्ग है जिसके किसी बिन्दु Q पर खड़ी मीनार की ऊँचाई OQ है। एक प्रेक्षक मीनार के शिखर बिन्दु 0 पर बैठा देखता है कि एक कार B का अवनमन कोण 30° है जिससे ∠OBQ = 30° है। प्रेक्षक 6 सेकण्ड बाद देखता है कि कार का अवनमन कोण 60° है जिससे ∠OCQ = 60° है।
समकोण ∆OQB में,
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q15
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q15.1
∴ CQ दूरी तय करने में लगने वाला समय = \(\frac {1}{2}\) × BC दूरी तय करने में लगा समय
= \(\frac {1}{2}\) × 6 सेकण्ड
= 3 सेकण्ड
अत: कार को मीनार के पाद तक पहुँचने में लगने वाला समय = 3 सेकण्ड

Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1

प्रश्न 16.
मीनार के आधार से और एक सरल रेखा में 4 m और 9 m की दूरी पर स्थित दो बिन्दुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए कि मीनार की ऊँचाई 6 m है।
हल
माना AB एक मीनार है जिसकी ऊँचाई h है। मीनार के आधार B के दोनों ओर B से क्रमश: 9 m और 4 m दूरियों पर दो बिन्दु P और Q स्थित हैं।
यदि बिन्दु P से मीनार की चोटी का उन्नयन कोण हो तो Q से मीनार की चोटी का उन्नयन कोण θ का कोटिपूरक (90° – θ) होगा।
Bihar Board Class 10 Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1 Q16

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

Bihar Board Class 10 Maths त्रिकोणमिति का परिचय Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
यदि cos A = \(\frac{4}{5}\) है, तो tan A का मान है
(i) \(\frac{3}{5}\)
(ii) \(\frac{3}{4}\)
(iii) \(\frac{4}{3}\)
(iv) \(\frac{5}{3}\)
हल
(ii) \(\frac{3}{4}\)

प्रश्न 2.
यदि sin A = \(\frac{1}{2}\) है तो cos A का मान है
(i) √3
(ii) \(\frac{1}{\sqrt{3}}\)
(iii) \(\frac{\sqrt{3}}{2}\)
(iv) 1
हल
(i) √3

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 3.
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान है
(i) -1
(ii) 0
(iii) 1
(iv) \(\frac{3}{2}\)
हल
(ii) 0

प्रश्न 4.
यदि sin θ = \(\frac{a}{b}\) दिया है, तो cos θ बराबर है
(i) \(\frac{b}{\sqrt{b^{2}-a^{2}}}\)
(ii) \(\frac{b}{a}\)
(iii) \(\frac{\sqrt{b^{2}-a^{2}}}{b}\)
(iv) \(\frac{a}{\sqrt{b^{2}-a^{2}}}\)
हल
(iii) \(\frac{\sqrt{b^{2}-a^{2}}}{b}\)

प्रश्न 5.
यदि cos(α + β) = 0 हो, तो sin(α – β) को निम्नलिखित के रूप में बदला जा सकता है-
(i) cos β
(ii) cos 2β
(iii) sin θ
(iv) sin 2α
हल
(ii) cos 2β

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 6.
(tan 1° tan 2° tan 3°…tan 89°) का मान है
(i) 0
(ii) 1
(iii) 2
(iv) \(\frac{1}{2}\)
हल
(ii) 1

प्रश्न 7.
यदि cos 9α = sin α है और 9α < 90° है, तो tan 5α का मान है
(i) \(\frac{1}{\sqrt{3}}\)
(ii) √3
(iii) 1
(iv) 0
हल
(iii) 1

प्रश्न 8.
यदि ∆ABC एक समकोण त्रिभुज है जिसमें कोण C समकोण है, तो cos(A + B) का मान है
(i) 0
(ii) 1
(iii) \(\frac{1}{2}\)
(iv) \(\frac{\sqrt{3}}{2}\)
हल
(i) 0

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 9.
यदि sin A + sin2 A = 1 है, तो व्यंजक (cos2 A + cos4 A) का मान है
(i) 1
(ii) \(\frac{1}{2}\)
(iii) 2
(iv) 3
हल
(i) 1

प्रश्न 10.
यदि sin α = \(\frac{1}{2}\) और cos β = \(\frac{1}{2}\) दिया है, तो (α + β) का मान है
(i) 0°
(ii) 30°
(iii) 60°
(iv) 90°
हल
(iv) 90°

प्रश्न 11.
व्यंजक [\(\frac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}\) + sin2 63° + cos 63° sin 27°] का मान है
(i) 3
(ii) 2
(iii) 1
(iv) 0
हल
(ii) 2

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 12.
यदि 4tan θ = 3 है, तो \(\left(\frac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}\right)\) बराबर है।
(i) \(\frac{2}{3}\)
(ii) \(\frac{1}{3}\)
(iii) \(\frac{1}{2}\)
(iv) \(\frac{3}{4}\)
हल
(iii) \(\frac{1}{2}\)

प्रश्न 13.
यदि sin θ – cos θ = 0 है, तो (sin4 θ + cos4 θ) का मान है
(i) 1
(ii) \(\frac{3}{4}\)
(iii) \(\frac{1}{2}\)
(iv) \(\frac{1}{4}\)
हल
(iii) \(\frac{1}{2}\)

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 14.
sin(45° + θ) – cos(45° – θ) बराबर है
(i) 2 cos θ
(ii) 0
(iii) 2 sin θ
(iv) 1
हल
(ii) 0

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
cot A का मान ज्ञात कीजिए, यदि 3 cos A – 4 sin A = 2 cos A + 3 sin A
हल
दिया है, 3 cos A – 4 sin A = 2 cos A + 3 sin A
⇒ 3 cos A – 2 cos A = 3 sin A + 4 sin A
⇒ cos A = 7 sin A
⇒ \(\frac{\cos A}{\sin A}\) = 7
⇒ cot A = 7

प्रश्न 2.
त्रिभुज ABC में यदि AB = BC, ∠B = 90° है तो निम्न के मान ज्ञात कीजिए
(i) sin A
(ii) cos A
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 2
∆ABC में, AB = BC तथा ∠B = 90°
∵ AB = BC
∴ ∠A = ∠C = \(\frac{180^{\circ}-90^{\circ}}{2}\) = 45°
(i) sin A = sin 45° = \(\frac{1}{\sqrt{2}}\)
(ii) cos A = cos 45° = \(\frac{1}{\sqrt{2}}\)

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 3.
cot 80° cot 10° – tan 80° tan 10° का मान ज्ञात कीजिए।
हल
यहाँ, cot 80° cot 10° – tan 80° tan 10°
= cot(90° – 10°) . cot (90° – 80°) – tan 80° tan 10°
= tan 80° tan 10° – tan 80° tan 10°
= 0

प्रश्न 4.
यदि sin θ = \(\frac{3}{5}\), तो tan θ का मान ज्ञात कीजिए।
हल
हम जानते हैं कि
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 4

प्रश्न 5.
सिद्ध कीजिए की
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 5
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 5.1

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 6.
cos 80° cos 70° – cos 10° cos 20° का मान ज्ञात कीजिए।
हल
cos 80° cos 70° – cos 10° cos 20°
= cos 80° cos 70o – cos(90° – 80°) cos(90° – 70°)
= cos 80° cos 70° – sin 80° sin 70° [∵ cos (90° – θ) = cos θ]
= cos(80° + 70° )
= cos 150°
= cos(180° – 30°)
= -cos 30° [∵ cos (180° – θ) = -cos θ]
= \(-\frac{\sqrt{3}}{2}\)

प्रश्न 7.
\(\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}\) का मान ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 7

प्रश्न 8.
tan 35° tan 40° tan 45° tan 50° tan 55° का मान ज्ञात कीजिए।
हल
tan 35° tan 40° tan 45° tan 50° tan 55°
= tan (90° – 55°) tan (90° – 50°) tan 45° tan 50° tan 55°
= cot 55° cot 50° tan 45° tan 50° tan 55° [∵ tan (90° – θ) = cot θ]
= \(\frac{1}{\tan 55^{\circ}} \cdot \frac{1}{\tan 50^{\circ}}\) . 1 · tan 50° . tan 55°
= 1 [∵ cot θ = \(\frac{1}{\tan \theta}\)]

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 9.
\(\frac{\sin 72^{\circ}+\cos 72^{\circ}}{\cos 18^{\circ}+\sin 18^{\circ}}\) का मान ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 9

प्रश्न 10.
सिद्ध कीजिए \(\frac{\sin 48^{\circ}}{\cos 42^{\circ}}+\frac{\cos 48^{\circ}}{\sin 42^{\circ}}=2\)
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 10

प्रश्न 11.
सिद्ध कीजिए की (1 – sin θ) (1 + sin θ) (1 + tan2 θ) = 1
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 11

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 12.
सिद्ध कीजिए tan2 θ + cot2 θ = sec2 θ cosec2 θ – 2
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 12

प्रश्न 13.
सिद्ध कीजिए (cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 13

प्रश्न 14.
सिद्ध कीजिए \(\frac{\sec ^{2} A}{\cos ^{2} A}-\frac{\tan ^{2} A}{\cot ^{2} A}=1+2 \tan ^{2} A\)
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 14

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 15.
सिद्ध कीजिए
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 15
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions VSQ 15.1

लघु उत्तरीय प्रश्न

प्रश्न 1.
सिद्ध कीजिए कि
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 1
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 1.1

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 2.
सिद्ध कीजिए कि (sec θ – tan θ)2 = \(\frac{1-\sin \theta}{1+\sin \theta}\)
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 2

प्रश्न 3.
सिद्ध कीजिए
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 3
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 3.1

प्रश्न 4.
सिद्ध कीजिए
\(\frac{\sec A-\tan A}{\sec A+\tan A}\) = 1 – 2 sec A tan A + 2tan2 A
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 4

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 5.
सिद्ध कीजिए की
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 5
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 5.1

प्रश्न 6.
सिद्ध कीजिए की
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 6
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 6.1

प्रश्न 7.
सिद्ध कीजिए की
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 7
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 7.1

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 8.
सिद्ध कीजिए
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 8
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 8.1

प्रश्न 9.
यदि \(\frac{\cos \alpha}{1-\sin \alpha}+\frac{\cos \alpha}{1+\sin \alpha}=4\) हो, तो α का मान ज्ञात कीजिए, जबकी 0° < α < 90°.
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 9

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 10.
यदि x = r cos θ cos α, y = r sin θ cos α तथा z = r sin α, तो सिद्ध कीजिए की x2 + y2 + z2
हल
L.H.S. = x2 + y2 + z2
= (r cos θ cos α)2 +(r sin θ cos α)2 + (r sin α)2
= r2 cos2 θ cos2 α + r2 sin2 θ cos2 α + r2 sin2 α
= r2 cos2 α (cos2 θ + sin2 θ) + r2 sin2 α
= r2 cos2 α . 1 + r2 sin2 α [∵ sin2 θ + cos2 θ = 1]
= r2 (cos2 α + sin2 α)
= r2 . 1
= r2
= R.H.S.
इति सिद्धम

प्रश्न 11.
यदि tan θ + sin θ = p तथा tan θ – sin θ = q तो सिद्ध कीजिए p2 – q2 = 4√pq
हल
L.H.S. = p2 – q2
= (p + q) (p – q)
= (tan θ + sin θ + tan θ – sin θ) (tan θ + sin θ – tan θ + sin θ)
= 2 tan θ . 2 sin θ
= 4 tan θ sin θ
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 11

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 12.
यदि tan α = n tan β, sin α = m sin β तो सिद्ध कीजिए कि \(\cos ^{2} \alpha=\frac{m^{2}-1}{n^{2}-1}\)
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions SAQ 12

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
दी गई आकृति में ABC एक समकोण त्रिभुज है। D, BC का मध्य-बिन्दु है :
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions LAQ 1
दिखादा कि : \(\frac{\tan \theta}{\tan \phi}=\frac{1}{2}\)
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions LAQ 1.1

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 2.
मान ज्ञात कीजिए :
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions LAQ 2
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions LAQ 2.1
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions LAQ 2.2

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions

प्रश्न 3.
यदि sin θ = \(\frac{3}{5}\), तो (tan θ + sec θ)2 का मान ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Additional Questions LAQ 3

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3

Bihar Board Class 10 Maths त्रिकोणमिति का परिचय Ex 8.3

प्रश्न 1.
निम्नलिखित का मान निकालिए :
(i) \(\frac{\sin 18^{\circ}}{\cos 72^{\circ}}\)
(ii) \(\frac{\tan 26^{\circ}}{\cot 64^{\circ}}\)
(iii) cos 48° – sin 42°
(iv) cosec 31° – sec 59°
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3 Q1

(iii) cos 48° – sin 42°
= cos (90° – 42°) – sin 42°
= sin 42° – sin 42°
= 0 [∵ cos (90° – A) = sin A]
अतः cos 48° – sin 42° = 0

(iv) cosec 31° – sec 59°
= cosec (90° – 59°) – sec 59°
= sec 59° – sec 59°
= 0 [∵ cosec (90° – A) = sec A]
अतः cosec 31° – sec 59° = 0

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3

प्रश्न 2.
दिखाईये की
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
हल
(i) L.H.S. = tan 48° tan 23° tan 42° tan 67°
= tan 48° tan 23° tan (90° – 48°) tan (90° – 23°)
= tan A tan B tan (90° – A) tan (90° – B) [माना A = 48°, B = 23°]
= tan A tan B cot A cot B
= tan A tan B . \(\frac{1}{\tan A} \cdot \frac{1}{\tan B}\) [∵ cot A = \(\frac{1}{\tan A}\), cot B = \(\frac{1}{\tan B}\)]
= 1
= R.H.S.
L.H.S. = R.H.S.

(ii) L.H.S. = cos 38° cos 52° – sin 38° sin 52°
= cos 38° cos (90° – 38°) – sin 38° sin (90° – 38°)
= cos A cos (90° – A) sin A sin (90° – A) [यदि 38° = A हो]
= cos A sin A – sin A cos A [∵ cos (90° – A) = sin A और sin (90° – A) = cos A]
= sin A cos A – sin A cos A
= 0
= R.H.S.
L.H.S.= R.H.S.

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3

प्रश्न 3.
यदि tan 2A = cot(A – 18°), जहाँ 2A एक न्यूनकोण है, तो A का मान ज्ञात कीजिए।
हल
दिया है, tan 2A = cot(A – 18°)
⇒ tan θ = cot(A – 18°) [माना 2A = θ]
⇒ cot (90° – θ) = cot (A – 18°) [∵ tan θ = cot(90° – θ)]
⇒ 90° – θ = A – 18°
⇒ 90° – 2A = A – 18° [θ = 2A रखने पर]
⇒ 90° + 18° = A + 2A
⇒ 3A = 108°
⇒ A = 36°
अत: A का मान = 36°

प्रश्न 4.
यदि tan A = cot B, तो सिद्ध कीजिए कि A + B = 90°.
हल
दिया है, tan A = cot B
⇒ tan A = tan(90° – B) [∵ cot θ = tan (90° – θ)]
⇒ A = 90° – B
⇒ A + B = 90°
अत: स्पष्ट है कि tan A = cot B होने पर A + B = 90° होगा।

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3

प्रश्न 5.
यदि sec 4A = cosec(A – 20°), जहाँ 4A एक न्यूनकोण है, तो A का मान ज्ञात कीजिए।
हल
दिया है, sec 4A = cosec(A – 20°)
⇒ cosec (90° – 4A) = cosec (A – 20°) [∵ sec θ = cosec (90° – θ)]
⇒ 90° – 4A = A – 20°
⇒ A + 4A = 90° + 20°
⇒ 5A = 110°
⇒ A = 22°
अत: A का मान = 22°

प्रश्न 6.
यदि A, B और C त्रिभुज ABC के अन्तःकोण हों, तो दिखाइए कि \(\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}\)
हल
हम जानते हैं कि त्रिभुज के अन्तःकोणों का योग = 180°
A + B + C = 180°
⇒ (B + C) = 180° – A
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3 Q6

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.3

प्रश्न 7.
sin 67° + cos 75° को 0° और 45° के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।
हल
दिया है, sin 67° + cos 75°
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°
अत: sin 67° + cos 75° = cos 23° + sin 15°

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2

Bihar Board Class 10 Maths त्रिकोणमिति का परिचय Ex 8.2

प्रश्न 1.
निम्नलिखित के मान निकालिए
(i) sin 60° cos 30° + sin 30° cos 60°
(ii) 2 tan2 45° + cos2 30° – sin2 60°
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q1
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q1.1
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q1.2
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q1.3
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q1.4

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2

प्रश्न 2.
सही विकल्प चुनिए और अपने विकल्प का औचित्य दीजिए-
(i) \(\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=\)
(A) sin 60°
(B) cos 60°
(C) tan 60°
(D) sin 30°

(ii) \(\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=\)
(A) tan 90°
(B) 1
(C) sin 45°
(D) 0

(iii) sin 2A = 2sin A तब सत्य होता है, जबकि A बराबर है :
(A) 0°
(B) 30°
(C) 45°
(D) 60°

(iv) \(\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}\) बराबर है :
(A) cos 60°
(B) sin 60°
(C) tan 60°
(D) sin 30°
हल
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q2
Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2 Q2.1

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2

प्रश्न 3.
यदि tan(A + B) = √3 और tan(A – B) = \(\frac{1}{\sqrt{3}}\); 0° < A + B < 90°; A > B, तो A और B का मान ज्ञात कीजिए।
हल
दिया है, tan (A + B) = √3
⇒ tan (A + B) = tan 60°
⇒ A + B = 60° ……(1)
तथा tan (A – B) = \(\frac{1}{\sqrt{3}}\)
⇒ tan (A – B) = tan 30°
⇒ A – B = 30° …….(2)
समीकरण (1) व (2) को हल करने पर,
अत: A = 45° तथा B = 15°

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2

प्रश्न 4.
बताइए कि निम्नलिखित में कौन-कौन सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
(i) sin(A + B) = sin A + sin B
(ii) θ में वृद्धि होने के साथ sin θ के मान में भी वृद्धि होती है।
(iii) θ में वृद्धि होने के साथ cos θ के मान में भी वृद्धि होती है।
(iv) θ के सभी मानों पर sin θ = cos θ
(v) A = 0° पर cot A परिभाषित नहीं है।
हल
(i) माना A = 30° तथा B = 30°, तब
sin (A + B) = sin (30° + 30° ) = sin 60° = \(\frac{\sqrt{3}}{2}\)
और sin A + sin B = sin 30° + sin 30° = \(\frac{1}{2}+\frac{1}{2}\) = 1
sin (A + B) ≠ sin A + sin B
अत: दिया गया कथन असत्य है।

(ii) ∵ sin 0° = 0, sin 30° = \(\frac{1}{2}\), sin 45° = \(\frac{1}{\sqrt{2}}\), sin 60° = \(\frac{\sqrt{3}}{2}\), sin 90° = 1
स्पष्ट है कि θ का मान बढ़ने पर sin θ का मान भी बढ़ता है परन्तु यह θ = 90° तक ही सही है, आगे नहीं।
अत: दिया गया कथन सत्य है।

(iii) ∵ cos 0° = 1 और cos 90° = 0
स्पष्ट है कि θ का मान बढ़ने पर cos θ में वृद्धि नहीं होती।
अत: दिया गया कथन असत्य है।

Bihar Board Class 10 Maths Solutions Chapter 8 त्रिकोणमिति का परिचय Ex 8.2

(iv) ∵ sin θ = cos θ
⇒ \(\frac{\sin \theta}{\cos \theta}\) = 1
⇒ tan θ = 1
⇒ θ = 45°
θ के सभी मानों के लिए sin θ ≠ cos θ
अतः दिया गया कथन असत्य है।

(v) त्रिकोणमितीय अनुपातों के विभिन्न मानों के लिए संकलित सारणी को देखने से स्पष्ट है कि cot A = अनिर्धारित
∴ A = 0° पर cot A परिभाषित नहीं (not defined) है।
अत: दिया गया कथन सत्य है।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

Bihar Board Class 10 Maths निर्देशांक ज्यामिति Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
यदि बिन्दुओं (2, -2) और (-1, x) के बीच की दूरी 5 है, तो x का एक मान है
(i) -2
(ii) 2
(iii) -1
(iv) 1
हल
(ii) 2

प्रश्न 2.
बिन्दुओं A(-2, 8) और B(-6, -4) को मिलाने वाले रेखाखण्ड का मध्य-बिन्दु है
(i) (-4, -6)
(ii) (2, 6)
(iii) (-4, 2)
(iv) (4, 2)
हल
(iii) (-4, 2)

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 3.
बिन्दु A(9, 0), B(9, 6), C(-9, 6) और (-9, 0) निम्नलिखित के शीर्ष हैं
(i) वर्ग
(ii) आयत
(iii) समचतुर्भुज
(iv) समलंब
हल
(ii) आयत

प्रश्न 4.
बिन्दु P(2, 3) की x-अक्ष से दूरी है
(i) 2
(ii) 3
(iii) 1
(iv) 5
हल
(ii) 3

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 5.
बिन्दुओं A(0, 6) और B(0, -2) के बीच की दूरी है
(i) 6
(ii) 8
(iii) 4
(iv) 2
हल
(ii) 8

प्रश्न 6.
बिन्दु P(-6, 8) की मूलबिन्दु से दूरी है
(i) 8
(ii) 2√7
(iii) 10
(iv) 6
हल
(iii) 10

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 7.
बिन्दुओं (0, 5) और (-5, 0) के बीच की दूरी है
(i) 5
(ii) 5√2
(iii) 2√5
(iv) 10
हल
(ii) 5√2

प्रश्न 8.
AOBC एक आयत है, जिसके तीन शीर्ष A(0, 3), O(0, 0) और B(5, 0) हैं। इसका विकर्ण है
(i) 5
(ii) 3
(iii) √34
(iv) 4
हल
(iii) √34

प्रश्न 9.
शीर्षों (0, 4), (0, 0) और (3, 0) वाले त्रिभुज का परिमाप है
(i) 5
(ii) 12
(iii) 11
(iv) 7 + √5
हल
(ii) 12

प्रश्न 10.
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल है
(i) 14
(ii) 28
(iii) 8
(iv) 6
हल
(iii) 8

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 11.
बिन्दु (-4, 0), (4, 0) और (0, 3) निम्नलिखित के शीर्ष हैं
(i) समकोण त्रिभुज
(ii) समद्विबाहु त्रिभुज
(iii) समबाहु त्रिभुज
(iv) विषमबाहु त्रिभुज
हल
(ii) समद्विबाहु त्रिभुज

प्रश्न 12.
बिन्दुओं (7, -6) और (3, 4) को मिलाने वाले रेखाखण्ड को आन्तरिक रूप से 1 : 2 के अनुपात में विभाजित करने वाला बिन्दु निम्नलिखित में स्थित होता है
(i) चतुर्थांश I
(ii) चतुर्थांश II
(iii) चतुर्थांश III
(iv) चतुर्थांश IV
हल
(iv) चतुर्थांश IV

प्रश्न 13.
बिन्दुओं A(-2, -5) और B(2, 5) को मिलाने वाले रेखाखण्ड के लंब समद्विभाजक पर स्थित एक बिन्दु है
(i) (0, 0)
(ii) (0, 2)
(iii) (2, 0)
(iv) (-2, 0)
हल
(i) (0, 0)

प्रश्न 14.
तीन शीर्षों A(-2, 3), B(6, 7) और C(8, 3) वाले समान्तर चतुर्भुज ABCD का चौथा शीर्ष D है
(i) (0, 1)
(ii) (0, -1)
(iii) (-1, 0)
(iv) (1, 0)
हल
(ii) (0, -1)

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 15.
यदि बिन्दु P(2, 1), बिन्दुओं A(4, 2) और B(8, 4) मिलाने वाले रेखाखण्ड पर स्थित है, तो
(i) AP = \(\frac{1}{3}\) AB
(ii) AP = PB
(iii) PB = \(\frac{1}{3}\) AB
(iv) AP = \(\frac{1}{2}\) AB
हल
(iv) AP = \(\frac{1}{2}\) AB

प्रश्न 16.
यदि बिन्दुओं Q(-6, 5) और R(-2, 3) को मिलाने वाले रेखाखण्ड का मध्य-बिन्दु P(\(\frac{a}{3}\), 4) है, तो a का मान है
(i) -4
(ii) -12
(iii) 12
(iv) -6
हल
(ii) -12

प्रश्न 17.
बिन्दुओं A(1, 5) और B(4, 6) को मिलाने वाले रेखाखण्ड का लम्ब समद्विभाजक y-अक्ष को निम्नलिखित बिन्द पर काटता है
(i) (0, 13)
(ii) (0, -13)
(iii) (0, 12)
(iv) (13, 0)
हल
(i) (0, 13)

प्रश्न 18.
आकृति में दर्शाए गए त्रिभुज AOB के तीनों शीर्षों से समदूरस्थ बिन्दु के निर्देशांक हैं
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions MCQ 18
(i) (x, y)
(ii) (y, x)
(iii) \(\frac{x}{2}, \frac{y}{2}\)
(iv) \(\frac{y}{2}, \frac{x}{2}\)
हल
(i) (x, 3)

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 19.
मूलबिन्दु को केन्द्र मान कर खींचा गया एक वृत्त, बिन्दु (\(\frac{13}{2}\), 0) से होकर जाता है, तब, वृत्त के अभ्यंतर में निम्नलिखित बिन्दु स्थित नहीं
(i) \(\frac{-3}{4}\), 1
(ii) 2, \(\frac{7}{3}\)
(iii) 5, \(\frac{-1}{2}\)
(iv) (-6, \(\frac{5}{2}\))
हल
(iv) (-6, \(\frac{5}{2}\))

प्रश्न 20.
एक रेखा y-अक्ष और x-अक्ष को क्रमशः बिन्दुओं P और Q पर प्रतिच्छेद करती है। यदि, (2, -5) रेखाखण्ड PQ का मध्य-बिन्दु है, तो P और Q के निर्देशांक क्रमशः हैं
(i) (0, -5) और (2, 0)
(ii) (0, 10) और (-4, 0)
(iii) (0, 4) और (10, 0)
(iv) (0, -10) और (4, 0)
हल
(iv) (0, -10) और (4, 0)

प्रश्न 21.
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल है,
(i) (a + b + c)2
(ii) 0
(iii) a + b + c
(iv) abc
हल
(ii) 0

प्रश्न 22.
यदि बिन्दुओं (4, p) और (1, 0) के बीच की दूरी 5 है, तो p का मान है
(i) केवल 4
(ii) ±4
(iii) केवल -4
(iv) 0
हल
(ii) ±4

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 23.
यदि बिन्दु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो
(i) a = b
(ii) a = 2b
(iii) 2a = b
(iv) a = -b
हल
(iii) 2a = b

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
बिन्दुओं (-3, -4) तथा (-8, 7) को मिलाने वाले रेखाखण्ड के मध्य-बिन्दु के निर्देशांक ज्ञात कीजिए।
हल
बिन्दुओं (-3, -4) तथा (-8, 7) को मिलाने वाले रेखाखण्ड का मध्य-बिन्दु
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions VSQ 1

प्रश्न 2.
यदि A(2, 4), B(6, 4), C(3, 7) त्रिभुज के शीर्ष हो, तो त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
हल
दिया है, ∆ABC के शीर्ष A = (2, 4), B = (6, 4) तथा C = (3, 7)
यहाँ, x1 = 2, y1 = 4, x2 = 6, y2 = 4, x3 = 3, y3 = 7
∴ ∆ABC का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [(2 × 4 + 6 × 7 + 3 × 4) – (4 × 6 + 4 × 3 +7 × 2)]
= \(\frac{1}{2}\) [(8 + 42 + 12) – (24 + 12 + 14)]
= \(\frac{1}{2}\) (62 – 50)
= \(\frac{1}{2}\) × 12
= 6 वर्ग मात्रक

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 3.
x का मान ज्ञात कीजिए, यदि बिन्दु (x, 3) तथा (4, 5) के बीच की दूरी √5 मात्रक है।
हल
बिन्दु (x, 3) तथा (4, 5) के बीच की दूरी = √5
\(\sqrt{(4-x)^{2}+(5-3)^{2}}=\sqrt{5}\)
दोनों पक्षों का वर्ग करने पर,
(4 – x)2 + (2)2 = 5
⇒ (4 – x)2 = 5 – 4 = 1
⇒ 4 – x = ±1
जब 4 – x = 1 तो x = 4 – 1 = 3
जब 4 – x = -1 तो x = 4 + 1 = 5
अत: x = 3 या 5

प्रश्न 4.
p के किस मान हेतु बिन्दु (2, 1) तथा (p, -1) के बीच की दूरी 2 मात्रक है?
हल
दिए गए बिन्दुओं के बीच की दूरी = \(\sqrt{\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]}\)
= \(\sqrt{\left[(p-2)^{2}+(-1-1)^{2}\right]}\)
प्रश्नानुसार, दिए गए बिन्दुओं के बीच की दूरी = 2
\(\sqrt{(p-2)^{2}+(-1-1)^{2}}=2\)
दोनों ओर का वर्ग करने पर,
⇒ (p – 2)2 + 22 = 22
⇒ (p – 2)2 = 0
⇒ p = 2

लघु उत्तरीय प्रश्न

प्रश्न 1.
x-अक्ष पर वह बिन्दु ज्ञात कीजिए जो बिन्दुओं (1, 3) और (-3, 5) से समदूरस्थ है।
हल
माना x-अक्ष पर बिन्दु (h, 0) है।
चूँकि बिन्दु (h, 0) बिन्दुओं (1, 3) और (-3, 5) से समदूरस्थ है।
(h, 0) की बिन्दु (1, 3) से दूरी = (h, 0) से बिन्दु (-3, 5) से दूरी
\(\sqrt{(h-1)^{2}+(0-3)^{2}}=\sqrt{\{h-(-3)\}^{2}+(0-5)^{2}}\)
दोनों पक्षों का वर्ग करने पर,
h2 + 1 – 2h + 9 = h2 + 9 + 6h + 25
⇒ -2h – 6h = 25 – 1
⇒ -8h = 24
⇒ h = \(-\frac{24}{8}\) = -3
अभीष्ट बिन्दु = (-3, 0)

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 2.
उस बिन्दु के निर्देशांक ज्ञात कीजिए जो बिन्दुओं (1, -2) और (-3, 4) को मिलाने वाले रेखाखण्ड को 2 : 3 में अन्तःविभाजित करता है।
हल
रेखाखण्ड के सिरों के निर्देशांक (1, -2) व (-3, 4)
यहाँ x1 = 1, y1 = -2, x2 = -3, y2 = 4, m1 : m2 = 2 : 3
माना अन्त:विभाजक बिन्दु के निर्देशांक (x, y) हैं।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions SAQ 2

प्रश्न 3.
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (3, 4), (2, -1) और (4, -6) हैं।
हल
त्रिभुज के शीर्षों के निर्देशांक (3, 4), (2, -1) व (4, -6)
यहाँ x1 = 3, y1 = 4, x2 = 2, y2 = -1, x3 = 4, y3 = -6
उक्त शीर्षों से बने त्रिभुज का क्षेत्रफल
= \(\frac{1}{2}\) [x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]
= \(\frac{1}{2}\) [3{-1 – (-6)} + 2(-6 – 4) + 4{4 – (-1)}]
= \(\frac{1}{2}\) [3{-1 + 6 } + 2 × (-10) + 4{4 + 1}]
= \(\frac{1}{2}\) [3 × {5} + 2 × (-10) + 4 × {5}]
= \(\frac{1}{2}\) [15 – 20 + 20]
= \(\frac{1}{2}\) [5]
= \(\frac{15}{2}\)
= 7.5 वर्ग मात्रक
अतः दिए गए शीर्षों वाले त्रिभुज का क्षेत्रफल = 7.5 वर्ग मात्रक

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 4.
वह अनुपात ज्ञात कीजिए जिसमें बिन्दुओं A(6, 4) और B(1, -7) को मिलाने वाला रेखाखण्ड x-अक्ष से अन्तः विभाजित होता है। इस विभाजन बिन्दु के निर्देशांक भी ज्ञात कीजिए।
हल
माना बिन्दुओं A(6, 4) और B (1, -7) को मिलाने वाला रेखाखण्ड X-अक्ष से बिन्दु (h, 0) पर m1 : m2 के अनुपात में अन्तः विभाजित होता है।
यहाँ x1 = 6, y1 = 4, x2 = 1, y2 = -7
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions SAQ 4

प्रश्न 5.
k का मान ज्ञात कीजिए, यदि बिन्दु A (k, -1), B(6, 7) और C(8, 11) संरेखी है।
हल
दिए गए बिन्दु A = (k, -1), B = (5, 7) और C = (8, 11)
यहाँ x1 = k, y1 = -1, x2 = 5, y2 = 7, x3 = 8, y3 = 11
त्रिभुज ABC का क्षेत्रफल = \(\frac{1}{2}\) [{x1y2 + x2y3 + x3y1} – {y1x2 + y2x3 + y3x1}]
= \(\frac{1}{2}\) [{k × 7 + 5 × 11 + 8 × -1} – {(-1) × 5 + 7 × 8 + 11 × k}]
= \(\frac{1}{2}\) [7k + 55 – 8 – (-5 + 56 + 11k)]
= \(\frac{1}{2}\) [7k + 47 – 51 – 116]
= \(\frac{1}{2}\) [-4k – 4]
यदि बिन्दु A, B तथा C संरेखी हैं तो उनसे बने ∆ का क्षेत्रफल शून्य होगा।
\(\frac{1}{2}\) (-4k – 4) = 0
⇒ -4k – 4 = 0
⇒ k = \(\frac{-4}{4}\) = -1

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 6.
यदि बिन्दु A(6, 1), B(8, 2), C(9, 4) और (P, 3) एक समान्तर चतुर्भुज के क्रमश: शीर्ष हों तो P का मान ज्ञात कीजिए।
हल
दिए हुए बिन्दु A = (6, 1), B = (8, 2), C = (9, 4) और D = (P, 3)
उक्त बिन्दुओं को क्रमशः मिलाने पर यदि एक समान्तर चतुर्भुज ABCD बनता है तो AC और BD उस समान्तर चतुर्भुज के विकर्ण होंगे।
किसी समान्तर चतुर्भुज के विकर्ण परस्पर समद्विभाजित करते हैं।
AC का समद्विभाजक BD होगा और BD का समद्विभाजक AC होगा, अर्थात् AC का मध्य-बिन्दु वही होगा जो BD का मध्य-बिन्दु है।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions SAQ 6

प्रश्न 7.
सिद्ध कीजिए कि बिन्दु (a, 0), (0, b) और (1,1) समरेखीय हैं, यदि \(\frac{1}{a}+\frac{1}{b}=1\)
हल
दिए गए बिन्दुओं (a, 0), (0, b) और (1, 1) से बने त्रिभुज का क्षेत्रफल
= \(\frac{1}{2}\) [{a × b + 0 × 1 + 1 × 0} – {0 × 0 + b × 1 + 1 × a}]
= \(\frac{1}{2}\) (ab – b – a)
बिन्दु समरेखीय हैं तो इससे बने Δ का क्षेत्रफल शून्य होगा।
⇒ \(\frac{1}{2}\) (ab – a – b) = 0
⇒ ab – a – b = 0
⇒ a + b = ab
ab से दोनों पक्षों को भाग करने पर,
⇒ \(\frac{a}{a b}+\frac{b}{a b}=\frac{a b}{a b}\)
⇒ \(\frac{1}{b}+\frac{1}{a}=1\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 8.
यदि बिन्दु (4, 3) एवं (5, 7) के बीच की दूरी √17 इकाई हो तो y का मान ज्ञात कीजिए।
हल
दिया है, बिन्दु (4, 3) एवं (5, 5) के बीच की दूरी = √17
\(\sqrt{(5-4)^{2}+(y-3)^{2}}=\sqrt{17}\)
दोनों पक्षों का वर्ग करने पर,
(1)2 + (y – 3)2 = 17
⇒ (y – 3)2 = 17 – 1 = 16
⇒ y – 3 = ±4
⇒ y – 3 = 4
⇒ y = 7
तथा y – 3 = -4
⇒ y = -4 + 3 = -1
∴ y = 7, -1

प्रश्न 9.
P के किस मान के लिए बिन्दु (2, 1), (P, 1) तथा (2P + 1, 2) संरेख होंगे?
हल
माना A = (2, 1), B = (P, 1), C = (2P + 1, 2)
बिन्दुओं A, B,C से बने त्रिभुज का क्षेत्रफल = \(\frac{1}{2}\) [(x1y2 + x2y3 + x3y1) – (y1x2 + y2x3 + y3x1)]
यहाँ, x1 = 2, y1 = 1, x2 = P, y2 = 1, x3 = 2P + 1, y3 = 2
क्षेत्रफल = \(\frac{1}{2}\) [2 × 1 + P × 2 + (2P + 1) × 1 – 1 × P + 1 × (2P + 1) + 2 × 2]
= \(\frac{1}{2}\) [2 + 2P + 2P + 1 – P – 2P – 1 – 4]
= \(\frac{1}{2}\)[4P – 3P + 3 – 1 – 4]
= \(\frac{1}{2}\) [P – 2]
∵ बिन्दु संरेख हैं
∴ क्षेत्रफल = 0
\(\frac{1}{2}\) (P – 2) = 0
या P – 2 = 2 × 0 = 0
या P = 2

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 10.
यदि बिन्दु (x, y), (1, 2) तथा (7, 0) संरेखी हैं तो सिद्ध कीजिए x + 3y = 7.
हल
दिए गए बिन्दु (x, y), (1, 2), (7, 0)
यहाँ x1 = x, x2 = 1, x3 = 7, y1 = y, y2 = 2, y3 = 0
अत: इन बिन्दुओं से बने त्रिभुज का क्षेत्रफल
∆ = \(\frac{1}{2}\) [(x1y2 + x2y3 + x3y1) – (y1x2 + y2x3 + y3x1)]
= \(\frac{1}{2}\) [(x × 2 + 1 × 0 + 7 × y) – (y × 1 + 2 × 7 + 0 × x)]
= \(\frac{1}{2}\) [(2x + 7y) – (y + 14)]
= \(\frac{1}{2}\) [2x + 7y – y – 14]
= x + 3y – 7
यदि उक्त बिन्दु संरेखी हैं तो त्रिभुज का क्षेत्रफल ∆ = 0
x + 3y – 7 = 0
⇒ x + 3y = 7
इति सिद्धम्

प्रश्न 11.
बिन्दुओं P(2, 3), Q(4, 0) और R (6, -3) से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। शून्य वर्ग मात्रक क्षेत्रफल वाले त्रिभुज का क्या आशय है?
हल
त्रिभुज के शीर्ष : P = (2, 3), Q = (4, 0) और R = (6, -3)
यहाँ x1 = 2, x2 = 4, x3 = 6, y1 = 3, y2 = 0, y3 = -3
त्रिभुज का क्षेत्रफल = \(\frac{1}{2}\) [(x1y2 + x2y3 + x3y1) – (y1x2 + y2x3 + y3x1)]
= \(\frac{1}{2}\) [(2 × 0 + 4 × (-3) + 6 × (3)) – (3 × 4 + 0 × 6 + (-3) × 2)]
= \(\frac{1}{2}\) [(0 – 12 + 18) – (12 + 0 – 6)]
= \(\frac{1}{2}\) [6 – 6]
= 0
अतः त्रिभुज का क्षेत्रफल शून्य वर्ग मात्रक है। इसका आशय है कि तीनों बिन्दु संरेख हैं।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 12.
बिन्दुओं P(-1.5, 3),Q(6, -2) और R(-3, 4) से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। उत्तर की विवेचना भी कीजिए।
हल
त्रिभुज के शीर्ष हैं :
P(-1.5, 3), Q(6, -2) और R(-3, 4)
यहाँ x1 = -1.5, x2 = 6, x3 = -3, y1 = 3, y2 = -2, y3 = 4
त्रिभुज का क्षेत्रफल = \(\frac{1}{2}\) [(x1y2 + x2y3 + x3y1) – (y1x2 + y2x3 + y3x1)]
= \(\frac{1}{2}\) [{(-1.5) × (-2) + 6 × 4 + (-3) × 3} – {3 × 6 + (-2) × (-3) + 4 × (-1.5)}]
= \(\frac{1}{2}\) [(3 + 24 – 9) – (18 + 6 – 6)]
= \(\frac{1}{2}\) (18 – 18)
= 0
अत: त्रिभुज का क्षेत्रफल शून्य वर्ग मात्रक है। इसका आशय है कि तीनों बिन्दु संरेख हैं।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
दिखाइए कि बिन्दु (12, 8), (-2, 6) और (6, 0) एक समकोण त्रिभुज के शीर्ष हैं।
हल
दिए गए बिन्दु (12, 8), (-2, 6) और (6, 0)
माना A = (12, 8), B = (-2, 6) और C = (6, 0)
यहाँ x1 = 12, y1 = 8, x2 = -2, y2 = 6, x3 = 6, y3 = 0
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions LAQ 1
स्पष्ट है कि भुजा AB सबसे बड़ी भुजा है।
तब, AB = √200 और BC = √100 व CA = √100
⇒ AB2 = 200 और BC2 = 100 व CA2 = 100
⇒ AB2 = BC2 + CA2
∴ A, B, C एक ऐसे समकोण त्रिभुज के शीर्ष हैं जिसमें कर्ण AB तथा ∠C समकोण है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 2.
दिए गए ग्राफ से ∆ABC का क्षेत्रफल ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions LAQ 2
हल
दिए गए ग्राफ से ∆ABC के शीर्ष क्रमश:
A = (x1, y1) = (3, 4), B = (x2, y2) = (-4, 0) तथा C = (x3, y3) = (7, 0) हैं।
यहाँ x1 = 3, y1 = 4, x2 = -4, y2 = 0, x3 = 7, y3 = 0
∆ABC का क्षेत्रफल = \(\frac{1}{2}\) [x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]
= \(\frac{1}{2}\) [3(0 – 0) + (-4) (0 – 4) + 7(4 – 0)]
= \(\frac{1}{2}\) [0 + 16 + 28]
= \(\frac{1}{2}\) × 44
= 22 वर्ग मात्रक

प्रश्न 3.
यदि A और B क्रमशः (-2, -2) और (2, -4) हों तो बिन्दु P के निर्देशांक ज्ञात कीजिए, ताकि 4AP = 3PB हो और P रेखाखण्ड AB पर स्थित हो।
हल
प्रश्नानुसार, A = (x1, y1) = (-2, -2) तथा B = (x2, y2) = (2, -4)
यहाँ x1 = -2, x2 = 2, y1 = -2, y2 = -4
प्रश्नानुसार, बिन्दु P, रेखाखण्ड AB पर इस प्रकार स्थित है कि
4AP = 3PB
⇒ \(\frac{A P}{P B}=\frac{3}{4}\)
⇒ AP : PB = 3 : 4
अर्थात् बिन्दु P, AB को 3 : 4 में अन्त:विभाजित करता है।
m1 = 3 तथा m2 = 4
यदि P के निर्देशांक (x, y) हैं तो अन्त:विभाजन के सूत्र से,
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions LAQ 3

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions

प्रश्न 4.
बिन्दुओं (-6, 10) और (3, -8) को जोड़ने वाले रेखाखण्ड को बिन्दु (-4, 6) किस अनुपात में विभाजित करता है।
हल
माना बिन्दुओं (-6, 10) और (3, -8) को जोड़ने वाले रेखाखण्ड को बिन्दु (-4, 6) m1 : m2 में विभाजित करता है, तब
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions LAQ 4
दोनों ही निर्देशाक्षों से, m1 : m2 = 2 : 7
अतः अभीष्ट अनुपात = 2 : 7

प्रश्न 5.
दर्शाइए कि बिन्दु (3, 2), (-2, -3) और (2, 3) एक समकोण त्रिभुज के शीर्ष है।
हल
दिए गए बिन्दु (3, 2), (-2, -3) और (2, 3) हैं।
माना A = (3, 2), B = (-2, -3) और C = (2, 3)
यहाँ x1 = 3, y1 = 2, x2 = -2, y2 = -3, x3 = 2, y3 = 3
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Additional Questions LAQ 5
स्पष्ट है कि भुजा BC सबसे बड़ी भुजा है।
तब, BC = √52 और AB = √50 व CA = √2
⇒ BC2 = 52 और AB2 = 50 व CA2 = 2
⇒ BC2 = AB2 + CA2
A, B, C एक ऐसे समकोण त्रिभुज के शीर्ष हैं जिसमें कर्ण BC तथा CA समकोण है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

Bihar Board Class 10 Maths निर्देशांक ज्यामिति Ex 7.2

प्रश्न 1.
उस बिन्दु के निर्देशांक ज्ञात कीजिए, जो बिन्दुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखण्ड को 2 : 3 के अनुपात में विभाजित करता है।
हल
दिए गए बिन्दु (-1, 7) और (4, -3)
यहाँ x1 = -1, y1 = 7, x2 = 4, y2 = -3
तथा m1 : m2 = 2 : 3
माना विभाजक बिन्दु P(x, y) है।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q1
अत: अभीष्ट बिन्दु के निर्देशांक = (1, 3)

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

प्रश्न 2.
बिन्दुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखण्ड को समत्रिभाजित करने वाले बिन्दुओं के निर्देशांक ज्ञात कीजिए।
हल
माना A = (4, -1) तथा B = (-2, -3) दिए गए बिन्दु हैं।
माना बिन्दु P (x, y) तथा Q (x’, y’) AB को समत्रिभाजित करते हैं।
तब, AP : PB = 1 : 2 और AQ : QB = 2 : 1,
यहाँ x1 = 4, y1 = -1, x2 = -2, y2 = -3
तथा m1 : m2 = 1 : 2
तब, बिन्दु P के लिए :
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q2
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q2.1

प्रश्न 3.
आपके स्कूल में खेल-कूद क्रियाकलाप आयोजित करने के लिए, एक आयताकार मैदान ABCD में, चूने से परस्पर 1 m की दूरी पर पंक्तियाँ बनाई गई हैं। AD के अनुदिश परस्पर 1 m की दूरी पर 100 गमले रखे गए हैं, जैसा कि आकृति में दर्शाया गया है। निहारिका दूसरी पंक्ति में AD के \(\frac{1}{4}\) भाग के बराबर की दूरी दौड़ती है और वहाँ एक हरा झण्डा गाड़ देती है। प्रीत आठवीं पंक्ति में AD के \(\frac{1}{5}\) भाग के बराबर की दूरी दौड़ती है और वहाँ एक लाल झण्डा गाड़ देती है। दोनों झण्डों के बीच की दूरी क्या है? यदि रश्मि को एक नीला झण्डा इन दोनों झण्डों को मिलाने वाले रेखाखण्ड पर ठीक आधी दूरी (बीच में) पर गाड़ना न हो तो उसे अपना झण्डा कहाँ गाड़ना चाहिए?
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q3
हल
भुजा AD पर 1 m की दूरी पर 100 गमले रखे गए हैं।
AD = 100 m
निहारिका के झण्डे की स्थिति = दूसरी पंक्ति में AD का \(\frac{1}{4}\) भाग के बराबर दूरी
= दूसरी पंक्ति में 100 का \(\frac{1}{4}\)
= 25 m
= (2, 25)
प्रीत के झण्डे की स्थिति = आठवीं पंक्ति में AD का \(\frac{1}{5}\) भाग के बराबर दूरी
= आठवीं पंक्ति में 100 का \(\frac{1}{5}\)
= 20 m
= (8, 20)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q3.1
रश्मि को इन दोनों झण्डों को मिलाने वाले रेखाखण्ड के मध्य-बिन्दु पर झण्डा गाड़ना है, तब (2, 25) और (8, 20) के मध्य-बिन्दु के निर्देशांक
= \(\left(\frac{2+8}{2}, \frac{25+20}{2}\right)\)
= \(\left(5, \frac{45}{2}\right)\)
अत: रश्मि को पाँचवीं पंक्ति में AD के अनुदिश \(\frac{45}{2}\) m दूरी पर झण्डा गाड़ना चाहिए।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

प्रश्न 4.
बिन्दुओं (-3, 10) और (6, -8) को जोड़ने वाले रेखाखण्ड को बिन्दु (-1, 6) किस अनुपात में विभाजित करता है।
हल
माना बिन्दुओं (-3, 10) और (6, -8) को जोड़ने वाले रेखाखण्ड को बिन्दु (-1, 6), m1 : m2 में विभक्त करता है, तब
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q4
दोनों ही निर्देशांकों से, m1 : m2 = 2 : 7
अत: अभीष्ट अनुपात = 2 : 7

प्रश्न 5.
वह अनुपात ज्ञात कीजिए जिसमें बिन्दुओं A(1, -5) और B(-4, 5) को मिलाने वाला रेखाखण्ड X-अक्ष से विभाजित होता है। इस विभाजन बिन्दु के निर्देशांक भी ज्ञात कीजिए।
हल
दिए हुए बिन्दु A = (1, -5) और B = (-4, 5)
यहाँ x1 = 1, y1 = -5, x2 = -4, y2 = 5
माना रेखाखण्ड AB का X-अक्ष से अनुपात m1 : m2 में विभाजित होता है।
X-अक्ष के लिए y = 0 होता है।
विभाजक बिन्दु (x, 0) होगा जिसके लिए
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q5
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q5.1
अत: X-अक्ष से रेखाखण्ड AB बिन्दु (\(-\frac{3}{2}\), 0) पर 1 : 1 में विभाजित है।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

प्रश्न 6.
यदि बिन्दु (1, 2), (4, 3), (x, 6) और (3, 5) इसी क्रम में लेने पर, एक समान्तर चतुर्भुज के शीर्ष हों तो x और y ज्ञात कीजिए।
हल
माना ABCD एक समान्तर चतुर्भुज है जिनमें A = (1, 2), B = (4, y), C = (x, 6) तथा D = (3, 5)
इसके विकर्ण AC तथा BD परस्पर समद्विभाजित करेंगे।
AC का मध्य-बिन्दु = बिन्दुओं (1, 2) तथा (x, 6) का मध्य-बिन्दु
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q6
BD का मध्य-बिन्दु = बिन्दुओं (4, 3) तथा (3, 5) का मध्य-बिन्दु
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q6.1
∵ AC और BD परस्पर समद्विभाजित करते हैं
∵ AC का मध्य-बिन्दु वही होगा जो BD का है।
\(\frac{1+x}{2}=\frac{7}{2}\)
⇒ 1 + x = 7
⇒ x = 6
और \(\frac{y+5}{2}=4\)
⇒ y + 5 = 8
⇒ y = 3
अत: x = 6, और y = 3

प्रश्न 7.
बिन्दु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केन्द्र (2, -3) है तथा B के निर्देशांक (1, 4) हैं।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q7Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q8
हल
केन्द्र के निर्देशांक = (2, -3)
तथा बिन्दु B के निर्देशांक = (1, 4)
माना बिन्दु A के निर्देशांक (x1, y1) हैं।
x1 = 2, y1 = -3, x2 = 1, y2 = 4
माना केन्द्र O के निर्देशांक (x, y) = (2, -3) व्यास AB के मध्य-बिन्दु पर है।
\(x=\frac{x_{1}+x_{2}}{2}\) तथा \(y=\frac{y_{1}+y_{2}}{2}\)
⇒ \(2=\frac{x_{1}+1}{2}\) तथा \(-3=\frac{y_{1}+4}{2}\)
⇒ x1 + 1 = 4 तथा y1 + 4 = -6
⇒ x1 = 4 – 1 = 3 तथा y1 = – 6 – 4 = -10
अत: बिन्दु A के निर्देशांक = (3, -10)

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

प्रश्न 8.
यदि A और B क्रमशः (-2, -2) और (2, -4) हों तो बिन्दु P के निर्देशांक ज्ञात कीजिए ताकि AP = \(\frac{3}{7}\) AB हो और P रेखाखण्ड AB पर स्थित हो।
हल
दिया है, A = (-2, -2), और B = (2, -4)
यहाँ x1 = – 2, y1 = -2, x2 = 2, y2 = -4
AP = \(\frac{3}{7}\) AB
⇒ AP = \(\frac{3}{7}\) (AP + PB)
⇒ 7AP = 3AP + 3PB
⇒ 4AP = 3PB
⇒ AP : PB = 3 : 4
⇒ m1 : m2 = 3 : 4
यदि P के निर्देशांक (x, y) हो तो
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q8

प्रश्न 9.
बिन्दुओं A(-2, 2) और B(2, 8) को जोड़ने वाले रेखाखण्ड AB को चार बराबर भागों में विभाजित करने वाले बिन्दुओं के निर्देशांक ज्ञात कीजिए।
हल
माना बिन्दु A = (-2, 2) और B = (2, 8)
तब, रेखाखण्ड AB को दो बराबर भागों में बाँटने वाले बिन्दु Q के निर्देशांक = बिन्दुओं (-2, 2) तथा (2,8) के मध्य-बिन्दु के निर्देशांक
= \(\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)\)
= (0, 5)
Q = (0, 5)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q9
तब, रेखाखण्ड AQ के मध्य-बिन्दु P के निर्देशांक
\(=\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)=\left(-1, \frac{7}{2}\right)\)
और रेखाखण्ड QB के मध्य-बिन्दु R के निर्देशांक
\(=\left(\frac{0+2}{2}, \frac{5+8}{2}\right)=\left(1, \frac{13}{2}\right)\)
अत: दिए हुए बिन्दुओं को 4 बराबर भागों में बाँटने वाले बिन्दुओं P, Q व R के निर्देशांक क्रमशः (-1, \(\frac{7}{2}\)),(0, 5) व (1, \(\frac{13}{2}\)) हैं।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2

प्रश्न 10.
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q10
हल
माना A = (3, 0), B = (4, 5), C = (-1, 4) और D = (-2, -1)
समचतुर्भुज ABCD का विकर्ण
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q10.1
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.2 Q10.2

समचतुर्भुज का क्षेत्रफल = \(\frac {1}{2}\) × एक विकर्ण × दूसरा विकर्ण
= \(\frac {1}{2}\) × AC × BD
= \(\frac {1}{2}\) × 4√2 × 6√2
= \(\frac {1}{2}\) × 24 × 2
= 24 वर्ग मात्रक
अतः समचतुर्भुज का क्षेत्रफल = 24 वर्ग मात्रक

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

Bihar Board Class 10 Maths निर्देशांक ज्यामिति Ex 7.1

प्रश्न 1.
बिन्दुओं के निम्नलिखित युग्मों के बीच की दूरियाँ ज्ञात कीजिए
(i) (2, 3), (4, 1)
(ii) (-5, 7), (-1, 3)
(iii) (a, b), (-a, -b)
हल
(i) दिए हुए बिन्दु (2, 3) व (4, 1)
यहाँ x1 = 2, y1 = 3, x2 = 4, y2 = 1
बिन्दुओं (2, 3) व (4, 1) के बीच की दूरी
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q1
अत: दिए हुए बिन्दुओं के बीच की दूरी = 2√2 मात्रक

(ii) दिए हुए बिन्दु (-5, 7) व (-1, 3)
यहाँ x1 = -5, y1 = 7, x2 = -1, y2 = 3
बिन्दुओं (-5, 7) व (-1, 3) के बीच की दूरी
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q1.2
अत: दिए हुए बिन्दुओं के बीच की दूरी = 4√2 मात्रक

(iii) दिए हुए बिन्दु (a, b) व (-a, -b)
यहाँ x1 = a, y1 = b, x2 = -a, y2 = -b
बिन्दुओं (a, b) और (-a, -b) के बीच की दूरी
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q1.2
अत: दिए हुए बिन्दुओं के बीच की दूरी = \(2 \sqrt{a^{2}+b^{2}}\) मात्रक

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

प्रश्न 2.
बिन्दुओं (0, 0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A व B के बीच की दूरी ज्ञात कर सकते हैं?
हल
दिए हुए बिन्दु (0, 0) व (36, 15)
यहाँ x1 = 0, y1 = 0, x2 = 36, y2 = 15
बिन्दुओं (0, 0) व (36, 15) के बीच की दूरी
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q2
अत: दिए हुए बिन्दुओं के बीच की दूरी = 39 मात्रक
हाँ, हम ज्ञात कर सकते हैं :
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q2.1
अनुच्छेद 7.2 में दिए गए शहरों के, कार्तीय निर्देशांक पद्धति के सापेक्ष निर्देशांक A = (0, 0) तथा B = (36, 15)
शहरों के बीच की दूरी
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q2.2

प्रश्न 3.
निर्धारित कीजिए कि क्या बिन्दु (1, 5) (2, 3) और (-2, -11) संरेखी हैं?
हल
माना दिए हुए बिन्दु P = (1, 5), Q = (2, 3) तथा R = (-2, -11) हैं।
यहाँ x1 = 1, y1 = 5, x2 = 2, y2 = 3, x3 = -2, y3 = -11
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q3
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q4
PQ + QR = 2.23 + 14.56 = 16.79 ≠ RP
अतः दिए गए बिन्दु संरेख नहीं हैं।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

प्रश्न 4.
जाँच कीजिए कि क्या बिन्दु (5, -2), (6, 4) और (7, -2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
हल
माना दिए हुए बिन्दु P = (5, -2), Q = (6, 4) और R = (7, -2) हैं, जो ΔPQR के शीर्ष हैं :
यहाँ x1 = 5, y1 = -2, x2 = 6, y2 = 4, x3 = 7, y3 = -2
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q4
ΔPQR में, PQ = QR
⇒ ΔPQR समद्विबाहु है।
अतः दिए गए बिन्दु एक समद्विबाहु त्रिभुज के शीर्ष हैं।

प्रश्न 5.
किसी कक्षा में, चार मित्र बिन्दुओं A, B, C और D पर बैठे हुए हैं, जैसा कि आकृति में दर्शाया गया है। चम्पा और चमेली कक्षा के अन्दर आती हैं और कुछ मिनट तक देखने के बाद, चम्पा चमेली से पूछती है, ‘क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?’ चमेली इससे सहमत नहीं है। दूरी सूत्र का प्रयोग करके, बताइए कि इनमें कौन सही है?
हल
दी गई आकृति से बिन्दुओं A, B, C व D के निर्देशांक क्रमशः (3, 4), (6, 7), (9, 4), (6, 1) हैं।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q5
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q5.1
∵ चतुर्भुज ABCD की चारों भुजाएँ AB, BC, CD, DA परस्पर बराबर हैं और चतुर्भुज के विकर्ण AC व BD भी बराबर हैं।
अत: चतुर्भुज ABCD एक वर्ग है। चम्पा सही है।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

प्रश्न 6.
निम्नलिखित बिन्दुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए-
(i) (-1, -2), (1, 0),(-1, 2),(-3, 0)
(ii) (-3, 5), (3, 1), (0, 3),(-1, -4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2)
हल
(i) माना P = (-1, -2), Q = (1, 0), R = (-1, 2), S = (-3, 0)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q6.2
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q6.1
∵ PQ2 + QR2 = (2√2)2 + (2√2)2 = 8 + 8 = 16 = PR2
∴ ∠Q समकोण है और चतुर्भुज की चारों भुजाएँ बराबर हैं।
अत: उक्त बिन्दुओं से बनने वाला चतुर्भुज एक वर्ग है।

(ii) (-3, 5), (3, 1), (0, 3), (-1, -4)
माना P = (-3, 5), Q = (3, 1), R = (0, 3), S = (-1, -4)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q6.2 (1)
QR + RP = √13 + √13 = 2√13 = PQ
बिन्दु P, Q, R एक रेखा में हैं।
अत: बिन्दुओं P, Q, R व S से चतुर्भुज नहीं बनेगा।

(iii) माना P = (4, 5), Q = (7, 6), R = (4, 3) तथा S = (1, 2)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q6.3
∵ बिन्दुओं P, Q, R, S से बने चतुर्भुज PQRS में PQ = RS तथा QR = SP अर्थात् सम्मुख भुजाएँ बराबर हैं।
अत: चतुर्भुज PQRS एक समान्तर चतुर्भुज है।

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

प्रश्न 7.
X-अक्ष पर वह बिन्दु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ है।
हल
माना X-अक्ष पर स्थित किसी बिन्दु के निर्देशांक (h, 0) हैं (क्योंकि x-अक्ष के लिए y-निर्देशांक शून्य होता है)।
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q7
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q7.1

प्रश्न 8.
y का वह मान ज्ञात कीजिए, जिसके लिए बिन्दु P(2, -3) और Q(10, y) के बीच की दूरी 10 मात्रक है।
हल
दिए हुए बिन्दु P = (2, -3) और Q = (10, 1)
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q8
परन्तु प्रश्न में दिया है कि दोनों बिन्दुओं के बीच की दूरी (PQ) = 10 मात्रक
\(\sqrt{8^{2}+(y+3)^{2}}=10\)
दोनों पक्षों का वर्ग करने पर,
82 + (y + 3)2 = 102
⇒ (y + 3)2 = 102 – 82 = 100 – 64
⇒ (y + 3)2 = 36
⇒ (y + 3)2 = ±6
यदि y + 3 = +6 तो y = +6 – 3 = 3
और यदि y + 3 = -6 तो y = – 6 – 3 = -9
अतः y के अभीष्ट मान = 3, -9

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

प्रश्न 9.
यदि Q(0, 1) बिन्दुओं P(6, -3) और R(x, 6) से समदूरस्थ है तो x के मान ज्ञात कीजिए। दूरियाँ QR और PR भी ज्ञात कीजिए।
हल
Q = (0, 1), P = (5, -3) और R = (x, 6)
बिन्दु Q(0, 1) बिदुओं (5, -3) व R(x, 6) से समदूरस्थ है।
अर्थात् PQ = QR
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q9

Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1

प्रश्न 10.
x और y में एक ऐसा सम्बन्ध ज्ञात कीजिए कि बिन्दु (x, y)बिन्दुओं (3, 6) और (-3, 4)से समदूरस्थ हो।
हल
माना बिन्दु P = (x, y), Q = (3, 6) तथा R = (-3, 4)
बिन्दु P(x, y) बिन्दुओं Q (3, 6) व R(-3, 4) से समदूरस्थ है।
अर्थात् PQ = PR
Bihar Board Class 10 Maths Solutions Chapter 7 निर्देशांक ज्यामिति Ex 7.1 Q10
दोनों पक्षों का वर्ग करने पर,
(x – 3)2 + (y – 6)2 = [x – (-3)]2 + (y – 4)2
⇒ x2 – 6x + 9 + y2 – 12y + 36 = (x + 3)2 + (y – 4)2
⇒ x2 + y2 – 6x – 12y + 45 = x2 + 6x + 9 + y2 – 8y + 16
⇒ x2 + y2 – 6x – 12y + 45 = x2 + y2 + 6x – 8y + 25
⇒ -6x – 12 y = 6x – 8 y + 25 – 45
⇒ -6x – 12y – 6x + 8y = -20
⇒ -12x – 4y = -20
⇒ 3x + y = 5 [∵ (-4) से दोनों पक्षों में भाग देने पर]
अत: अभीष्ट सम्बन्ध : 3x + y = 5

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

Bihar Board Class 10 Maths त्रिभुज Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
आकृति में, O दो जीवाओं को AB और CD का प्रतिच्छेद बिन्दु इस प्रकार है कि OB = OD है, तो त्रिभुज OAC और ODB हैं
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions MCQ 1
(i) समबाहु परन्तु समरूप नहीं
(ii) समद्धिबाहु परन्तु समरूप नहीं
(iii) समबाहु और समरूप
(iv) समद्विबाहु और समरूप
हल
(iv) समद्विबाहु और समरूप

प्रश्न 2.
एक त्रिभुज ABC की भुजाओं AB और AC पर क्रमशः बिन्दु D और E इस प्रकार स्थित हैं कि AD = 2 cm, BD = 3 cm, BC = 7.5 cm और DE || BC है। तब, DE की लम्बाई (cm में) है-
(i) 2.5
(ii) 3
(iii) 5
(iv) 6
हल
(ii) 3

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 3.
आकृति में, ∠BAC = 90° और AD ⊥ BC हैं। तब,
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions MCQ 3
(i) BD . CD = BC2
(ii) AB . AC = BC2
(iii) BD . CD = AD2
(iv) AB . AC = AD2
हल
(iii) BD . CD = AD2

प्रश्न 4.
एक समचतुर्भुज के विकर्णों की लम्बाइयाँ 16 cm और 12 cm हैं। तब, इस समचतुर्भुज की भुजा की लम्बाई है
(i) 9 cm
(ii) 10 cm
(iii) 8 cm
(iv) 20 cm
हल
(ii) 10 cm

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 5.
यदि ∆ABC ~ ∆EDF और ∆ABC ~ ∆DEF के समरूप नहीं है, तो निम्नलिखित में कौन सत्य नहीं है?
(i) BC . EF = AC . FD
(ii) AB . EF = AC · DE
(iii) BC . DE = AB . EF
(iv) BC . DE = AB . FD
हल
(ii) AB . EF = AC . DE

प्रश्न 6.
यदि दो त्रिभजों ABC और PQR में \(\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}\) है तो
(i) ∆PQR ~ ∆CAB
(ii) ∆PQR ~ ∆ABC
(iii) ∆CBA ~ ∆PQR
(iv) ∆BCA ~ ∆PQR
हल
(i) ∆PQR ~ ∆CAB

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 7.
आकृति में, दो रेखाखण्ड AC और BD परस्पर बिन्दु P पर इस प्रकार प्रतिच्छेद करते हैं कि PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, ∠APB = 50° और ∠CDP = 30° है तब, ∠PBA बराबर है
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions MCQ 7
(i) 50°
(ii) 30°
(iii) 60°
(iv) 100°
हल
(iv) 100°

प्रश्न 8.
त्रिभुजों ABC और DEF में, ∠B = ∠E, ∠F = ∠C तथा AB = 3DE है। तब दोनों त्रिभुज हैं
(i) सर्वांगसम परन्तु समरूप नहीं
(ii) समरूप परन्तु सर्वांगसम नहीं
(iii) न तो सर्वांगसम और न ही समरूप
(iv) सर्वांगसम और समरूप दोनों
हल
(ii) समरूप परन्तु सर्वांगसम नहीं

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 9.
यह दिया है कि \(\frac{B C}{Q R}=\frac{1}{3}\) के साथ ∆ABC ~ ∆PQR है। तब \(\frac { ar(PQR) }{ ar(BCA) }\) बराबर है
(i) 9
(ii) 3
(iii) \(\frac {1}{3}\)
(iv) \(\frac {1}{9}\)
हल
(i) 9

प्रश्न 10.
∆ABC ~ ∆DFE, ∠A = 30°, ∠C = 50°, AB = 5 cm, AC = 8 cm और DF = 7.5 cm दिया हुआ है। तब, निम्नलिखित सत्य है
(i) DE = 12 cm, ∠F = 50°
(ii) DE = 12 cm, ∠F = 100°
(iii) EF = 12 cm, ∠D = 100°
(iv) EF = 12 cm, ∠D = 30°
हल
(ii) DE = 12 cm, ∠F = 100°

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 11.
यदि त्रिभुज ABC और DEF में, \(\frac{A B}{D E}=\frac{B C}{F D}\) है, तो ये समरूप होंगे, जब
(i) ∠B = ∠E
(ii) ∠A = ∠D
(iii) ∠B = ∠D
(iv) ∠A = ∠F
हल
(iii) ∠B = ∠D

प्रश्न 12.
यदि ∆ABC ~ ∆QRP, \(\frac { ar(ABC) }{ ar(PQR) } =\frac { 9 }{ 4 }\), AB = 18 cm और BC = 15 cm है, तो PR बराबर है
(i) 10 cm
(ii) 12 cm
(iii) \(\frac {20}{3}\) cm
(iv) 8 cm
हल
(i) 10 cm

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 13.
यदि ∆PQR की एक भुजा PQ पर S एक ऐसा बिन्दु है कि PS = QS = RS है, तो
(i) PR . QR = RS2
(ii) QS2 + RS2 = QR2
(iii) PR2 + QR2 = PQ2
(iv) PS2 + RS2 = PR2
हल
(iii) PR2 + QR2 = PQ2

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
दिए गए चित्र में, DE, BC के समान्तर है तथा AD = 2 cm, BD = 3 cm , त्रिभुज ABC तथा त्रिभुज ADE के क्षेत्रफल में अनुपात ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 1
हल
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 1.1

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 2.
चित्र में, EF || BC, यदि AE : BE = 4 : 1 और CF = 1.5 cm हो, तो AF की लम्बाई क्या होगी?
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 2
हल
EF || BC
\(\frac{A E}{E B}=\frac{A F}{C F}\)
⇒ \(\frac{4}{1}=\frac{A F}{1.5}\)
⇒ AF = 4 × 1.5 = 6.0 cm

प्रश्न 3.
दो समरूप त्रिभुजों की भुजाएँ 4 : 5 के अनुपात में हैं। उनके क्षेत्रफलों का अनुपात ज्ञात कीजिए।
हल
क्षेत्रफलों का अनुपात = संगत भुजाओं के वर्गों का अनुपात = (4)2 : (5)2 = 16 : 25

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 4.
आकृति में, \(\frac{O A}{O C}=\frac{O D}{O B}\) है। ∆AOD ~ ∆COB सिद्ध करने के लिए किस अन्य सूचना की आवश्यकता होगी?
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 4हल
दिया है, \(\frac{O A}{O C}=\frac{O D}{O B}\)
आकृति से, ∠AOD = ∠BOC (शीर्षाभिमुख कोण)
अतः ∆AOD ~ ∆COB
अर्थात् ∆AOD ~ ∆COB सिद्ध करने के लिए किसी भी अन्य सूचना की आवश्यकता नहीं है।

प्रश्न 5.
बौधायन प्रमेय का कथन लिखिए।
हल
प्रमेय : समकोण त्रिभुज में (कर्ण)2 = (आधार)2 + (लम्ब)2 होता है।

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 6.
सिद्ध कीजिए कि भुजाएँ 13 cm, 12 cm व 5 cm एक समकोण त्रिभुज की भुजाएँ हैं।
हल
माना a = 13 cm, b = 12 cm तथा c = 5 cm
तब, a2 = (13)2 = 169
तथा b2 + c2 = (12)2 + (5)2 = 144 + 25 = 169
∴ a2 = b2 + c2
अर्थात् (सबसे बड़ी भुजा)2 = शेष दोनों भुजाओं के वर्गों का योग
अतः दी गई भुजाएँ एक समकोण त्रिभुज की भुजाएँ हैं।
इति सिद्धम्

प्रश्न 7.
आकृति में, DE || BC तो EC ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 7
हल
∆ABC में, DE || BC
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 7.1
अत: EC की लम्बाई = 4 cm

लघु उत्तरीय प्रश्न

प्रश्न 1.
आकृति में, ∠A = 90°, BD = DC तो पाइथागोरस प्रमेय से सिद्ध कीजिए AD = \(\frac {1}{2}\) BC
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 1
हल
दिया है : ∆ABC में, ∠A = 90°
BD = DC
AD ⊥ BC
सिद्ध करना है : AD = \(\frac {1}{2}\) BC
उपपत्ति : ∆ABC में, ∠A = 90°
तथा AD ⊥ BC
AD2 = BD . DC = BD . BD = BD2 (∵ DC = BD)
⇒ AD = BD = \(\frac {1}{2}\) BC
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 2.
यदि ∆ABC में DE || BC और \(\frac{A D}{D B}=\frac{2}{3}\) तथा AC = 18 cm हों तो AE ज्ञात कीजिए।
हल
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 2

प्रश्न 3.
दी गई आकृति में DE || AB है। x का मान ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 3
हल
∆ABC में, DE || AB
CE : EB = CD : DA
\(\frac{C E}{E B}=\frac{C D}{D A}\)
⇒ \(\frac{x}{3 x+4}=\frac{x+3}{8 x+9}\)
⇒ (8x + 9) x = (3x + 4) (x + 3)
⇒ 8x2 + 9x = 3x2 + 9x + 4x + 12
⇒ 8x2 + 9x – 3x2 – 9x – 4x – 12 = 0
⇒ 5x2 – 4x – 12 = 0
⇒ 5x2 – (10 – 6)x – 12 = 0
⇒ 5x2 – 10x + 6x – 12 = 0
⇒ 5x(x – 2) + 6(x – 2) = 0
⇒ (x – 2)(5x + 6) = 0
यदि 5x + 6 = 0 हो, तो x = \(-\frac{6}{5}\) जो कि मान्य नहीं है।
तब, यदि x – 2 = 0 हो, तो x = 2
अतः x का मान = 2.

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 4.
दी गई आकृति में ABCD एक समचतुर्भुज है तो सिद्ध कीजिए कि 4AB2 = AC2 + BD2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 4
हल
दिया है : ABCD एक समचतुर्भुज है जिसमें AB, BC, CD व DA चतुर्भुज की भुजाएँ हैं AC व BD विकर्ण हैं।
सिद्ध करना है : 4AB2 = AC2 + BD2
उपपत्ति : समचतुर्भुज की भुजाएँ लम्बाई में समान होती हैं और उसके विकर्ण परस्पर समकोण पर एक-दूसरे को अर्धित करते हैं।
AB = BC = CD = DA ……(1)
AO = OC तथा BO = OD
∆AOB, ∆BOC, ∆COD व ∆DOA समकोण त्रिभुज हैं।
समकोण ∆AOB में, ∠AOB = 90°
AB2 = AO2 + BO2
⇒ AB2 = \(\left(\frac{A C}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2}\) (∵ AO, AC का तथा BO, BD का अर्धक है)
⇒ AB2 = \(\frac{A C^{2}+B D^{2}}{4}\)
⇒ 4AB2 = AC2 + BD2
इति सिद्धम्

प्रश्न 5.
दो समरूप ∆ABC तथा ∆PQR के क्षेत्रफल का अनुपात 9 : 16 है। यदि BC = 4.5 m, तो QR की लम्बाई ज्ञात कीजिए।
हल
दो समरूप त्रिभुजों के क्षेत्रफल, त्रिभुजों की संगत भुजाओं के वर्गों के अनुपात में होते हैं।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 5
अतः QR की लम्बाई = 6.0 cm

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 6.
चित्र में, ∆OSR ≅ ∆OPQ एवं SR || PQ यदि OSR = 50° और ∠ROQ = 120° तो ∠QPO का मान ज्ञात कीजिए।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 6
हल
चित्र में, ∆OSR ≅ ∆OPQ एवं SR || PQ, SQ एक ऋजु रेखा है और 120° उससे OR बिन्दु O पर मिलती है, जिससे ∠SOR तथा ∠QOR एक रैखिक युग्म कोण है।
∠SOR + ∠QOR = 180°
⇒ ∠SOR + 120° = 180°
⇒ ∠SOR = 180° – 120° = 60°
तब ∆SOR में, ∠RSO + ∠SOR + ∠ORS = 180°
50° + 60° + ∠ORS = 180°
⇒ ∠ORS = 180° – 50° – 60°
⇒ ∠ORS = 180° – 110°
⇒ ∠ORS = 70°
∵ ∆SOR ~ ∆QPO
∴ ∠ORS = ∠QPO = 70°
∴ ∠QPO = 70°

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 7.
आकृति में, AD ⊥ BC है। सिद्ध कीजिए कि AB2 + CD2 = BD2 + AC2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions SAQ 7
हल
∆ABD में, ∠BDA = 90°,
अत: बौधायन प्रमेय से,
AB2 = BD2 + DA2 ……(1)
तथा इसी प्रकार ∆ADC में,
AC2 = CD2 + DA2
⇒ DA2 = AC2 – CD2
समीकरण (1) में DA2 का मान रखने पर,
AB2 = BD2 + AC2 – CD2
⇒ AB2 + CD2 = BD2 + AC2
इति सिद्धम्

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
AQ तथा BP एक समकोण त्रिभुज ABC की माध्यिकाएँ हैं तथा त्रिभुज का कोण C समकोण है। सिद्ध कीजिए कि 4(AQ2 + BP2) = 5AB2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions LAQ 1
हल
दिया है : ∆ABC में ∠C = 90°, त्रिभुज की BP और AQ दो माध्यिकाएँ हैं जो क्रमश: CA को बिन्दु P पर तथा BC को बिन्दु Q पर मिलती
हैं।
सिद्ध करना है : 4(AQ2 + BP2) = 5AB2
उपपत्ति : BP, CA की माध्यिका है।
PC = \(\frac{1}{2}\) CA
⇒ 2PC = CA
⇒ 4PC2 = CA2 ……(1)
AQ, BC की माध्यिका है।
CQ = \(\frac{1}{2}\) BC
⇒ 2CQ = BC
⇒ 4CQ2 = BC2 ………(2)
समकोण त्रिभुज ABC में, AB2 = BC2 + CA2 ……(3)
समकोण त्रिभुज BPC में, BP2 = PC2 + BC2 …….(4)
समकोण त्रिभुज ACQ में, AQ2 = CA2 + CQ2 ………(5)
समीकरण (4) व (5) को जोड़ने पर,
AQ2 + BP2 = PC2 + CQ2 + CA2 + BC2 ……(6)
समीकरण (6) को 4 से गुणा करने पर,
4(AQ2 + BP2) = 4PC2 + 4CQ2 + 4BC2 + 4CA2
⇒ 4(AQ2 + BP2) = CA2 + BC2 + 4BC2 + 4CA2 [समीकरण (1) व (2) से]
⇒ 4(AQ2 + BP2) = 5BC2 + 5CA2
⇒ 4(AQ2 + BP2) = 5(BC2 + CA2)
⇒ 4(AQ2 + BP2) = 5AB2 [समीकरण (3) से]
अत: 4(AQ2 + BP2) = 5AB2
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions

प्रश्न 2.
आकृति में, ∠ACB = 90° तथा AD ⊥ AB है। सिद्ध कीजिए कि \(\frac{A B^{2}}{A D^{2}}=\frac{B C}{C D}\)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions LAQ 2
हल
दिया है : ∆ABD में ∠DAB = 90° तथा AC ⊥ BD
सिद्ध करना है : \(\frac{A B^{2}}{A D^{2}}=\frac{B C}{C D}\)
उपपत्ति : ∆ABD में, ∠DAB = 90°
∆ABD समकोण त्रिभुज है जिसमें AC ⊥ BD
∆ABC ~ ∆DBA और ∆DAC ~ ∆DRA तथा ∆ABC ~ ∆DAC
∵ ∆ABC ~ ∆DRA
∆ABC तथा ∆DBA की तुलना करने पर,
\(\frac{B C}{A B}=\frac{A B}{B D}\)
⇒ AB2 = BC × BD …….(1)
∵ ∆DAC ~ ∆DBA
∴ ∆DAC तथा ∆DBA की तुलना करने पर,
\(\frac{A D}{B D}=\frac{C D}{A D}\)
⇒ AD2 = BD × CD …….(2)
समीकरण (1) को (2) से भाग देने पर,
\(\frac{A B^{2}}{A D^{2}}=\frac{B C \times B D}{B D \times C D}\)
⇒ \(\frac{A B^{2}}{A D^{2}}=\frac{B C}{C D}\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

Bihar Board Class 10 Maths त्रिभुज Ex 6.6

प्रश्न 1.
दी गई आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि \(\frac{Q S}{S R}=\frac{P Q}{P R}\) है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q1हल
दिया है : ∆PQR में PS कोण QPR का समद्विभाजक है।
सिद्ध करना है : \(\frac{Q S}{S R}=\frac{P Q}{P R}\)
रचना : बिन्दु R से रेखा RT || PS खींची जो बढ़ाई गई QP को T पर प्रतिच्छेद करे।
उपपत्ति : TR || PS और PR तिर्यक रेखा है
∠SPR = ∠PRT (एकान्तर कोण-युग्म है) ……(1)
पुन: TR || PS और QT तिर्यक रेखा है।
∠QPS = ∠PTR (संगत कोण-युग्म है) ……(2)
परन्तु PS, ∠QPR का समद्विभाजक है।
∠QPS = ∠SPR …….(3)
तब, समीकरण (1), (2) व (3) से,
∠PTR = ∠PRT
∆PTR की भुजा PT = PR ……(4)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q1.1
अब, ∆QTR में, PS || TR
\(\frac{P Q}{P T}=\frac{Q S}{S R}\)
परन्त समीकरण (4) से, PT = PR
अतः \(\frac{P Q}{P R}=\frac{Q S}{S R} \Rightarrow \frac{Q S}{S R}=\frac{P Q}{P R}\)
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 2.
दी गई आकृति में D, ∆ABC के कर्ण AC पर स्थित एक बिन्दु है जबकि BD ⊥ AC, DM ⊥ BC और DN ⊥ AB है। सिद्ध कीजिए कि-
(i) DM2 = DN . MC
(ii) DN2 = DM . AN
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q2
हल
दिया है : समकोण ∆ABC में ∠ABC = 90°
BD ⊥ AC, DM ⊥ BC तथा DN ⊥ AB
सिद्ध करना है :
(i) DM2 = DN . MC
(ii) DN2 = DM . AN
उपपत्ति : समकोण ∆ABC में, BD ⊥ AC (दिया है)
∆BDC ~ ∆ABC और ∆ADB ~ ∆ABC
जिससे ∆BDC ~ ∆ADB
तथा ∆BDC और ∆ADB समकोणीय हैं।
(i) समकोण ∆BDC में, DM ⊥ BC (दिया है)
∆DMC ~ ∆BMD
\(\frac{M C}{D M}=\frac{D M}{B M}\)
⇒ DM2 = BM × MC …….(1)
चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BM = DN ………(2)
तब, समीकरण (1) व (2) से,
DM2 = DN . MC
इति सिद्धम्

(ii) समकोण ∆ADB में, DN ⊥ AB (दिया है)
∆AND और ∆DNB में,
\(\frac{D N}{B N}=\frac{A N}{D N}\)
⇒ DN2 = BN . AN …….(3)
परन्तु, चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BN = DM ……(4)
तब, समीकरण (3) व (4) से,
DN2 = DM · AN
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 3.
दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2BC . BD है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q3
हल
दिया है : ∆ABC में, ∠ABC > 90° तथा AD ⊥ CB है।
सिद्ध करना है : AC2 = AB2 + BC2 + 2BC . BD
उपपत्ति : समकोण ∆ABD में,
AB2 = AD2 + BD2 ……(1)
पुनः समकोण ∆ACD में,
AC2 = AD2 + DC2
= AD2 + (BD + BC)2 (∵ DC = BD + BC)
= AD2 + BD2 + BC2 + 2BC . BD [∴ (BD + BC)2 के विस्तार से]
= AB2 + BC2 + 2BC . BD [∴ समीकरण (1) से ]
अतः AC2 = AB2 + BC2 + 2BC . BD
इति सिद्धम्

प्रश्न 4.
दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° है तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC . BD है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q4
हल
दिया है : ∠B < 90° तथा AD ⊥ BC
सिद्ध करना है : AC2 = AB2 + BC2 – 2BC . BD
उपपत्ति : AD ⊥ BC
∆ABD तथा ∆ACD समकोणीय त्रिभुज हैं।
तब, समकोण त्रिभुज ABD में,
AB2 = AD2 + BD2 ……(1)
और समकोण त्रिभुज ACD में,
AC2 = AD2 + DC2 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
AC2 – AB2 = DC2 – BD2
⇒ AC2 – AB2 = (DC + BD) (DC – BD) (∵ (a + b) (a – b) = a2 – b2)
⇒ AC2 – AB2 = BC(DC – BD) (∵ DC + BD = BC)
⇒ AC2 – AB2 = BC(BC – BD – BD) (∵ DC = BC – BD)
⇒ AC2 – AB2 = BC (BC – 2BD)
⇒ AC2 – AB2 = BC2 – 2BC × BD
अत: AC2 = AB2 + BC2 – 2BC . BD
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 5.
दी गई आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि-
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q5
हल
दिया है : ABC एक त्रिभुज है जिसमें D, भुजा BC का मध्य-बिन्दु AM, BC पर लम्ब खींचा गया है और AC > AB
सिद्ध करना है :
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q5.1
उपपत्ति : (i) समकोण ∆AMD में, AM2 + DM2 = AD2 …..(1)
समकोण ∆AMC में,
AC2 = AM2 + MC2
= (AD2 – DM2) + MC2 [समीकरण (1) से AM2 = AD2 – DM2]
= AD2 – DM2 + (DM + DC)2 [∵ MC = DM + DC]
= AD2 – DM2 + DM2 + 2DM . DC + DC2
= AD2 + 2 DM . DC + (\(\frac{1}{2}\) BC)2 [∵ D, BC मध्य-बिन्दु है]
= AD2 + (2DC). DM + \(\frac{1}{4}\) BC2 [∵ 2DC = BC]
अत: AC2 = AD2 + BC . DM + \(\left(\frac{B C}{2}\right)^{2}\) ……(2)
इति सिद्धम्

(ii) समकोण ∆AMB में,
AB2 = AM2 + BM2
= (AD2 – DM2) + BM2
= AD2 – DM2 + (BD – DM)2
= AD2 – DM2 + BD2 – 2BD . DM + DM2 [∵ (a – b)2 = a2 – 2ab + b2]
= AD2 – 2BD . DM + BD2
= AD2 – BC . DM + \(\left(\frac{1}{2} B C\right)^{2}\) [∵ D, BC का मध्य-बिन्दु है।]
AB2 = AD2 – BC . DM + \(\frac{1}{4}\) BC2 …….(3)
अत: AB2 = AD2 – BC . DM + \(\left(\frac{B C}{2}\right)^{2}\)
इति सिद्धम्

(iii) खण्ड (i) व खण्ड (ii) के परिणामों का योग करने पर,
AB2 + AC2 = 2AD2 + 2 . \(\frac{1}{4}\) BC2 = 2AD2 + \(\frac{1}{2}\) BC2
अत: AB2 + AC2 = 2AD2 + \(\frac{1}{2}\) BC2
इति सिद्धम्

प्रश्न 6.
सिद्ध कीजिए कि एक समान्तर चतुर्भुज के विकर्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q6
हल
दिया है : ABCD एक समान्तर चतुर्भुज है जिसके विकर्ण AC और BD परस्पर बिन्दु O पर काटते हैं।
सिद्ध करना है : AC2 + BD2 = AB2 + BC2 + CD2 + DA2
रचना : A से BD पर AE C से BD पर CF लम्ब खींचा।
उपपत्ति: ABCD एक समान्तर चतुर्भुज है और AC तथा BD उसके विकर्ण हैं जो परस्पर O पर काटते हैं।
∴ AO = OC, OB = OD तथा AB = CD
तब, समकोण ∆ABE में,
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q6.1
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q6.2
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q6.3

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 7.
दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD परस्पर बिन्द P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q7
हल
दिया है : एक वृत्त की AB व CD दो जीवाएँ हैं जो एक-दूसरे को बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP
रचना : रेखाखण्ड AD व CB खींचे।
उपपत्ति : (i) जीवा AB और CD परस्पर P पर काटती हैं।
शीर्षाभिमुख कोण ∠APC = ∠BPD
∠CAP = ∠BDP (एक ही वृत्तखण्ड के कोण हैं)
और ∠ACP = ∠DBP (एक ही वृत्तखण्ड के कोण हैं)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q7.1
अब, ∆APC और ∆BPD में,
∠APC = ∠BPD
∠CAP = ∠BDP
∠ACP = ∠DBP
दो त्रिभुजों की समरूपता की कसौटी AAA से,
∆APC ~ ∆DPB
इति सिद्धम्
(ii) ∆APC और ∆DPB में,
\(\frac{A P}{D P}=\frac{C P}{P B}\)
अत: AP . PB = CP . DP
इति सिद्धम्

प्रश्न 8.
दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD बढ़ाने पर परस्पर बिन्दु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q8
हल
दिया है : AB और CD एक वृत्त की दो जीवाएँ हैं जो बढ़ाने पर एक-दूसरे को वृत्त के बाहर बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD
रचना : रेखाखण्ड AC व BD को मिलाया।
उपपत्ति : (i) चतुर्भुज ABCD एक चक्रीय चतुर्भुज है और ∠PAC उसका बहिष्कोण है।
∠PAC = ∠BDC
⇒ ∠PAC = ∠BDP
इसी प्रकार, ∠PCA, चक्रीय चतुर्भुज ABCD का बहिष्कोण है।
∠PCA = ∠ABD
∠PCA = ∠PBD …..(2)
अब, ∆PAC और ∆PBD में,
∠CPA = ∠BPD (दोनों त्रिभुजों का उभयनिष्ठ कोण है)
∠PAC = ∠BDP [समीकरण (1) से]
∠PCA = ∠PBD [समीकरण (2) से]
दो त्रिभजों की समरूपता के गुणधर्म AAA से,
∆PAC ~ ∆PDB
इति सिद्धम्
(ii) ∵ ∆PAC ~ ∆PDB
\(\frac{P A}{P D}=\frac{P C}{P B}\)
⇒ PA . PB = PC . PD
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 9.
दी गई आकृति में त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि \(\frac{B D}{C D}=\frac{A B}{A C}\) है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q9
हल
दिया है : ∆ABC की भुजा BC पर एक बिन्दु D ऐसा है कि \(\frac{B D}{C D}=\frac{A B}{A C}\)
सिद्ध करना है : AD, ∠BAC का समद्विभाजक है।
रचना : BA को उसकी सीध में E तक इतना बढ़ाया कि AE = AC हो। रेखाखण्ड CE खींचा।
उपपत्ति: दिया है,
\(\frac{B D}{C D}=\frac{A B}{A C}\)
∵ AC = AE ⇒ \(\frac{B D}{C D}=\frac{A B}{A E}\)
तब, ∆BEC में, \(\frac{B D}{C D}=\frac{A B}{A E}\)
अनुपातिकता के मूलभूत प्रमेय के विलोम से, AD || EC
AD || EC और BE तिर्यक रेखा है।
∠BAD = ∠AEC ……(1)
AD || EC और AC तिर्यक रेखा है।
∠CAD = ∠ACE ……(2)
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q9.1
परन्तु ∆ACE में रचना से, AC = AE
∠AEC = ∠ACE …….(3)
तब समीकरण (1), (2) व (3) से,
∠BAD = ∠CAD
परन्तु ∠BAD + ∠CAD = ∠BAC
अत: AD, ∠BAC का समद्विभाजक है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 10.
नाज़िमा एक नदी की धारा में मछलियाँ पकड़ रही है। उसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से 1.8 m ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी की सतह पर इस प्रकार स्थित है कि उसकी नाज़िमा से दूरी 3.6 m है और छड़ के सिरे के ठीक नीचे पानी की सतह पर स्थित बिन्दु से उसकी दूरी 2.4 m है। यह मानते हुए कि उसकी डोरी (उसकी छड़ के सिरे से काँटे तक) तनी हुई है, उसने कितनी डोरी बाहर निकाली हुई है? यदि वह डोरी को 5 cm/s की दर से अन्दर खींचे तो 12 सेकण्ड के बाद नाज़िमा की काँटे से क्षैतिज दूरी कितनी होगी?
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q10हल
चित्र में, नाजिमा की मछली पकड़ने वाली छड़ का सिरा A पानी की सतह से 1.8 m ऊँचाई पर है जिससे AC = 1.8 m है।
डोरी AB के सिरे B पर एक काँटा है जिसकी बिन्दु C से दूरी BC = 2.4 m है और नाजिमा से B की दूरी BD = 3.6 m है।
CD = BD – BC = 3.6 – 2.4 = 1.2 m
माना डोरी की लम्बाई AB है।
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Ex 6.6 Q10.1
तब समकोण ∆ABC में,
AB2 = BC2 + CA2
⇒ AB2 = (2.4)2 + (1.8)2 = 5.76 + 3.24 = 9.0
⇒ AB = √9.00 = 3 m
अतः डोरी की लम्बाई = 3 m
जब वह डोरी को 5 cm/s की दर से अन्दर खींच रही है तो 12 सेकण्ड में खींची दूरी = 5 × 12 = 60 cm = 0.6 m
तब पानी के बाहर डोरी की लम्बाई AP = 3.6 – 0.6 = 2.4 m
तब काँटे से छड़ के सिरे A के ठीक नीचे बिन्दु C की क्षैतिज दूरी PC होगी।
समकोण ∆APC में,
PC2 + AC2 = AP2
PC2 + (1.8)2 = (2.4)2
PC2 + 3.24 = 5.76
PC2 = 5.76 – 3.24 = 2.52
PC = √2.52 = 1.587 m = 1.59 मीटर (लगभग)
काँटे से नाज़िमा की क्षैतिज दूरी PD = PC + CD = (1.59) + (1.2) cm = 2.79 m
अत: काँटे से नाज़िमा की क्षैतिज दूरी = 2.79 m